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Quantitative Stability of the Entropy
Power Inequality

Thomas A. Courtade , Member, IEEE, Max Fathi, and Ashwin Pananjady

Abstract— We establish quantitative stability results for the
entropy power inequality (EPI). Specifically, we show that if
uniformly log-concave densities nearly saturate the EPI, then they
must be close to Gaussian densities in the quadratic Kantorovich-
Wasserstein distance. Furthermore, if one of the densities is
Gaussian and the other is log-concave, or more generally has
positive spectral gap, then the deficit in the EPI can be controlled
in terms of the L1-Kantorovich-Wasserstein distance or relative
entropy, respectively. As a counterpoint, an example shows
that the EPI can be unstable with respect to the quadratic
Kantorovich-Wasserstein distance when densities are uniformly
log-concave on sets of measure arbitrarily close to one. Our
stability results can be extended to non-log-concave densities,
provided certain regularity conditions are met. The proofs are
based on mass transportation.

Index Terms— Entropy power inequality, optimal transport,
stability.

I. INTRODUCTION

LET X and Y be independent random vectors on Rn with
corresponding laws µ and ν, each absolutely continuous

with respect to Lebesgue measure. The celebrated entropy
power inequality (EPI) proposed by Shannon [2] and proved
by Stam [3] asserts that

N(X + Y ) ≥ N(X) + N(Y ), (1)

where N(X) ≡ N(µ) := 1
2πe e2 h(X)/n denotes the entropy

power of X , and h(X) ≡ h(µ) = −
∫
Rn f log f is the entropy

of X having density f . For a parameter t ∈ (0, 1), let us define

δEPI,t (µ, ν) := h(
√

t X +
√

1− tY )−
(

th(X) +(1− t)h(Y )
)
.

(2)

Unaware of the works by Shannon, Stam and Blachman [4],
Lieb [5] rediscovered the EPI by establishing δEPI,t (µ, ν) ≥ 0
and noting its formal equivalence to (1). The equivalence of
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these inequalities is reviewed in Section III-B. Due to the
formal equivalence of the Shannon-Stam and Lieb inequalities,
we shall generally refer to both as the EPI.

It is well known that equality is achieved in the Shannon-
Stam EPI if and only if X and Y are Gaussian vectors with
proportional covariances. Equivalently, δEPI,t (µ, ν) vanishes if
and only if µ, ν are Gaussian measures that are identical up
to translation.1 However, despite the fundamental role the EPI
plays in information theory and crisp characterization of equal-
ity cases, few stability estimates are known. Specifically, our
motivating question is the following quantitative reinforcement
of equality conditions for the EPI:

If δEPI,t (µ, ν) is small, must µ and ν be ‘close’ to Gaussian
measures, which are themselves ‘close’ to each other, in a
precise and quantitative sense?

Toward answering this question, our main result is a
dimension-free, quantitative stability estimate for the EPI.
More specifically, we show that if the measures µ, ν have uni-
formly log-concave densities and nearly saturate either form of
the EPI, then they must also be close to Gaussian measures in
the quadratic Kantorovich-Wasserstein distance. We also show
that the EPI is not stable (with respect to the same criterion) in
situations where the densities nearly satisfy the same regularity
conditions. Other quantitative deficit estimates are obtained
when one of the two variables is Gaussian and the other is
log-concave or has positive spectral gap. Dimension-dependent
estimates are obtained in certain more general situations.

Before stating the main results, let us first introduce some
notation. We let $ ≡ $(Rn) denote the set of centered
Gaussian probability measures on Rn , and let γ denote the
standard Gaussian measure on Rn . That is,2

dγ (x) = dγ n(x) = e−|x |2/2 dx
(2π)n/2 .

Next, we recall that the L2-Kantorovich-Wasserstein distance
between probability measures µ, ν is defined according to

W2(µ, ν) = inf
(
E|X − Y |2

)1/2
,

where |·| denotes the Euclidean metric on Rn and the infimum
is over all couplings on X, Y with marginal laws X ∼ µ
and Y ∼ ν. If X ∼ µ is a centered random vector, then we

1Lieb did not settle the cases of equality; this was done later by
Carlen and Soffer [6].

2Explicit dependence of quantities on the ambient dimension n will be
suppressed in situations where our arguments are the same in all dimensions.
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write &µ = EX X⊤ to denote the covariance matrix of X . For
a symmetric positive semidefinite matrix &, we write &1/2

to denote the unique symmetric positive semidefinite matrix
satisfying & = &1/2&1/2.

Remark 1: Both forms of the EPI are invariant to transla-
tion of the measures µ, ν. Thus, our persistent assumption of
centered probability measures is for convenience and comes
without loss of generality.

Remark 2: Without explicit mention, we assume throughout
that all entropies exist in the usual Lebesgue sense. When
dealing with the Shannon-Stam or Lieb inequalities, one gen-
erally needs to make this assumption. Indeed, it is possible for
h(X +Y ) to not exist in the usual Lebesgue sense even though
h(X) and h(Y ) exist and are finite [7, Proposition 1]. That
being said, our main results primarily concern log-concave
distributions. As such, all involved entropies are guaranteed
to exist (e.g., [8]).

Organization

The rest of this paper is organized as follows:
Sections II-A and II-B describe our main stability results
for log-concave densities and the relationship to previous
work, respectively. Section II-C gives an example where
the EPI is not stable with respect to the quadratic
Kantorovich-Wasserstein distance when regularity conditions
are not met. Section III gives proofs of our main results
and a brief discussion of techniques, which are based on
optimal mass transportation. We conclude in Section IV with
extensions of our results to more general settings.

