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Coded Cooperative Data Exchange for a Secret Key
Thomas A. Courtade, Member, IEEE, and Thomas R. Halford, Member, IEEE

Abstract— We consider a coded cooperative data exchange
problem with the goal of generating a secret key. In particular,
we investigate the number of public transmissions required for a
set of clients to agree on a secret key with probability one, subject
to the constraint that it remains private from an eavesdropper.
Although the problems are closely related, we prove that secret
key generation with the fewest number of linear transmissions
is NP-hard, while it is known that the analogous problem in
the traditional cooperative data exchange setting can be solved
in polynomial time. In doing this, we completely characterize
the best possible performance of linear coding schemes, and
also prove that linear codes can be strictly suboptimal. Finally,
we extend the single-key results to characterize the minimum
number of public transmissions required to generate a desired
integer number of statistically independent secret keys.

Index Terms— Coded cooperative data exchange, secrecy,
universal recovery, network coding.

I. INTRODUCTION

IN THIS paper, we consider a cooperative data exchange
problem with the goal of generating a secret key. In par-

ticular, we study the number of public transmissions required
for a set of clients to agree on a secret key, subject to the
constraint that it remains private from an eavesdropper.

In an asymptotic setting, the reciprocal relationship between
secret key (SK) capacity and communication for omniscience
was revealed in the pioneering work [2] by Csiszár and
Narayan. They showed that the maximum rate at which
secrecy can be generated by a collection of terminals is in
one-to-one correspondence with the minimum rate required for
those same terminals to communicate for omniscience. Though
they characterized the minimum communication rate required
to attain omniscience, Csiszár and Narayan left characterizing
the minimum communication rate required to generate a
maximum-rate SK as an open problem [2, Sec. VI].

In [3], El Rouayheb et al. introduced a non-asymptotic,
combinatorial version of Csiszár and Narayan’s communica-
tion for omniscience problem, which they called (coded) coop-

Manuscript received August 1, 2014; revised June 1, 2015; accepted
January 26, 2016. Date of publication March 8, 2016; date of current version
June 14, 2016. This work was supported in part by the Division of Computing
and Communication Foundations within the National Science Foundation Cen-
ter for Science of Information under Grant CCF-0939370 and in part by the
U.S. Defense Advanced Research Project Agency under Contract W15P7T-
12-C-5013 and Contract W911QX-13-C-0010. This paper was presented in
part at the 2014 IEEE International Symposium on Information Theory [1].

T. A. Courtade is with the Department of Electrical Engineering and
Computer Sciences, University of California at Berkeley, Berkeley, CA 94720-
1770 USA (e-mail: courtade@berkeley.edu).

T. R. Halford was with TrellisWare Technologies, Inc., San Diego,
CA 92127-128 USA. He is now with WPL, Inc., Manhattan Beach,
CA 90266-4447 USA (e-mail: tom.halford@wpli.net).

Communicated by M. Langberg, Associate Editor for Coding Theory.
Digital Object Identifier 10.1109/TIT.2016.2539347

erative data exchange (CCDE). In the CCDE problem, a set of
clients initially hold a specified, finite set of messages coming
from an ambient finite field F, and the quantity of primary
interest is the precise number of F-valued public transmissions
required for the clients to obtain omniscience (i.e., reproduce
the messages collectively held by the clients). This contrasts
with Csiszár and Narayan’s formulation of communication for
omniscience, wherein clients observe correlated memoryless
sources and the quantity of interest is the communication rate
(defined in the usual asymptotic sense) required for the clients
to obtain omniscience.

Since its introduction, the CCDE problem has received
significant attention from many researchers (see [4]–[14]
and the references therein). Algorithms and heuristics for
solving the CCDE problem were presented in [5]–[7] for
broadcast networks and in [8] and [9] for multihop networks.
Moreover, a number of authors have considered generaliza-
tions of the CCDE problem to model various practical system
considerations [10]–[14].

Independent and contemporaneous with early work on
CCDE, Chan and Zheng introduced an essentially equivalent
source and network model, which they called the hypergraph-
ical source and broadcast network, respectively [15]. While
the CCDE works referenced above focus on communication
for omniscience, [15] specifically addressed the problem of
SK agreement (see also [16]). In follow up work, Chan [17]
considered a closely related finite linear source model,
and gave suboptimal bounds on the public transmission
block length required for perfect SK agreement under linear
transmission schemes. Despite their similarities, a distinc-
tive feature of CCDE—which was not explicitly considered
in [15]—is that public transmissions by clients are required
to be F-valued, and the figure of merit is the integer number
of transmissions made by clients, rather than the public com-
munication rate (defined under the assumption of a discrete
memoryless hypergraphical source). This integrality constraint
notwithstanding, [4], [8] showed that the omniscience-secrecy
relations in [2] essentially carry over to the combinatorial
CCDE setting. In particular, [4], [8] characterized the max-
imum number of independent, F-valued SKs that clients can
generate under the CCDE model. Notably, this quantity can
be strictly smaller than the corresponding SK capacity if
clients were to observe memoryless realizations according
to the same hypergraphical source model. Despite the work
in [4], [8], and [17], the communication requirements for
agreeing on a desired number of F-valued SKs under the
CCDE model (equivalently, the hypergraphical source model
of [15]) has remained open. This problem is the primary focus
of the present paper, and we give a complete resolution for
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the case of linear transmission schemes, essentially closing
the gap between Chan’s bounds in [17].

Related to the present work is the minimum communication
rate required to generate a maximum-rate SK in the asymptotic
setting (i.e., Csiszár and Narayan’s open problem mentioned
above). In [18], Tyagi gave a multi-letter expression char-
acterization for this rate in the two-terminal case in terms
of the r-rounds interactive common information. Recently,
Mukherjee and Kashyap considered extensions to the multi-
terminal case [19].

Despite the similarity in spirit, the asymptotic setting
of [18] and [19] and the combinatorial setting of the present
paper are considerably different in nature, and the proof
techniques used are orthogonal. That said, all of these results
shed light on the fundamentally different natures of SK
generation at minimum communication rate and SK generation
via communication for omniscience.

The weakly secure CCDE problem introduced in [20] is
also related to our work. The goal of the weakly secure CCDE
problem is to communicate for omniscience while revealing
as little information as possible to an eavesdropper. This is
closely related to the CCDE under a privacy constraint prob-
lem studied in [4]. Yan and Sprintson designed coding schemes
that solve the weakly secure CCDE problem while revealing
as little as information as possible to an eavesdropper [20].
Improvements to these schemes can be derived using the codes
described in [21]. The primary distinction between the present
setting and that of the weakly secure CCDE problem is that
we only aim to generate a SK; we do not require that the
nodes communicate for omniscience nor do we require that
the SK corresponds to any given message.

Finally, we remark that in a recent paper [22], Halford et al.
developed practical protocols for SK generation in ad hoc
networks based on the CCDE problem. Briefly, a scenario
was studied wherein the protocol designer controls the initial
distribution of master keys so that secret keys can later be
efficiently generated among arbitrary groups of clients. The
results given in the present paper establish limits and suggest
design rules for such protocols.