II. MAIN RESULTS

This section describes our main results, and also compares
to previously known stability estimates. Proofs are generally
deferred until Section III.

A. Stability of the EPI for Log-Concave Densities

Our main result is the following:
Theorem 3: Let µ = e−ϕγ and ν = e−ψγ be centered

probability measures, where ϕ and ψ are convex. Then

δEPI,t (µ, ν)

≥ t (1− t)
2

inf
γ1,γ2∈$

(
W 2

2 (µ, γ1) + W 2
2 (ν, γ2) + W 2

2 (γ1, γ2)
)
.

(3)

Remark 4: The notation µ = e−ϕγ is shorthand for
dµ
dγ = e−ϕ . Measures of the form µ = e−ϕγ for convex
ϕ have several names in the literature. Such names include
‘strongly log-concave densities’, ‘log-concave perturbation of
Gaussian’, ‘uniformly convex potential’ and ‘strongly convex
potential’ (see [9, pp. 50–51]). This situation also corresponds
to the Bakry-Émery condition CD(1,∞) when the space is Rn.

Under the assumptions of the theorem, the three terms in
the RHS of (3) explicitly give necessary conditions for the
deficit δEPI,t (µ, ν) to be small. In particular, µ, ν must each
be quantitatively close to Gaussian measures, which are them-
selves quantitatively close to one another. Additionally, W 2

2 is

additive on product measures, so the estimate (3) is dimension-
free, which is compatible with the additivity of δEPI,t on
product measures.

Theorem 3 may be readily adapted to the setting of uni-
formly log-concave densities. Toward this end, let η > 0 and
recall that h(η1/2 X) = h(X) + 1

2 log η, so that δEPI,t (µ, ν)
is invariant under the rescaling (X, Y ) → (η1/2 X, η1/2Y ).
Similarly, if X ∼ µ has density f that is uniformly log-
concave in the sense that

−∇2 log f ≥ ηI, (4)

then a change of variables reveals that the density fη asso-
ciated with the rescaled random variable η1/2 X satisfies
−∇2 log fη ≥ I. In particular, fηdx = e−ϕdγ for some convex
function ϕ. Thus, Theorem 3 is equivalent to the following:

Corollary 5: If µ and ν are centered probability measures
with densities satisfying (4), then

δEPI,t (µ, ν)

≥ η t (1− t)
2

inf
γ1,γ2∈$

(
W 2

2 (µ, γ1) + W 2
2 (ν, γ2) + W 2

2 (γ1, γ2)
)
.

This result will also apply to certain families of non log-
concave measures, see Remark 17.

For convenience, let d2
W2

(µ) := infγ0∈$ W 2
2 (µ, γ0) denote

the squared W2-distance from µ to the set of centered Gaussian
measures. Using the inequality (a + b + c)2 ≤ 3(a2 + b2 + c2)
and the triangle inequality for W2, we may conclude a weaker,
but potentially more convenient variant of Corollary 5.

Corollary 6: If µ and ν are centered probability measures
with densities satisfying (4), then

δEPI,t (µ, ν) ≥ η t (1− t)
8

(
d2

W2
(µ) + d2

W2
(ν) + W 2

2 (µ, ν)
)
.

(5)

The Shannon-Stam form of the entropy power inequality (1)
is oftentimes preferred to Lieb’s inequality for applications
in information theory. Starting with Corollary 6, we may
establish an analogous estimate for the Shannon-Stam EPI.
Recall first that (1) attains equality if and only if µ, ν are
Gaussian with proportional covariance matrices. Motivated by
this, we define the quantity

d2
F (µ, ν) := inf

θ∈(0,1)

∥∥∥
√
θ&1/2

µ −
√

1− θ&1/2
ν

∥∥∥
2

F
, (6)

where ∥A∥F :=
√

Tr(A⊤A) denotes Frobenius
(or Hilbert-Schmidt) norm of a real matrix A, to provide a
convenient measure of distance between the second order
statistics of µ, ν. In particular, d2

F (µ, ν) = 0 if and only if
&µ and &ν are proportional. With this notation established,
we have the following quantitative reinforcement of equality
conditions in the Shannon-Stam EPI:

Corollary 7: Let µ and ν be centered probability measures
on Rn satisfying (4) with parameters ηµ and ην , respectively.
Then,

N(µ ∗ ν) ≥ (N(µ) + N(ν))+EPI(µ, ν),
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where +EPI(µ, ν) is defined as the quantity

exp
(

min{θηµ, (1 − θ)ην}
4 n

(
(1− θ)d2

W2
(µ)

+ θd2
W2

(ν) + d2
F (µ, ν)

))
, (7)

and θ is chosen to satisfy θ/(1− θ) = N(µ)/N(ν).
As remarked above, equality is attained in (1) if and only

if µ, ν are Gaussian with proportional covariances. Under
the stated assumptions of log-concavity, these conditions are
explicitly captured by the last three terms in (7).

We also derive a stability estimate when one vector is simply
log-concave (but not uniformly so) and the other vector is
Gaussian, involving the L1-Kantorovich-Wasserstein distance
with respect to the ℓ1 metric on Rn: That is,

W1,1(µ, ν) := inf E∥X − Y∥1 = inf E
n∑

i=1

|Xi − Yi |,

where the infimum is over all couplings of X, Y with marginal
laws X ∼ µ and Y ∼ ν.

Theorem 8: For any log-concave centered random vector
in Rn with law µ,

δEPI,t (µ, γ ) ≥ Ct (1− t) min(n−1W 2
1,1(µ, γ ), 1), (8)

with C an absolute constant that does not depend on µ
or dimension n.

This estimate is reminiscent of the deficit estimates on
Talagrand’s inequality of [10] and [11], with a remainder term
that stays bounded when the distance becomes large. Note
that W1,1 grows linearly with dimension for product measures,
so the term n−1W 2

1,1(µ, γ ) in the RHS of (8) has the correct
dependence on dimension.

Finally, in a more general direction, a measure µ is said
to have spectral gap λ if, for all smooth s : Rn → R with∫

sdµ = 0,

λ

∫
s2 dµ ≤

∫
|∇s|2 dµ.

Theorem 9: If µ is a centered probability measure on Rn

with spectral gap λ, then

δEPI,t (µ, γ ) ≥ min(λ, 1)t (1− t)D(µ∥γ ),

where D(µ∥γ ) =
∫

dµ log dµ
dγ is the relative entropy between

µ and γ .
All log-concave distributions have positive spectral gap [12],

so the hypothesis of Theorem 9 is weaker than that of
Theorem 8. However, the advantage of (8) is that it does
not rely on any quantitative information on µ, only that it is
log-concave.

B. Relation to Prior Work

As remarked above, a few stability estimates are known
for the EPI. Here, we review those that are most relevant
and comment on the relationship to our results. To begin, we
mention a stability result due to Toscani [13], which asserts

for probability measures µ, ν with log-concave densities, there
is an explicit function R such that

N(µ ∗ ν) ≥ (N(µ) + N(ν)) R(µ, ν),

where R(µ, ν) ≥ 1 with equality only if µ, ν are Gaussian
measures. However, this result is not directly comparable to
ours since the function R(µ, ν) is quite complicated,3 and
does not explicitly control the distance of µ, ν to the space
of Gaussian measures. Toscani leaves this as an open problem
[13, Remark 7]. Corollary 7 provides a satisfactory answer to
his problem when µ, ν satisfy (4) for some parameter η > 0.
Similarly, Theorems 8 and 9 provide an answer when one
of the measures is Gaussian and the other satisfies regularity
conditions.

Next, we compare Corollary 5 to the main result of
Ball and Nguyen [14], which states that if µ is a centered
isotropic probability measure (i.e., &µ = I) with spectral gap λ
and log-concave density (not necessarily uniformly), then

δEPI,1/2(µ,µ) ≥ λ

4(1+λ) D(µ∥γ ) ≥ λ

8(1+λ)W 2
2 (µ, γ ), (9)

where the second inequality is Talagrand’s information-
transportation inequality. Now, if µ satisfies (4), then
Corollary 5 yields the similar bound

δEPI,1/2(µ,µ) ≥ η

4
inf
γ0∈$

W 2
2 (µ, γ0).

Given the similarity, Corollary 5 may be viewed as a close
relative of (9), which holds for non-identical measures and
all parameters t ∈ (0, 1). However, two points should be
mentioned: (i) a stability estimate with respect to W2 is weaker
than one involving relative entropy; and (ii) η-uniform log-
concavity in the sense of (4) ensures a spectral gap of at least
η, but not vice versa. Thus, it is interesting to ask whether the
hypothesis of Corollary 5 can be weakened to require only
a spectral gap; the result of Ball and Nguyen and a similar
earlier result by Ball et al. [15] in dimension one provides
some grounds for cautious optimism. In Section 4, we shall
obtain a one-dimensional result for non log-concave measures
under a stronger assumption than [15] (namely a Cheeger
isoperimetric inequality), but with the advantage of being valid
for non-identical measures.

It should be noted that Theorem 9 has weaker hypotheses
than (9) since log-concavity is not assumed, however it applies
to the EPI deficit δEPI,t (µ, γ ), rather than convolution of
identical measures µ which may be of interest in applications
to the central limit theorem.

The results referenced above assume log-concave densities,
as do we (for the most part). In contrast, the refined EPI
established in [16] provides a qualitative stability estimate
for the EPI when µ is arbitrary and ν is Gaussian. However,
the deficit is quantified in terms of the so-called strong data
processing function, and is therefore not directly comparable
to the present results. Nevertheless, a noteworthy consequence
is a reverse entropy power inequality, which does bear some
resemblance to the result of Corollary 7. In particular, for

3 R(µ, ν) is expressed in terms of integrals of nonlinear functionals evaluated
along the evolutes of µ, ν under the heat semigroup.
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arbitrary probability measures µ, ν on Rn with finite second
moments, it was shown in [17] that

N(µ ∗ ν) ≤ (N(µ) + N(ν)) ((1− θ)p(µ) + θp(ν)) , (10)

where θ is the same as in the definition of +EPI(µ, ν) and
p(µ) := 1

n N(µ)J (µ) ≥ 1 is the Stam defect, with J (µ)
denoting Fisher information. We have p(µ) = 1 only if µ
is Gaussian, and thus p(µ) may reasonably be interpreted as
a measure of how far µ is from the set of Gaussian measures.
Thus, the deficit term (1 − θ)p(µ) + θp(ν) in (10) bears a
pleasant resemblance to the deficit term (1 − θ)d2

W2
(µ) +

θd2
W2

(ν) in Corollary 7. Importantly, though, the former is
an upper bound on N(µ ∗ ν), while the latter yields a lower
bound.