Summary of Contributions

We consider a cooperative data exchange problem with the
goal of agreeing on a secret key of specified length. Specif-
ically, for a fixed integer τ ≥ 1 and a hypergraphical source
model where source symbols take values in a finite field F,
we investigate the number of F-valued public transmissions
required for a set of clients to agree on τ independent F-valued
random variables (i.e., secret keys), subject to the constraint
that they remain private from an eavesdropper. For this model,
our main contributions are the following:

• For linear encoding schemes, we characterize the number
of public transmissions required to generate τ indepen-
dent F-valued SKs in terms of hypergraph connectiv-
ity. Moreover, we show that computing this quantity
is NP-hard in general. This is surprising since the
analogous CCDE problem (i.e., determining the minimum
number of transmissions required for omniscience) can

be solved in polynomial time. This dichotomy suggests
that SK agreement with minimum-rate communication
in general network models is a fundamentally more
difficult problem than minimum-rate communication for
omniscience.

• Further, we show that nonlinear encoding schemes can
strictly outperform linear schemes (i.e., generate the same
number of SKs with fewer public transmissions), and
that this performance gap can be arbitrarily large. This is
also surprising since for the same network model, linear
schemes encoding schemes are known to be optimal
in communication for omniscience (i.e., achieve fewest
transmissions).

This paper is organized as follows. Section II formally
defines our system model and reviews relevant results on
CCDE. In Section III, we state and prove our main results
for the generation of a single SK. Section IV characterizes
the minimum number of public transmissions required to
generate multiple SKs, and Section V delivers concluding
remarks.

II. SYSTEM MODEL AND PRELIMINARIES

We first establish basic notation. Throughout, we use calli-
graphic notation to denote sets. For two sets A ⊂ B, we write
B\A to denote those elements in B, but not in A. If A is a
singleton set (i.e., A = {a}), then we often use the notation
B − a � B\{a} for convenience. We define Z to be the set of
integers. For positive m ∈ Z, we use the shorthand notation
[m] � {1, 2, . . . , m}. Finally, for random variables X, Y , we
write I (X; Y ) for the mutual information between X and Y .

A. System Model

Throughout, we consider networks defined by a set of
n clients (i.e., terminals) C = {c1, c2, . . . , cn}, a positive
integer m, and a family of finite sets {I1,I2, . . . ,In} (each
I j ⊆ [m] and ∪n

j=1I j = [m]) in the following way. Define the

random (column) vector X � [X1, X2, . . . , Xm ]T , where each
Xi is a discrete random variable with equiprobable distribution
on a finite field F, and (X1, X2, . . . , Xm) are mutually inde-
pendent.1 The random variables {Xi }m

i=1 are called messages,
and {Xi : i ∈ I j } is the set of messages initially held by client
c j ∈ C. In other words, I j defines the indices of messages
initially held by client c j , for j = 1, . . . , n. Throughout,
n will always denote the number of clients; since the sets
I j are always indexed by j ∈ [n], we will use the shorthand
notation {I j } to denote the family {I1,I2, . . . ,In}.

We adopt the communication model which is standard
in index coding and CCDE problems. That is, we consider
transmission schemes consisting of a finite number of commu-
nication rounds. In each round, a single client broadcasts an
element of F (which can be a function of the messages initially
held by that client and all previous transmissions) to all other

1We assume throughout that |F| > n. Indeed, the CCDE achievability results
rely on the fact that linear network coding can achieve the cut-set bound in
a multicast setting provided |F| > n (e.g., [23]). In practical settings, this
will almost certainly be the case since the number of potential messages
(e.g., packets) will typically far exceed the number of clients.
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clients over an error-free channel. It is further assumed that
all clients have knowledge of the index sets I1, . . . ,In , and
thus follow a protocol which is mutually agreed upon. We will
elaborate on the definition of a transmission protocol in the
next subsection.

B. Transmission Protocols

For a network defined by {I j }, a transmission protocol P
(or simply, a protocol P) consisting of t communication rounds
is defined by n encoding functions {f1, f2, . . . , fn}, and a
t-tuple (i1, i2, . . . , it ), where ik ∈ [n] indicates which client
transmits during communication round k. More specifically,
during communication round k, client cik transmits

fik
(
{X j : j ∈ Iik }, k, {fi� }k−1

�=1

)
∈ F, (1)

where we have abbreviated the transmitted symbols in
rounds � ∈ [k − 1] by {fi� }k−1

�=1. For a given transmis-
sion protocol P requiring t communication rounds, we let
T(X, P) ∈ F

t be the column vector with kth entry equal
to fik

(
{X j : j ∈ Iik }, k, {fi� }k−1

�=1

)
. Letting ‖ · ‖ be the length

function, we have ‖T(X, P)‖ = t . Note that T(X, P) is a
random variable since it is a function of the random vector X.
Generally, the transmission protocol under consideration will
be clear from context. Hence, we abbreviate T(X) � T(X, P)
for convenience when there is no ambiguity.

A transmission protocol is said to be linear (over F) if the
encoding functions {f1, f2, . . . , fn} are of the form

fik
(
{X j : j ∈ Iik }, k, {fi� }k−1

�=1

)
=

∑
j

α
(k)
j X j , (2)

where α
(k)
j ∈ F can be interpreted as the encoding coefficient

for message j during communication round k. In this case,
we can express T(X) = AX, where A ∈ F

t×m assuming
the definitions t � ‖T(X)‖ and m � | ∪ j I j |. Hence, the
encoding matrix A provides a succinct description of a linear
transmission protocol. Note that the order of transmissions
corresponding to a linear protocol is inconsequential.

C. Transmission Protocols for Omniscience

A transmission protocol P is said to achieve omniscience if
there exist decoding functions {g1, g2, . . . , gn} which satisfy

g j
({Xi : i ∈ I j }, T(X, P)

) = X for each j ∈ [n] (3)

with probability 1.
Before proceeding, let M�

({I j }
)

denote the optimal value
of the following integer linear program (ILP):

minimize :
∑
j∈[n]

a j (4)

subject to :
∑
j∈S

a j ≥
∣∣∣∣∣∣
⋂

j∈S̄
Ī j

∣∣∣∣∣∣
for all nonempty S ⊂ [n]

a j ∈ Z for all j ∈ [n],
where Īi �

(∪ jI j
) \Ii and S̄ � [n]\S. The quantity

M�
({I j }

)
will play an important role in our treatment due to

its inherent connection to the communication for omniscience,
which is made explicit by the following theorem.2

Theorem 1 ([4, Th. 2]): If a protocol P achieves omni-
science, then ‖T(X, P)‖ ≥ M�

({I j }
)
. Conversely, there always

exists a linear protocol PL that achieves omniscience and has
‖T(X, PL)‖ = M�

({I j }
)
.