We would be remiss to not mention that the inequality
p(µ) ≥ 1 mentioned above is known as Stam’s inequality,
and is equivalent to Gross’ celebrated logarithmic Sobolev
inequality for Gaussian measure [18], [19]. Taking µ = ν
in (10) gives the sharpening p(µ) ≥ exp

( 2
n δEPI,t (µ,µ)

)
,

holding for any probability measure µ with finite second
moment. Equivalently, if µ is centered, then

1
2

I (µ∥γ ) ≥ D(µ∥γ ) + δEPI,t (µ,µ),

where I (µ∥γ ) :=
∫

|∇ log dµ
dγ |2 dµ denotes the relative Fisher

information of µ with respect to γ . When µ satisfies (4),
we have a dimension-free quantitative stability result for the
logarithmic Sobolev inequality 1

2 I (µ∥γ ) ≥ D(µ∥γ ). This
is an improvement upon the main result of Indrei and Mar-
con [20], who consider the subset of densities satisfying (4)
for some parameter η > 0, whose Hessians are also uniformly
upper bounded. Unfortunately, this improvement is already
obsolete, as Fathi et al. [10] have recently shown that a similar
result holds for all probability measures with positive spectral
gap. Interestingly though, (10) does imply a general upper
bound on δEPI,t (µ, ν) involving Fisher informations. Specifi-
cally, for arbitrary probability measures µ, ν with finite second
moments,

δEPI,t (µ, ν) ≤ (1− t)
(

1
2

I (µ∥γ )− D(µ∥γ )

)

+ t
(

1
2

I (ν∥γ ) − D(ν∥γ )

)
.

See [17] for details. Other deficit estimates for the logarithmic
Sobolev inequality have been obtained in [21] and [22].

If X ∼ µ is a radially symmetric random vector on Rn ,
n ≥ 2, satisfying modest regularity conditions (e.g,. convolu-
tion with a Gaussian measure of small variance is sufficient),
then it was recently established in [23] that, for any ε > 0

δEPI,1/2(µ,µ) ≥ Cε(µ)nεD1+ε(µ∥γµ), (11)

where γµ denotes the Gaussian measure with the same covari-
ance as µ, and Cε(µ) is an explicit function that depends
only on ε, a finite number of moments of µ, and its regu-
larity. This closely parallels quantitative estimates on entropy
production in the Boltzmann equation [24], [25]. Neither (3)
nor (11) imply the other since the hypotheses required are
quite different (strong log-concavity vs. radial symmetry).

However, both results do give quantitative bounds on entropy
production under convolution in terms of a distance from
Gaussian measures. In general, the constants in (3) will be
much better than those in (11) which, although numerical, can
be quite small. We return to the setting of radially symmetric
measures in Section IV.

Finally, we mention Carlen and Soffer’s qualitative stability
estimate for the EPI that holds under general conditions [6].
Roughly speaking, their result is the following: if probability
measures µ, ν on Rn are isotropic with Fisher informations
upper bounded by J0, then there is a nonlinear function
/ : R → [0,∞), strictly increasing from 0, depending only
on the dimension n, the parameter t , the number J0 and
smoothness and decay properties of µ, ν that satisfies

δEPI,t (µ, ν) ≥ /(D(µ∥γ )).

The construction of the function / relies on a compactness
argument, and therefore is non-explicit. As such, it is again
not directly comparable to our results. However, it does settle
cases of equality.

C. Instability of the EPI: An Example

As a counterpoint to Theorem 3 and to provide justification
for the regularity assumptions therein, we observe that there
are probability measures that satisfy the hypotheses required
in Theorem 3 on sets of measure arbitrarily close to one, but
severely violate its conclusion.

Proposition 10: There is a family of probability measures
(µϵ)ϵ>0 on R with finite and uniformly bounded entropies
and second moments such that

1) The measures µϵ essentially satisfy (4) for η = 1.
That is, limϵ↓0 µϵ(1ϵ) = 1, where 1ϵ := {x |
− d2

dx2 log fϵ(x) ≥ 1} with dµϵ = fϵdx.
2) The measures µϵ saturate the EPI as ϵ approaches zero.

That is, limϵ↓0 δEPI,t (µϵ, µϵ) = 0 for all t ∈ (0, 1).
3) The measures µϵ are bounded away from Gaussians

in the W2 metric; specifically, lim infϵ↓0 infγ0∈$
W 2

2 (µϵ, γ0) > 1/3.
We remark that the measures (µϵ)ϵ>0 in the proposition

are not necessarily pathological. In fact, it suffices to con-
sider simple Gaussian mixtures that approximate a Gaussian
measure, albeit with heavy tails. Moreover, the result can
be trivially extended to arbitrary dimension by considering
product measures.

Proof: Define the density fϵ as

fϵ(x) = ϵ

√
ϵ√
π

e−ϵx2 + (1− ϵ)
√

1− ϵ√
π

e−(1−ϵ)x2
. (12)

Evidently, fϵ is a Gaussian mixture having unit variance; the
mixture components have variance (2ϵ)−1 and (2(1 − ϵ))−1,
respectively.

Proof of 1: On any interval, as ϵ ↓ 0, the densities
( fϵ)ϵ>0 and their derivatives converge uniformly to those of
the Gaussian density with variance 1/2. Therefore,

− lim
ϵ↓0

f ′′ϵ (x) = 2 ∀x ∈ R. (13)
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Since the measures µϵ converge weakly to a Gaussian measure
with variance 1/2, it is straightforward to conclude that
limϵ↓0 µϵ(1ϵ) = 1, where 1ϵ is defined as in the statement
of the proposition.

Proof of 2: This follows immediately from [26, Th. 1] due
to pointwise convergence of uniformly bounded densities and
uniformly bounded second moments.

Proof of 3: Let m p(µ) denote the pth absolute moment
associated with µ. For conjugate exponents p, q ≥ 1, Hölder’s
inequality implies that

W 2
2 (µϵ, γs) ≥ s + 1− 2m1/p

p (µϵ)m
1/q
q (γs), (14)

where γs is the Gaussian measure with variance s. Indeed, for
X ∼ µϵ and Z ∼ γs , there is a coupling between X and Z
such that

W 2
2 (µϵ , γs) = E|X − Z |2 = E[Z2] + E[X2]− 2E[X Z ]

= 1 + s − 2E[X Z ],
where the second equality follows since X and Z have second
moments 1 and s, respectively. Now, Hölder’s inequality
yields E[X Z ] ≤ E[|X |p]1/pE[|Z |q]1/q ≡ m1/p

p (µϵ)m
1/q
q (γs),

giving (14).
Recall the characterization of Gaussian moments

mq(γs) =
√

(2s)q

π
$

(
q + 1

2

)

for s, q > 0. Let us now specialize (14) by choosing p = 3/2
and q = 3. In this case,

W 2
2 (µϵ, γs) ≥ 1 + s − 2m2/3

3/2(µϵ)

√
2 s
π1/3

≥ 1− 2
π1/3 m4/3

3/2(µϵ),

where the first inequality is (14) and the second inequality
follows by minimizing over s > 0.

By the dominated convergence theorem, we have

lim
ϵ↓0

m3/2(µϵ) = m3/2(γ1/2) =
√

1
π
$(5/4).

So, putting everything together, we may conclude

lim inf
ϵ↓0

inf
γ0∈$

W 2
2 (µϵ, γ0) = lim inf

ϵ↓0
inf
s>0

W 2
2 (µϵ, γs)

≥ 1− 2
π1/3

(√
1
π
$(5/4)

)4/3

= 1− 2
π

($(5/4))4/3

≈ 0.441562 > 1/3.

Note that the first line follows since µϵ has mean zero, and
therefore the minimization over all Gaussian measures may be
restricted to minimization over those with mean zero. !

Remark 11: Our construction of fϵ is closely related to
the counterexamples proposed by Bobylev and Cercignani
in their disproof of Cercignani’s conjecture on entropy pro-
duction in the Boltzmann equation [27]. This construction
also appeared in the context of the Boltzmann equation
in [28, Proposition 23].

III. DISCUSSION AND PROOFS

The remainder of this paper makes use of ideas from
optimal mass transport. All necessary ingredients are high-
lighted as they are needed. The unfamiliar reader is directed
to the references, as well as the comprehensive introduc-
tions [29], [30]. Although not related to the present paper,
we remark that optimal transport and information theory
together play an important role in establishing concentration of
measure; see, e.g., [31]–[33] and references therein. In prob-
abilistic terms, the theory of optimal transport systematically
investigates the problem of transporting one probability mea-
sure µ to another probability measure ν. To this end, a map
T : Rn → Rn is said to transport a probability measure µ to
another probability measure ν (both on Rn) if the pushforward
of µ under T is ν (i.e., ν = T #µ). That is,

∫
f ◦ T dµ =

∫
f dν

for all continuous bounded functions f : Rn → R. In the
language of probability, if X has law µ and T transports
µ to ν, then the random variable T (X) has law ν. Under
general conditions (e.g., µ is absolutely continuous w.r.t. the
Lebesgue measure), valid transportation maps are guaranteed
to exist. More remarkably, we are often ensured the existence
of transportation maps with useful structure. For example,
in dimension 1, if Fµ, Fν denote the cumulative distribution
functions for µ and ν, respectively, then T = F−1

ν ◦ Fµ

transports µ to ν, provided Fµ, Fν are strictly increasing. This
construction results in a transportation map T that is monotone
increasing; in other words, it is realized as the derivative of a
convex function. The spirit of this construction generalizes to
any dimension, and is a cornerstone result of optimal transport
theory:

Theorem 12 (Brenier-McCann, [29], [34], [35]): Consi-
der two probability measures µ, ν on Rn, and assume that µ
is absolutely continuous with respect to the Lebesgue measure.
There exists a unique map T (which we shall call the Brenier
map) transporting µ onto ν that arises as the gradient of a
convex lower semicontinuous function. Moreover, this map is
such that

W 2
2 (µ, ν) = E[|X − T (X)|2],

where X has law µ, and therefore T (X) has law ν. In other
words, (X, T (X)) is an optimal coupling for the distance W2.

The starting point for the proofs of our main results comes
from a recent paper of Rioul [36]. Through an impressively
short sequence of direct but carefully chosen steps, Rioul
recently gave a new proof of the EPI based on transportation of
measures. From his proof, we may readily distill the following:

Lemma 13: Let T1 : Rn → Rn and T2 : Rn → Rn be
diffeomorphisms satisfying µ = T1#γ and ν = T2#γ . If µ
and ν have finite entropies, then

δEPI,t (µ, ν) ≥ E log
| det(t∇T1(X∗) + (1− t)∇T2(Y ∗))|
| det(∇T1(X∗))|t | det(∇T2(Y ∗))|1−t ,

(15)

where X∗ ∼ γ and Y ∗ ∼ γ are independent.



5696 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 8, AUGUST 2018

Remark 14: For a vector-valued map 2 = (21,22,
. . . ,2n) : Rn → Rn, we write ∇2 to denote its Jacobian.
That is, (∇2(x))i j = ∂

∂xi
2 j (x).

In words, (15) shows that the deficit in the EPI can always
be bounded from below by a function of the Jacobians ∇T1
and ∇T2, where T1 and T2 are are invertible and differentiable
maps that transport measures γ to µ and γ to ν, respectively.