Theorem 1 addresses the central issue in the CCDE prob-
lem, which primarily investigates the number of transmissions
required to achieve omniscience. We remark that this is not
equivalent to characterizing the minimum communication rate
required for omniscience (as would be the case in Csiszár and
Narayan’s setting [2]) due in part to the integrality constraint
on the number of transmissions.

D. Transmission Protocols for Secret Keys

A transmission protocol (with corresponding transmis-
sion sequence T(X)) generates a secret key (SK) if there
exist decoding functions {k1, k2, . . . , kn} which satisfy the
following three properties:

(i) For all j ∈ [n], and with probability 1,

k j
({Xi : i ∈ I j }, T(X)

) = k1
({Xi : i ∈ I1}, T(X)

)
.

(ii) k1
({Xi : i ∈ I1}, T(X)

)
is equiprobable on F.

(iii) I
(
k1

({Xi : i ∈ I1}, T(X)
) ; T(X)

) = 0.
In words, requirement (iii) guarantees that the

public transmissions T(X) reveal no information about
k1

({Xi : i ∈ I1}, T(X)
)
. Requirement (i) asserts that all

clients c j ∈ C can compute k1
({Xi : i ∈ I1}, T(X)

)
. For

these reasons, k1
({Xi : i ∈ I1}, T(X)

)
is called a secret key.

Naturally, a secret key should be equiprobable on its domain
to make guessing difficult, thus motivating requirement (ii).

It is not immediately clear whether any protocol P generates
a SK. However, it turns out that such protocols exist in
great abundance. In particular, the existence of protocols that
generate a SK depends solely on the family {I j }.

Theorem 2 ([4, Th. 6]): For a network defined by {I j },
there exists a protocol P which generates a SK if and only if

∣∣∪ jI j
∣∣ ≥ M�

({I j }
) + 1. (5)

It is important to point out that (5) closely parallels
Csiszar and Narayan’s work [2], which showed that a positive
rate secret key can be generated if and only if the joint entropy
of the encoder observations is strictly greater than the com-
munication rate required for omniscience. In the combinatorial
CCDE context of Theorem 2,

∣∣∪ jI j
∣∣ plays the role of the

joint source entropy and M�
({I j }

)
serves as a proxy for the

communication rate required for omniscience. It is important
to note that there is no concept of rate in the present setting,
since the clients generate precisely one F-valued SK.

Despite the fact that M�
({I j }

)
corresponds to the opti-

mal value of an ILP, it can be computed in time poly-
nomial in the number of messages m = ∣∣∪ jI j

∣∣
(see [4], [11]). Therefore, for any family {I j }, we can effi-
ciently test whether (5) holds. Hence, the essential remaining

2Theorem 1 essentially appeared in the given form in [8]. However, it was
independently discovered by Milosavljevic et al. [11] and Chan [17] at roughly
the same time.
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question is: “How many transmissions are needed to generate
a SK?”

To this end, let P({I j }) denote the set of protocols for {I j }
that generate a SK, and define

S
({I j }

)
� min

{
‖T(X, P)‖ : P ∈ P({I j })

}
. (6)

That is, S
({I j }

)
is the minimum number of transmissions

needed to generate a SK. Similarly, let PL({I j }) denote the
set of linear protocols for {I j } that generate a SK, and define

SL
({I j }

)
� min

{
‖T(X, P)‖ : P ∈ PL({I j })

}
. (7)

In words, SL
({I j }

)
is the minimum number of transmissions

required to generate a SK when we restrict our attention to
linear protocols. If {I j } does not satisfy (5), then we set
S

({I j }
) = SL

({I j }
) = ∞.

Remark 1: We will often write “{I j } generates a SK”
instead of the more accurate, but cumbersome, “For the
network defined by {I j }, there exists a protocol P which
generates a SK” whenever (5) holds.

III. GENERATING A SINGLE SECRET KEY

In this section, we investigate the number of transmissions
required to generate a SK. In particular, we completely char-
acterize SL

({I j }
)
, and make progress toward characterizing

S
({I j }

)
. We will treat the more general case of generating

multiple secret keys with minimum public communication in
Section IV. Since the single-SK setting is arguably the most
important in practice and the notation is less cumbersome than
the general case, we find it beneficial to highlight the single-
SK setting in the present section.

As demonstrated in the previous section, the CCDE and
SK-generation problems are closely connected through the
quantity M�

({I j }
)
. Since Theorem 1 and the tractability of

ILP (4) essentially resolve the CCDE problem, it is natural
to conjecture that a similar result should hold for S

({I j }
)

and SL
({I j }

)
. Unfortunately, there is a fundamental difference

between the problems, which is revealed by the following two
negative results:

Theorem 3: Computing SL
({I j }

)
is NP-hard.

Theorem 4: For any integer k, there exist families {I j } for
which SL

({I j }
)

> S
({I j }

) + k.
For the CCDE problem, Theorem 1 asserts that linear proto-

cols achieve optimal performance. Furthermore, the number of
transmissions required by linear protocols is easily computed.
For the problem of SK generation, the opposite is true. That
is, linear protocols can be suboptimal, and the number of
transmissions required by linear protocols is generally difficult
to compute. This situation is parallel to that of multicast
network coding and index coding. The two problems are
closely related (cf. [24]), but exhibit the same dichotomy.
See [25]–[27] and our remark at the end of this section for
more details.

A. Proof of Theorem 3

Despite the negative results offered by Theorems 3 and 4,
we can characterize several properties of SL

({I j }
)
, S

({I j }
)
,

and M�
({I j }

)
. Some of these properties are demonstrated in

the following results, which are needed as we progress toward
proving Theorem 3. A complete characterization of SL

({I j }
)

will be given in Theorem 5.
Lemma 1: If {I j } generates a SK, then

S
({I j }

) ≤ SL
({I j }

) ≤ M�
({I j }

)
. (8)

Proof: By definition, S
({I j }

) ≤ SL
({I j }

)
since

PL({I j }) ⊆ P({I j }). The second inequality follows from the
proof of [4, Th. 6], in which a linear transmission protocol P is
constructed that generates a SK with ‖T(X), P)‖ = M�

({I j }
)

communication rounds. �
We say that {J j } is a subfamily of {I j } if there is a set

S ⊂ ∪ jI j such that J j = I j\S for all j ∈ [n].
Lemma 2: If {J j } is a subfamily of {I j }, then

M�
({J j }

) ≤ M�
({I j }

)
, (9)

S
({J j }

) ≥ S
({I j }

)
, and (10)

SL
({J j }

) ≥ SL
({I j }

)
. (11)

Proof: By De Morgan’s law, it is easy to verify that
∣∣∣∣∣∣
⋂

j∈S̄
Ī j

∣∣∣∣∣∣
≥

∣∣∣∣∣∣
⋂

j∈S̄
J̄ j

∣∣∣∣∣∣
for all nonempty S ⊂ [n], (12)

where Īi �
(∪ jI j

) \Ii and J̄i �
(∪ jJ j

) \Ji . Therefore, the
constraints in ILP (4) are relaxed, and M�

({J j }
) ≤ M�

({I j }
)

by definition.
To show (10), observe that any transmission protocol which

generates a SK for the subfamily {J j } also generates a SK
for the family {I j } by ignoring the set of messages {Xi : i /∈
∪ jJ j }. Hence, it follows that S

({J j }
) ≥ S

({I j }
)
. If {J j } can

not generate a SK, the inequality trivially holds. This argument
also proves (11). �

Lemma 2 demonstrates monotonicity, but offers no insight
into whether inequalities (9)-(11) are tight. The following
lemma identifies settings under which (11) holds with equality,
and will prove useful later on.