When T1 and T2 are Knöthe maps (see [30], [37], [38]),
the Jacobians ∇T1 and ∇T2 are upper triangular matrices with
positive diagonal entries. Using this property, Rioul concludes
δEPI,t (µ, ν) ≥ 0 using concavity of the logarithm applied to
the eigenvalues (diagonal entries) of ∇T1 and ∇T2. By strict
concavity of the logarithm, saturation of this inequality implies
that the diagonal entries of ∇T1 and ∇T2 must be equal almost
everywhere. Combining this information with the fact that
a relative entropy term (omitted above) must vanish, Rioul
recovers the well known necessary and sufficient conditions for
δEPI,t (µ, ν) to vanish. Specifically, µ and ν must be Gaussian
measures, equal up to translation.

Instead of the Knöthe map, our proofs will use the Brenier
map (defined in Theorem 12), which is always realized as
the gradient of a convex function. Toward this end, departing
from Rioul’s argument based on Knöthe maps, if T1 and T2 are
taken instead to be Brenier maps (again, transporting γ to µ
and γ to ν, respectively), then the Jacobians ∇T1 and ∇T2 are
symmetric positive definite by the Brenier-McCann Theorem.
Thus, concavity of the log-determinant function on the posi-
tive semidefinite cone immediately gives the EPI from (15).
Moreover, by strict concavity of the log-determinant function,
equality in the EPI implies that ∇T1(X∗) = ∇T2(Y ∗) almost
everywhere, and are thus constant. Hence, T1 and T2 are
necessarily affine functions, identical up to translation. This
immediately implies that δEPI,t (µ, ν) = 0 only if µ, ν are
Gaussian measures with identical covariances.

Unfortunately, while both arguments easily settle cases
of equality in the EPI, neither yield quantitative stability
estimates. However, we note that the Brenier map is gen-
erally better suited for establishing quantitative stability in
functional inequalities. Indeed, it was remarked by Figalli,
Maggi and Pratelli in their comparison to Gromov’s proof of
the isoperimetric inequality that the Brenier map is generally
more efficient than the Knöthe map in establishing quantitative
stability estimates due to its rigid structure [39]. We shall
fruitfully exploit the properties of the Brenier map in our proof
of Theorem 3.

A. Proof of Theorem 3
The proof of Theorem 3 is short, but makes use of several

foundational results from the theory of optimal transport.
We will also need the following lemma; a proof can be found
in the Appendix.

Lemma 15: For positive definite matrices A, B and
t ∈ [0, 1], we have

log det(t A + (1− t)B) ≥ t log det(A) + (1− t) log det(B)

+ t (1− t)
2 max{λ2

max(A),λ2
max(B)}

×∥A − B∥2F ,

where λmax(·) denotes the largest eigenvalue.

In addition, we remind the reader that a random vector
X having a log-concave density enjoys (i) finite second
moment (in fact, finite moments of all orders); and (ii) finite
entropy h(X). Since Theorem 3 requires log-concave densities,
these conditions will be implicitly assumed throughout the
proof.

Proof of Theorem 3: Assume first that the densities
e−ϕ and e−ψ are smooth and strictly positive on Rn . Also,
let X∗ ∼ γ and Y ∗ ∼ γ be independent. Define T1 to
be the Brenier map transporting γ to µ, and let T2 denote
the Brenier map transporting γ to ν. We recall here that a
Brenier map is always the gradient of a convex function by
the Brenier-McCann theorem, and therefore ∇T2 and ∇T1
are positive semidefinite since they coincide with Hessians
of convex functions. In fact, since all densities involved are
non-vanishing, they are positive definite. Moreover, when the
densities are strictly positive on the whole space, we know by
results of Caffarelli [40], [41] that the maps T1 and T2 are
C1-smooth.

Using the assumed smoothness and convexity of the poten-
tials ϕ and ψ , Caffarelli’s contraction theorem (see [42] and,
e.g., [29, Th. 9.14]) implies that T1 and T2 are 1-Lipschitz,
so that λmax(∇T1) ≤ 1 and λmax(∇T2) ≤ 1. Therefore, since
∇T2 and ∇T1 are positive definite, Lemma 15 yields the
following (pointwise) estimate

log det(t∇T1 + (1− t)∇T2)

≥ t log det(∇T1) + (1− t) log det(∇T2)

+ t (1− t)
2
∥∇T1 −∇T2∥2F .

Combined with (15) we obtain:

δEPI,t (µ, ν)

≥ t (1− t)
2

E∥∇(T1(X∗)− X∗)−∇(T2(Y ∗)− Y ∗)∥2F .

Now, define matrices A = E[∇(T1(X∗) − X∗)] and B =
E[∇(T2(Y ∗)− Y ∗)]. By orthogonality, we have

E∥∇(T1(X∗)−X∗)−∇(T2(Y ∗)−Y ∗)∥2F
= E∥∇(T1(X∗)− (I + A)X∗)−∇(T2(Y ∗)− (I + B)Y ∗)∥2F

+ ∥A − B∥2F
= E∥∇(T1(X∗)− (I + A)X∗)∥2F

+ E∥∇(T2(Y ∗)− (I + B)Y ∗)∥2F + ∥A − B∥2F
≥ E|T1(X∗)− (I + A)X∗|2

+ E|T2(Y ∗)− (I + B)Y ∗|2 + ∥(I + A)− (I + B)∥2F
= E|T1(X∗)− (I + A)X∗|2

+ E|T2(Y ∗)−(I +B)Y ∗|2+ E|(I + A)X∗ −(I + B)X∗|2

The final inequality is due to the Gaussian Poincaré inequality∫
| f |2 dγ ≤

∫
|∇ f |2 dγ , holding for every C1-smooth

f : Rn → R with mean zero. Indeed, its application is justified
by C1-smoothness of the Brenier maps among log-concave
distributions, and the identity

E[T1(X∗)− (I + A)X∗] =
∫

xdµ(x)− (I + A)

∫
xdγ (x) = 0,

which holds similarly for Y ∗. The desired inequality now
follows from the definition of W2. Indeed, let γA and γB denote
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the laws of (I + A)X∗ and (I + B)Y ∗, respectively. Evidently,
γA and γB are both Gaussian measures. Since T1(X∗) ∼ µ
and T2(Y ∗) ∼ ν by construction,

E|T1(X∗)− (I + A)X∗|2 ≥ W 2
2 (µ, γA)

and similarly,

E|T2(Y ∗)− (I + B)Y ∗|2 ≥ W 2
2 (ν, γB).

Since X∗, Y ∗ are equal in distribution, (I + B)X∗ also has law
γB , so that

E|(I + A)X∗ − (I + B)X∗|2 ≥ W 2
2 (γA, γB).

Summarizing above, we may conclude

δEPI,t (µ, ν)

≥ t (1− t)
2

E∥∇(T1(X∗)− X∗)−∇(T2(Y ∗)− Y ∗)∥2F

≥ t (1− t)
2

(
W 2

2 (µ, γA) + W 2
2 (ν, γB) + W 2

2 (γA, γB)
)

≥ t (1− t)
2

inf
γ1,γ2∈$

(
W 2

2 (µ, γ1) + W 2
2 (ν, γ2) + W 2

2 (γ1, γ2)
)
.

Thus, Theorem 3 holds when the densities are smooth and
positive everywhere. If this is not the case, we may first
convolve µ, ν with a Gaussian having small variance so that
the resulting densities will be both smooth and positive. The
general result then follows by considering arbitrarily small
perturbations, which is justified by Proposition 16, found
below. !

Proposition 16: For a probability measure µ and s > 0, let
µs denote the probability measure corresponding to X +√s Z,
where X ∼ µ and Z ∼ γ are independent. If probability
measures µ, ν have finite second moments, and

+(µ, ν) := inf
γ1,γ2∈$

(
W 2

2 (µ, γ1) + W 2
2 (ν, γ2) + W 2

2 (γ1, γ2)
)
,

then lims↓0+(µs, νs) = +(µ, ν). Moreover, if µ, ν have
densities, then lims↓0 δEPI,t (µs, νs) = δEPI,t (µ, ν). Finally,
if µ satisfies (4) with parameter η > 0, then µs satisfies (4)
with parameter η/(1 + sη).

Proof: Evidently, if γs denotes the Gaussian measure with
covariance matrix sI, then µs = µ ∗ γs . Observe that for any
fixed Gaussian measures γ1, γ2 (not to be confused with γs),

W 2
2 (µ, γ1) + W 2

2 (ν, γ2) + W 2
2 (γ1, γ2)

≥ W 2
2 (µ ∗ γs, γ1 ∗ γs) + W 2

2 (ν ∗ γs, γ2 ∗ γs)

+ W 2
2 (γ1 ∗ γs, γ2 ∗ γs)

≥ +(µs, νs),

so that +(µ, ν) ≥ +(µs, νs). It remains to prove an inequality
in the reverse direction.

Since W2 is a metric on the space of probability measures
with finite second moments, the reverse triangle inequality
implies that W2(µ, ν) ≥ |W2(µ, δ0) − W2(ν, δ0)|, where δ0
is the Dirac measure at 0. Squaring both sides, it follows that
W 2

2 (µ, ν) ≥ (
√

E|X |2 −
√

E|Y |2)2 for X ∼ µ and Y ∼ ν.
Therefore, there is K = K (µ, ν) < ∞ depending only on
the second moments of µ and ν such that

+(µ, ν) = inf
γ1,γ2∈$K

(
W 2

2 (µ, γ1) + W 2
2 (ν, γ2) + W 2

2 (γ1, γ2)
)
,

where $K ⊂ $ denotes the set of centered Gaussian mea-
sures with second moments bounded by K . From this, it is
straightforward to argue that for s sufficiently small,

+(µs, νs)

≥ inf
γ1,γ2∈$

(
W 2

2 (µ, γ1) + W 2
2 (ν, γ2) + W 2

2 (γ1, γ2)
)
−√sC,

(16)

where C = C(µ, ν) < ∞ depends only on the second
moments of µ and ν. Thus, the first part of the claim follows.

The second claim follows immediately from the fact that
lims↓0 h(µs) = h(µ) for any µ having density and finite sec-
ond moment. See, e.g., [6, Lemma 1.2].

The third claim can be found in [9, Th. 3.7(b)]. !
Remark 17: The assumption of log-concavity is mainly used

to ensure that the optimal transport map is Lipschitz. This can
sometimes still be the case in other situations. For example,
the recent work [43] shows that this property holds for certain
families of bounded perturbations of the Gaussian measure,
including the radially symmetric case.

B. Proof of Corollary 7

Before proving Corollary 7, let us briefly review the formal
equivalence between the different forms of the EPI. To this
end, let X, Y be independent random vectors in Rn whose
entropies exist. Let t ∈ (0, 1) and observe that the Shannon-
Stam inequality (1) together with convexity of x 5→ ex gives

exp(2 h(
√

t X +
√

1− tY )/n)

≥ exp(2 h(
√

t X)/n) + exp(2 h(
√

1− tY )/n)

= t exp(2 h(X)/n) + (1− t) exp(2 h(Y )/n)

≥ exp(2(th(X) + (1− t)h(Y ))/n).