Lemma 3: If SL
({I j }

)
< M�

({I j }
)
, then there exists some

� ∈ ∪ jI j for which SL
({I j − �}) = SL

({I j }
)
.

Proof: By definition, there is a linear transmission pro-
tocol PL which generates a SK in SL

({I j }
)

communication
rounds. Let T(X, PL) = AX be the sequence of transmissions
made by PL, and let {k1, . . . , kn} be valid decoding functions.

Since ‖T(X, PL)‖ = SL
({I j }

)
< M�

({I j }
)
, Theorem 1

asserts that the protocol PL can not achieve omniscience.
Therefore, by a possible permutation of clients, we can assume
without loss of generality that there is no function g1 for
which

g1
({Xi : i ∈ I1}, AX

) = X with probability 1. (13)

As a consequence, there must exist a nonzero vector v such
that Av = 0, and vi = 0 for all i ∈ I1. Indeed, if there is
no such v, then Ax1 
= Ax2 for all x1 
= x2 that agree on all
coordinates in I1. Thus, client c1, which knows all coordinates
of X in I1, can uniquely determine X from AX, yielding a
contradiction.



COURTADE AND HALFORD: CODED COOPERATIVE DATA EXCHANGE FOR A SECRET KEY 3789

Since v is not identically zero, there is some � /∈ I1 for
which v� 
= 0. Considering any such �, we define X̂� � 0,
and X̂i � Xi for i ∈ ∪ j (I j − �). Also, define vectors X̂ �
[X̂1, X̂2, . . . , X̂m ]T and X′ � X̂ + X� · v = [X1 + v1 X�, X2 +
v2 X�, . . . , v� X�, . . . , Xm + vm X�]T . Observe that, since the
Xi ’s are independent and uniform on F, the random vector
X′ is also uniform over F

m and therefore equal in distribution
to X. Next, note that

k j

(
{X̂i : i ∈ I j }, AX̂

)
= k1

(
{X̂i : i ∈ I1}, AX̂

)
(14)

for all j ∈ [n] since

k j
({Xi : i ∈ I j }, AX

) = k1
({Xi : i ∈ I1}, AX

)
(15)

with probability 1 by definition. Stated another way, (15) holds
for all realizations X = x, and must therefore also hold for X̂.

Next, observe that:

I
(
k1

(
{X̂i : i ∈ I1}, AX̂

)
; AX̂

)

= I
(
k1

(
{X̂i + X� · vi : i ∈ I1}, AX′) ; AX′) (16)

= I
(
k1

(
{Xi : i ∈ I1}, AX

)
; AX

)
= 0 (17)

In the above,

• (16) follows since AX′ = A(X̂+X� ·v) = AX̂, and vi = 0
for all i ∈ I1.

• (17) follows from the above observation that X′ and X
are equal in distribution, and by definition of A and k1.

Finally, by similar reasoning, we note that the random
variable k1

(
{X̂i : i ∈ I1}, AX̂

)
is equiprobable on F since

k1

(
{X̂i : i ∈ I1}, AX̂

)

= k1

(
{X̂i + X� · vi : i ∈ I1}, AX′) (18)

d= k1
({Xi : i ∈ I1}, AX

)
, (19)

and k1
({Xi : i ∈ I1}, AX

)
is equiprobable on F by definition.

In (19), the notation
d= indicates equality in distribution.

Therefore, we can conclude that a SK can be generated
by the subfamily {I j − �} by applying the protocol PL and
fixing X� ≡ 0. This proves that SL

({I j − �}) ≤ SL
({I j }

)
.

By Lemma 2, the reverse inequality also holds. �
In order to proceed, we will need to introduce critical

families. To this end, let τ ≥ 1 be an integer. A family {I j }
is τ -critical if the following hold:

(i)
∣∣∪ jI j

∣∣ − M�
({I j }

) = τ , and
(ii) M�

({I j − i}) = M�
({I j }

)
for all i ∈ ∪ jI j .

It is interesting to note that τ -criticality of {I j } can be
efficiently tested since M�

({I j }
)

is computable in polynomial
time. Observe that 1-critical families enjoy a threshold prop-
erty: families {I j } that are 1-critical generate a secret key,
and no proper subfamilies of {I j } generate SKs. This is a
consequence of Theorem 2 and the definition of 1-criticality.

Further, observe that if
∣∣∪ jI j

∣∣ − M�
({I j }

) = τ , then
{I j } contains τ ′-critical subfamilies for all τ ′ ≤ τ . Indeed,
M�

({I j }
) ≤ M�

({I j − i}) + 1 by definition, so if (ii) does

not hold, then there exists i ∈ ∪ jI j for which M�
({I j }

) =
M�

({I j − i}) + 1, and therefore
∣∣∪ j (I j − i)

∣∣ − M�
({I j − i}) = ∣∣∪ jI j

∣∣ − M�
({I j }

)

= τ. (20)

This may be repeated so long as (ii) does not hold,
and terminates upon finding a τ -critical subfamily of {I j }.
Now, if {I j } is τ -critical, then for any i ∈ ∪ jI j , we have

∣∣∪ j (I j − i)
∣∣ − M�

({I j − i}) = ∣∣∪ jI j
∣∣ − 1 − M�

({I j }
)

= τ − 1. (21)

Hence, repeating the previous argument, we can conclude that
{I j } contains a (τ −1)-critical subfamily, so the claim follows
by induction.

A minimum τ -critical subfamily {J �
j } of {I j } satisfies

∣∣∣∪ jJ �
j

∣∣∣ ≤ ∣∣∪ jJ j
∣∣ (22)

for all other τ -critical subfamilies {J j } of {I j }. By the above
observation, if

∣∣∪ jI j
∣∣ − M�

({I j }
) = τ , then {I j } contains

minimum τ ′-critical subfamilies for all τ ′ ≤ τ . Note that
if {I j } is τ -critical, then {I j } is its own unique minimum
τ -critical subfamily.

The following theorem demonstrates that minimum
1-critical subfamilies completely characterize SL

({I j }
)
.

Theorem 5: If {I j } generates a SK, then

SL
({I j }

) = M�
(
{J �

j }
)

=
∣∣∣∪ jJ �

j

∣∣∣ − 1, (23)

where {J �
j } is a minimum 1-critical subfamily of {I j }.

Proof: By inductively applying Lemma 3, we can find a
subfamily {T j } of {I j } for which

SL
({I j }

) = M�
({T j }

)
. (24)

Let {J j } be any 1-critical subfamily of {T j }. We have the
following chain of inequalities

SL
({I j }

) ≤ SL

(
{J �

j }
)

≤ M�
(
{J �

j }
)

(25)

≤ M�
({J j }

)
(26)

≤ M�
({T j }

)
(27)

= SL
({I j }

)
. (28)

The above steps can be justified as follows:

• (25) follows from Lemmas 1 and 2.
• By definition of τ -criticality, (22) is equivalent to

M�
(
{J �

j }
)

≤ M�
({J j }

)
. Thus, (26) follows since {J �

j }
is a minimum 1-critical subfamily of {I j }, and {J j } is
a 1-critical subfamily of {I j }.

• (27) follows from Lemma 2.
• (28) is the assertion of (24).

This proves that SL
({I j }

) = M�
(
{J �

j }
)

. Recalling the
definition of 1-criticality completes the proof. �

The network defined by {I j } has a natural representation as
a hypergraph.3 In particular, we make the following definition:

3We adopt the definition of a hypergraph that allows for repeated edges
(i.e., multiple edges, with the same set of vertices, are permitted.



3790 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 7, JULY 2016

Definition 1: Consider a hypergraph H = (V, E) with
vertex set V = C, and edge set E = ∪ jI j . H is the hypergraph
representation of {I j } if it has the following property: a vertex
c j ∈ V is contained in the edge e ∈ E if and only if e ∈ I j .

Theorem 5 implies that SL
({I j }

)
is easily computed if

we can identify a minimum 1-critical subfamily of {I j }.
By Theorem 3, we know this must be NP-hard. In order to
prove this to be the case, we require the following lemma
which lends a hypergraph interpretation to 1-criticality. For a
hypergraph H = (V, E), an edge set E ′ ⊆ E is a minimal
connected dominating edge set if the subhypergraph H ′ =
(V, E ′) is connected, and the removal of any edge from E ′
disconnects H ′.

Lemma 4: Let H = (V, E) be the hypergraph representa-
tion of {I j }. H is connected if and only if

M�
({I j }

)
<

∣∣∪ jI j
∣∣ . (29)

In particular, {I j } is 1-critical if and only if E is a minimal
connected dominating edge set.

Proof: First, suppose H is not connected. By definition,
there must exist a nontrivial partition V = (S, S̄) such that
there is no edge e ∈ E which contains vertices from both
S and S̄ . Stated another way, (∪ j∈SI j ) ∩ (∪ j∈S̄I j ) = ∅.
Hence, ILP (4) includes the two constraints

∑
j∈S

a j ≥
∣∣∣∣∣∣
⋂

j∈S̄
Ī j

∣∣∣∣∣∣
=

∣∣∣∣∣∣
⋃
j∈S

I j

∣∣∣∣∣∣
(30)

∑

j∈S̄
a j ≥

∣∣∣∣∣∣
⋂
j∈S

Ī j

∣∣∣∣∣∣
=

∣∣∣∣∣∣
⋃

j∈S̄
I j

∣∣∣∣∣∣
, (31)

the sum of which imply M�
({I j }

) ≥ | ∪ j I j |. By taking the
contrapositive, we have proven

M�
({I j }

)
<

∣∣∪ jI j
∣∣ �⇒ H is connected. (32)

Next, suppose H is connected, and assume without loss of
generality that E = ∪ jI j � {1, 2, . . . , m}. Since H is con-
nected, there is a transmission protocol for which the entries
of T(X) are precisely {X1 + X j }m

j=2. Indeed, by connectivity
of H , there must be some client c initially holding X1 and
some Xe (say, X2 without loss of generality), and can therefore
transmit X1 + X2 during the first communication round.
By induction, assume that {X1+X j }m−1

j=2 are transmitted during
the first m − 2 communication rounds (permuting indices of
the Xi ’s if necessary). Again, by connectivity of H , there must
be a client c ′ which initially holds Xm and Xk , where k < m.
Hence, in communication round m − 1, client c′ can transmit
(X1 + Xk) − (Xk − Xm) = X1 + Xm . Noting that

(X1, X1 + X2, . . . , X1 + Xm)
d= (X1, X2, . . . , Xm),

we have I (X1; T(X)) = 0. If client c ∈ e ∈ E , then it
can recover X1 from the transmission X1 + Xe by simply
subtracting Xe. Since H is connected, each c ∈ V belongs
to some edge in E , and therefore all clients can recover X1
losslessly. Since X1 is equiprobable on F by definition, we

can conclude that {I j } generates a SK. Theorem 2 asserts that
we must have M�

({I j }
)

<
∣∣∪ jI j

∣∣, and we have proven

M�
({I j }

)
<

∣∣∪ jI j
∣∣ ⇐⇒ H is connected. (33)

We now prove the second claim. To this end, suppose {I j }
is 1-critical. Then M�

({I j }
) = ∣∣∪ jI j

∣∣ − 1, which implies H
is connected (and thus E is dominating) by (33). Consider
the subhypergraph H ′ = (V, E\{e}), which corresponds to
the subfamily {I j − e} of {I j }. Since {I j } is 1-critical, we
must have M�

({I j − e}) = M�
({I j }

) = ∣∣∪ jI j
∣∣ − 1 =∣∣∪ j (I j − e)

∣∣. By (33), H ′ must be disconnected, and therefore
E is a minimal connected dominating edge set.

On the other hand, suppose E is a minimal connected
dominating edge set. Since H is connected, (33) implies

M�
({I j }

) ≤ ∣∣∪ jI j
∣∣ − 1. (34)

Since E is minimal, for any e ∈ E , H ′ = (V, E\{e}) is
disconnected, and (33) implies

M�
({I j − e}) ≥ ∣∣∪ j (I j − e)

∣∣ = ∣∣∪ jI j
∣∣ − 1. (35)

Applying Lemma 2, we must have M�
({I j }

) = M�
({I j − e}),

and
∣∣∪ jI j

∣∣ − M�
({I j }

) = 1, which implies {I j }
is 1-critical. �

Remark 2: We note that the simple secret-sharing scheme
in the proof of Lemma 4 has appeared several times in the
literature. See, for example, [2], [15], [28].

We are finally in a position to prove Theorem 3.
Proof of Theorem 3: Let H = (V, E) be the hypergraph

representation of {I j }. We can assume {I j } generates a SK.
By Theorem 5 and Lemma 4, computing SL

({I j }
)

is equiv-
alent to computing the the number of edges in a minimum
connected dominating edge set (i.e., a minimal connected
dominating edge set with fewest possible edges). It is easy to
see that the NP-complete SET COVER DECISION PROBLEM

is a special case.
Indeed, consider any subsets A1,A2, . . . ,Ak whose union

covers a finite set U . For u′ /∈ U , define U ′ = U ∪ {u′}, and
A′

j = A j ∪ {u′} for j ∈ [k]. Clearly, {A ji }m
i=1 is a minimum

cover of U if and only if {A′
ji
}m
i=1 is a minimum connected

cover of U ′. �
Remark 3: Together, Theorem 5 and Lemma 4 give a suc-

cinct characterization of SL
({I j }

)
in terms of hypergraph

connectivity. We extend this result to the generation of multiple
secret keys at the end of Section IV using a stronger form of
hypergraph connectivity.

B. Proof of Theorem 4

Before proving Theorem 4, consider the following con-
structive example: Let n = 7, and consider the family {I j }
defined by I1 = {1, 2, 3, 4}, and I2, . . . ,I7 are all

(4
2

)
distinct

2-element subsets of {1, 2, 3, 4}. By direct computation, we
find that {I j − {1}} is a minimum 1-critical subfamily,
and hence SL

({I j }
) = 2 by Theorem 5. Suppose F =

{0, 1, α, β}2 = GF(4) × GF(4). Thus, we can express X j =
(X (1)

j , X (2)
j ) for each j = 1, . . . , 4, where X (1)

j , X (2)
j are
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mutually independent, each equiprobable on GF(4). It is
readily verified that the single transmission

(
X (1)

1 + αX (1)
2 + X (1)

3 , X (1)
1 + β X (1)

2 + X (1)
4

)
∈ F (36)

by client c1 permits reconstruction of the SK

k1
({Xi : i ∈ I1}, T(X)

) = (X (1)
3 , X (1)

4 ) ∈ F (37)

at all clients. Hence, we can conclude 1 = S
({I j }

)
<

SL
({I j }

) = M�
({I j }

) = 2.
The above construction is a vector-linear transmission

protocol, and cannot be realized by a protocol which is
linear over F. A natural question is whether it is possible to
bound the gap between S

({I j }
)

and SL
({I j }

)
. As asserted

by Theorem 4, the answer to this is negative. Indeed, it is
straightforward to generalize the previous construction and
make the gap arbitrarily large.

To this end, consider a network of n = (m
2

) + 1 clients
such that I1 = [m] and the other

(m
2

)
clients possess distinct

pairs of messages. Observe that the 1-critical subfamilies of
{I j } are obtained by removing a single message – i.e., if any
two messages m1, m2 ∈ [m] are removed then the resulting
hypergraph representation of {I j − {m1, m2}} is no longer
connected. This implies that SL

({I j }
) = m − 2. To show

that there exists a nonlinear scheme that can do better, we
show that M�({I j }) = m − 2:

• To show that M�({I j }) ≤ m − 2, let client c1
transmit m − 2 independent linear combinations of
the messages. Provided the encoding matrix A is full
rank (e.g., a Vandermonde matrix), every other node
can use its own pair of messages to recover the
other m − 2.

• We note that M�({I j }) ≥ SL
({I j }

) = m − 2 by
Lemma 1, and therefore M�({I j }) = m − 2 as claimed.

Now, we simply split the packets and apply the optimal
transmission protocol over the first halves of the packets as
we did previously. This vector-linear scheme generates a SK
with m/2 − 1 transmissions, which is an improvement of
m/2 − 1 transmissions over the best linear scheme. Since
m was arbitrary, we have shown that the gap between
S

({I j }
)

and SL
({I j }

)
cannot be bounded in general, proving

Theorem 4.
Remark 4: Our proof that S

({I j }
)

< SL
({I j }

)
is sim-

ilar to the index coding problem, where the suboptimality
of linear schemes was also shown by demonstrating a gap
between the performance of linear and vector-linear coding
schemes [25], [26]. For several years, it was unknown whether
vector-linear coding schemes were optimal in the index coding
problem. However, Blasiak et al. have since proved that even
vector-linear coding is strictly suboptimal for the index coding
problem [27]. We conjecture the same is true for the present
setting.

IV. GENERATING MULTIPLE SECRET KEYS

Until now, we have focused exclusively on protocols that
generate a single SK. However, it is also natural to consider
protocols that generate τ independent secret keys. Indeed, the
secrecy capacity as defined in [2] translates to the maximum

number of secret keys that can possibly be generated in the
combinatorial setting we consider. Thus, it is interesting to
study the tradeoff between the number of secret keys that can
be generated and the number of public transmissions required
to do so.

To this end, we say a transmission protocol P (with corre-
sponding transmission sequence T(X)) generates τ secret keys
if there exist decoding functions {k1, k2, . . . , kn} which satisfy
the following three properties:

(i) For all j ∈ [n], and with probability 1,

k j
({Xi : i ∈ I j }, T(X)

) = k1
({Xi : i ∈ I1}, T(X)

)
.

(ii) k1
({Xi : i ∈ I1}, T(X)

)
is equiprobable on F

τ .
(iii) I

(
k1

({Xi : i ∈ I1}, T(X)
) ; T(X)

) = 0.

Note that (i)–(iii) are the same requirements for gen-
erating a single SK with one exception: we require that
k1

({Xi : i ∈ I1}, T(X)
)

is uniformly distributed over F
τ .

In other words, we require that each client recovers τ inde-
pendent SKs, each known to all clients and private from any
eavesdropper. As stated in [4, Th. 6], Theorem 2 can be
generalized as follows:

Theorem 6: For a network defined by {I j }, there exists a
protocol P which generates τ SKs if and only if

∣∣∪ jI j
∣∣ ≥ M�

({I j }
) + τ. (38)

Analogous to the definition of SL
({I j }

)
in (7), let

S(τ )
L

({I j }
)

denote the minimum number of transmissions
required by a linear protocol to generate τ independent secret
keys. A minor modification of our arguments for the single-SK
setting yields:

Theorem 7: Let τ ≥ 1 be an integer. If there is a
protocol P for {I j } which generates τ independent secret keys,
then

S(τ )
L

({I j }
) = M�

(
{J �

j }
)

=
∣∣∣∪ jJ �

j

∣∣∣ − τ, (39)

where {J �
j } is a minimum τ -critical subfamily of {I j }.

In the single-SK setting, Lemma 4 gave a succinct interpre-
tation of minimum 1-critical subfamilies of {I j } as connect-
edness of H , the hypergraph representation of {I j }. When
combined with Theorem 5, we find that SL

({I j }
)

is in one-
to-one correspondence with the size of a minimum connected
dominating edge-set of H . The chief difficulty in giving
a similarly succinct characterization of S(τ )

({I j }
)

lies in
generalizing Lemma 4 appropriately for τ ≥ 2. In order to
do so, we will need to introduce a more general notion of
hypergraph connectivity.

Toward this end, recall that a multigraph is a graph that
is permitted to have multiple edges connecting a pair of
nodes (note that this is distinct from a hypergraph, in which
an edge connects multiple vertices). A classical result of
Nash-Williams [29] and Tutte [30] is the following:

Theorem 8 [29], [30]: An undirected multigraph G =
(V, E) contains τ edge-disjoint spanning trees iff for every
partition P of V into disjoint sets V1,V2, . . . ,V|P|,

∑
e∈E

(r(e ; P) − 1) ≥ τ (|P| − 1), (40)
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Fig. 1. An example of a hypergraph H (left) and two induced multigraphs (center, right). Line textures are used to emphasize the relationship between the
hypergraph edges and the decomposition of the multigraphs into corresponding simple connected graphs.

where r(e ; P) denotes the number of parts in P that the
edge e intersects.

Definition 2: A multigraph G = (V, EM ) is induced by a
hypergraph H = (V, E) if it can be decomposed into a disjoint
collection of simple graphs {Ge}e∈E , where Ge = (e, Ee) is a
connected graph on the vertex set e ∈ E .

Two examples of multigraphs induced by a hypergraph are
given in Figure 1. We are now in a position to define our
notion of hypergraph connectivity:

Definition 3: A hypergraph H = (V, E) is inherently
τ -connected if every induced multigraph contains at least
τ edge-disjoint spanning trees.

A pleasant generalization of Theorem 8 holds for inherently
τ -connected hypergraphs.

Theorem 9: A hypergraph H = (V, E) is inherently
τ -connected iff for any partition P of V into disjoint
sets V1,V2, . . . ,V|P|,

∑
e∈E

(r(e ; P) − 1) ≥ τ (|P| − 1), (41)

where r(e ; P) is the number of parts in P that the hyperedge
e intersects.

Theorem 9 follows as an easy corollary of Theorem 8 and
the definition of an inherently τ -connected hypergraph. How-
ever, a stronger version of Theorem 9 can be distilled from
our proof of Lemma 5, which is stated shortly. Specifically,
we will see that a hypergraph H is inherently τ -connected iff
a relatively small subset of multigraphs induced by H contain
τ edge-disjoint spanning trees. For a precise statement, see
our remark following the proof of Lemma 5.

For a hypergraph H = (V, E), an edge set E ′ ⊆ E is a
minimal inherently τ -connected edge-set if the subhypergraph
H ′ = (V, E ′) is inherently τ -connected, and the removal
of any edge from E ′ results in a subhypergraph that is not
inherently τ -connected. Further, define

�τ (H ) = min
{ ∣∣E ′∣∣ : E ′ ⊆ E is an inherently (42)

τ -connected edge-set
}
.

In other words, �τ (H ) is the minimum number of edges in
an inherently τ -connected subhypergraph H ′ = (V, E ′) of
H = (V, E). Note that �τ (H ) is the minimum number of

edges in a connected dominating edge set when τ = 1, and
thus its computation is NP-hard in general.

Lemma 5: Let H = (V, E) be the hypergraph representa-
tion of {I j }. H is inherently τ -connected if and only if

M�
({I j }

) ≤ ∣∣∪ jI j
∣∣ − τ. (43)

In particular, {I j } is τ -critical if and only if E is a minimal
inherently τ -connected edge-set.

Before we begin the proof of Lemma 5, we take a moment
to describe a special class of multigraphs that are induced
by H . For a hypergraph H = (V, E), let ≺ be a strict
total order on V . That is, if V = {v1, v2, . . . , vn}, there is a
permutation π on {1, . . . , n} for which vπ(1) ≺ vπ(2) ≺ · · · ≺
vπ(n). Define the multigraph G H,≺ induced by H , with decom-
position {Ge}e∈E , as follows: For each e ∈ E , let Ge be a path
that connects the vertices contained in e in ascending order
(with respect to ≺). In other words, if e = {vi1 , vi2 , . . . , vik },
where vi j ≺ vi� for i j < i�, then the edge-set of Ge is precisely
{vi1 , vi2 }, {vi2 , vi3 }, . . . , {vik−1 , vik }. An example is shown in
Figure 2.

Proof of Lemma 5: Let (a�
1, . . . , a�

n) be an optimal solution
to ILP (4). First, suppose M�

({I j }
) ≤ ∣∣∪ jI j

∣∣ − τ . Then, for
any partition P = {V1,V2, . . . ,Vk} of V , we have:

(
∣∣∪ jI j

∣∣ − τ )(k − 1) ≥ M�
({I j }

)
(k − 1) (44)

=
k∑

i=1

⎛
⎝M�

({I j }
) −

∑
j∈Vi

a�
j

⎞
⎠ (45)

=
k∑

i=1

∑

j∈V̄i

a�
j (46)

≥
k∑

i=1

∣∣∣∣∣∣
⋂
j∈Vi

Ī j

∣∣∣∣∣∣
(47)

= k
∣∣∪ jI j

∣∣ −
k∑

i=1

∣∣∣∣∣∣
⋃
j∈Vi

I j

∣∣∣∣∣∣
, (48)

where (47) follows by feasibility of (a�
1, . . . , a�

n) for ILP (4).
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Fig. 2. A hypergraph H (left) and the induced multigraph G H,≺ (right) for the vertex-ordering v1 ≺ v2 ≺ · · · ≺ v6. Line textures are used to emphasize
the relationship between the hypergraph edges and the decomposition of the multigraphs into corresponding simple connected graphs.

Rearranging, we find

k∑
i=1

∣∣∣∣∣∣
⋃
j∈Vi

I j

∣∣∣∣∣∣
≥ ∣∣∪ jI j

∣∣ + τ (k − 1). (49)

Now, let G be an arbitrary multigraph induced by H with
decomposition given by {Ge}e∈E . Note that if e ∈ E intersects
r(e ; P) parts of the partition P , then at least r(e ; P) − 1
edges of Ge cross the partition P . Therefore,

	 (G,P) ≥
∑
e∈E

(r(e ; P) − 1) =
⎛
⎝

k∑
i=1

∣∣∣∣∣∣
⋃
j∈Vi

I j

∣∣∣∣∣∣

⎞
⎠ −∣∣∪ jI j

∣∣,

(50)

where 	 (G,P) denotes the number of edges in G that cross
the partition P . Since the partition P and induced multi-
graph G were arbitrary, it follows from Theorem 8 and (49)
that H is inherently τ -connected. Thus, we have shown:

M�
({I j }

) ≤ ∣∣∪ jI j
∣∣−τ �⇒ H is inherently τ -connected.

(51)

Next suppose H is inherently τ -connected. By optimality of
(a�

1, . . . , a�
n), there exists a partition P� = {V1,V2, . . . ,Vk}

of V (see [4, Appendix A], [31]) such that

k∑
i=1

∑

j∈V̄i

a�
j =

k∑
i=1

∣∣∣∣∣∣
⋂
j∈Vi

Ī j

∣∣∣∣∣∣
. (52)

Now, consider an arbitrary order ≺ on V which satisfies
u ≺ v if u ∈ Vi , v ∈ V j and i < j . In this case,
if e ∈ E intersects r(e ; P�) parts of the partition P�,
then the path in G H,≺ generated by the hyperedge e (i.e.,
Ge) will have precisely r(e ; P�) − 1 edges that cross P�.
Since H is inherently τ -connected, we have

⎛
⎝

k∑
i=1

∣∣∣∣∣∣
⋃
j∈Vi

I j

∣∣∣∣∣∣

⎞
⎠ − ∣∣∪ jI j

∣∣ =
∑
e∈E

(r(e ; P�) − 1)

= 	
(
G H,≺,P�

) ≥ τ (k − 1)

(53)

by Theorem 8. Proceeding in a fashion similar to before,
we have for P� that

M�
({I j }

)
(k − 1) =

k∑
i=1

⎛
⎝M�

({I j }
) −

∑
j∈Vi

a�
j

⎞
⎠ (54)

=
k∑

i=1

∑

j∈V̄i

a�
j (55)

=
k∑

i=1

∣∣∣∣∣∣
⋂
j∈Vi

Ī j

∣∣∣∣∣∣
(56)

= k
∣∣∪ jI j

∣∣ −
k∑

i=1

∣∣∣∣∣∣
⋃
j∈Vi

I j

∣∣∣∣∣∣
(57)

≤ (k − 1)(
∣∣∪ jI j

∣∣ − τ ), (58)

where the final inequality follows from (53). Hence,

M�
({I j }

) ≤ ∣∣∪ jI j
∣∣ − τ

⇐⇒ H is inherently τ -connected. (59)

We now prove the second claim. To this end, suppose
{I j } is τ -critical. Then M�

({I j }
) = ∣∣∪ jI j

∣∣ − τ , which
implies H is inherently τ -connected by (59). Consider the
subhypergraph H ′ = (V, E\{e}), which corresponds to the
subfamily {I j − e} of {I j }. Since {I j } is τ -critical, we
must have M�

({I j − e}) = M�
({I j }

) = ∣∣∪ jI j
∣∣ − τ =∣∣∪ j (I j − e)

∣∣ − τ + 1. By (59), H ′ cannot be inherently
τ -connected, and therefore E is a minimal inherently τ -
connected edge-set.

On the other hand, suppose E is a minimal inherently
τ -connected edge-set. Then, (59) implies

M�
({I j }

) ≤ ∣∣∪ jI j
∣∣ − τ. (60)

Since E is a inherently τ -connected edge-set, for any
e ∈ E , H ′ = (V, E\{e}) is not inherently τ -connected, and
(59) implies

M�
({I j − e}) ≥ ∣∣∪ j (I j − e)

∣∣ − τ + 1 = ∣∣∪ jI j
∣∣ − τ.

(61)
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TABLE I

S(τ)
L

({I j }
)

VS. τ FOR THE NETWORK GIVEN IN EXAMPLE 1. (Note that

S(τ)
L

({I j }
) = ∞ indicates that it is not possible to generate τ secret keys

with any number of transmissions)

Applying Lemma 2, we must have M�
({I j }

) = M�
({I j − e}),

and
∣∣∪ jI j

∣∣ − M�
({I j }

) = τ , which implies {I j }
is τ -critical. �

Remark 5: From the proof of Lemma 5, we observe that
a hypergraph H is inherently τ -connected if and only if
G H,≺ contains τ edge-disjoint spanning trees for every strict
order ≺. Hence, this apparently weaker condition is, in fact,
necessary and sufficient for any multigraph induced by H to
contain τ edge-disjoint spanning trees.

In summary, we have found the following characterization
of S(τ )

L

({I j }
)
:

Theorem 10: If H is the hypergraph representation of the
network defined by {I j }, then

S(τ )
L

({I j }
) = �τ (H ) − τ. (62)

When we restrict ourselves to linear protocols,
Theorem 10 elucidates a direct correspondence between
the number of public transmissions required to generate τ
SKs in a network and the inherent τ -connectivity of the
representative hypergraph.

As an illustrative example of Theorem 10, consider the
following network with 15 clients:

Example 1: Let I1 = {5, 7, 10, 11, 13, 14, 15}, and let
{I j }15

j=1 be the 14 different cyclic shifts of I1 (e.g., I2 =
{1, 6, 8, 11, 12, 14, 15}, I3 = {1, 2, 7, 9, 12, 13, 15}, . . . ).
Since the number of messages m = 15 is modestly small,
we are able to compute �τ (H ) explicitly for the hypergraph
representation of the network defined by {I j }, and therefore
also S(τ )

L

({I j }
)

by invoking Theorem 10. Above, Table I gives
S(τ )

L

({I j }
)

for τ ≥ 1.
In another example, which generalizes a recent result due to

Mukherjee and Kashyap [19], we give a complete characteri-
zation for S(τ )

L

({I j }
)

when each pair of clients shares a unique
message (i.e., m = (n

2

)
, and the hypergraph representation

of the network defined by {I j } is a complete (simple) graph
on n vertices). This network model was called the PIN model
by Nitinawarat and Narayan [28] who showed under this
model that linear schemes can generate perfect secrecy at
maximum-rate, which is characterized by a maximum packing
of disjoint spanning trees in a multigraph.

Example 2: In the PIN model, S(τ )
L

({I j }
) = τ (n − 2),

where 1 ≤ τ ≤ �n/2�. Indeed, a simple graph is inherently
τ -connected iff it contains τ edge-disjoint spanning trees
by Theorem 8 (note that a minimal dominating edge set
corresponds to a spanning tree in a simple graph). Thus,
a simple counting argument gives �τ (H ) = τ (n − 1).
An application of Theorem 10 proves the claim.

Although the work [28] is primarily concerned with SK
capacity in the PIN model (rather than communication require-

ments as a function of SK size), spanning trees play a promi-
nent role. Therefore, since the PIN model is a special case
of the hypergraph source model we consider, it is reassuring
to observe that the quantity S(τ )

L

({I j }
)

is closely related to
packings of spanning trees. Finally, we remark that there
is some similarity between Theorem 10 and the work of
Tyagi et al. [32] which showed that PIN network which is
τ -connected is capable of generating a SK even if τ −1 nodes
refuse to participate.

V. CONCLUDING REMARKS

In this paper, we have completely characterized the number
of public transmissions required to generate a specified number
of SKs when linear transmission protocols are employed and
a hypergraphical source model is considered. The minimum
number of transmissions required by a linear protocol to
generate τ secret keys is succinctly given in terms of the
inherent τ -connectivity of the hypergraph associated with
the source model. We have also shown that computing said
minimum number of transmissions is NP-hard.

Moreover, we have established that there can be a gap
between the number of transmissions required by a nonlinear
transmission scheme and the number of transmissions required
by the best linear transmission scheme, and that this gap can be
arbitrarily large. The problem of characterizing the number of
public transmissions required by a nonlinear scheme remains
an open problem, and appears to be very challenging.

Finally, we note that it is an interesting combinatorial
design problem to specify ideal message distributions amongst
clients (subject to constraints) that allow SK agreement with
fewest transmissions. For example, how many transmissions
are required to generate a SK subject to the constraint that
each message is initially held by at most t clients? This general
problem is beyond the scope of the present paper, and is left
for future work.
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