Taking logarithms reveals that the Shannon-Stam inequality
implies Lieb’s inequality:

h(
√

t X +
√

1− tY ) ≥ th(X) + (1− t)h(Y ).

However, Lieb argued that a simple rescaling allows one to
make the reverse deduction. In particular, define the random
vectors X̃ = t−1/2 X and Ỹ = (1 − t)−1/2Y . In this case,
we have by Lieb’s inequality

h(X + Y ) = h(
√

t X̃ +
√

1− t Ỹ ) ≥ th(X̃)+ (1−t)h(Ỹ ) (17)

for all t ∈ [0, 1]. In particular, we may choose t to satisfy
t/(1− t) = N(X)/N(Y ), in which case

th(X̃ ) + (1− t)h(Ỹ )

= th(X) + (1− t)h(Y )− n
2

(t log t + (1− t) log(1− t))

= n
2

(exp(2h(X)/n) + exp(2h(Y )/n)) . (18)

Thus, substituting into (17), we obtain

h(X + Y ) ≥ n
2

(exp(2 h(X)/n) + exp(2 h(Y )/n)) ,

which is precisely Shannon-Stam inequality (1).
Proof: Let X, Y and X̃ , Ỹ be as above. If X ∼ µ

satisfies (4) with parameter ηµ, then by a change of variables
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the density of X̃ satisfies (4) with parameter tηµ. A similar
statement holds for Ỹ . Thus, both X̃ and Ỹ satisfy (4) with
parameter min{tηµ, (1 − t)ην}.

Next, let µ̃ and ν̃ denote the laws of X̃ and Ỹ , respec-
tively. We note that t (1 − t)d2

W2
(µ̃) = (1 − t)d2

W2
(µ) and

t (1−t)d2
W2

(ν̃) = td2
W2

(ν) by a simple rescaling. Also, we have
the following lower bound on W 2

2 (µ̃, ν̃):

t (1− t)W 2
2 (µ̃, ν̃) ≥ d2

F (µ, ν).

This follows from rescaling, the fact that W2 is non-increasing
under rescaled convolution, the central limit theorem, weak
continuity of W2, the identity for W2 distance between
Gaussian measures mentioned in the proof of Theorem 3, and
finally the definition of d2

F in (6).
Now, using the above identities and applying (5), we have

h(X + Y )

= h(
√

t X̃ +
√

1− t Ỹ )

≥ th(X̃) + (1− t)h(Ỹ )

+ min{tηµ, (1 − t)ην}
t (1− t)

8

(
d2

W2
(µ̃)

+ d2
W2

(ν̃) + W 2
2 (µ̃, ν̃)

)

≥ th(X̃) + (1− t)h(Ỹ )

+ min{tηµ, (1 − t)ην}
8

(
(1− t)d2

W2
(µ)

+ td2
W2

(ν) + d2
F (µ, ν)

)
.

Now, we imitate Lieb’s argument and choose t to satisfy
t/(1− t) = N(X)/N(Y ). In this case, the identity (18) holds,
giving

h(X + Y )

≥ n
2

(exp(2 h(X)/n) + exp(2 h(Y )/n))

+ min{tηµ, (1− t)ην }
8

(
(1− t)d2

W2
(µ) + td2

W2
(ν)

+ d2
F (µ, ν)

)

Multiplying through by 2/n, taking exponents and relabel-
ing t ← θ completes the proof.

!

C. Proof of Theorem 8

Proof of Theorem 8: Assume that X∗ ∼ γ , and let T
be the Brenier map sending γ onto µ. For convenience, let
us define random variables (λi )1≤i≤n as the eigenvalues of
∇T (X∗) in increasing order (so that λ1 ≤ λ2 ≤ · · · λn
a.s.). The combination of (15) and Lemma 15 yields in this
case

δEPI,t (µ, γ ) ≥ t (1− t)
2

E
[
∥∇T (X∗)− I ∥2F

1 + λmax(∇T (X∗))2

]

= t (1− t)
2

E
[∑n

i=1(λi − 1)2

1 + λ2
n

]
. (19)

The L1 Poincaré inequality for the Gaussian measure
(cf. [44, Proposition 1.8]) states that

∫

Rn
| f |dγ ≤ 2

∫

Rn
|∇ f |dγ (20)

for every smooth mean zero f : Rn → R. See the discus-
sion in Section IV for more information about L1 Poincaré
inequalities and their relation to Cheeger inequalities.

Since (T (X∗), X∗) is a valid coupling between µ and γ ,
we have

W1,1(µ, γ ) ≤ E∥T (X∗)− X∗∥1 =
n∑

i=1

E|Ti (X∗)− X∗i |.

Smoothness of the Brenier map among log-concave densities
and the fact that T (X∗)−X∗ is zero mean justifies application
of (20). This in conjunction with the ℓ1 − ℓ2 bound ∥x∥1 ≤√

n∥x∥2 for x ∈ Rn gives the estimate

W1,1(µ, γ ) ≤ 2
n∑

i=1

E|∇(Ti (X∗)− X∗i )|

≤ √n2E∥∇T (X∗)− I )∥F

= √n2E
[√∑

(λi − 1)2

]

.

Hence in this situation, if we have an L2 bound on the largest
eigenvalue of ∇T , we can deduce a W1,1 estimate on the
deficit (in contrast to using a uniform bound as in the proof
of Theorem 3).

A result of Kolesnikov asserts that E[λ2
n] ≤ 3

2 (E[λn])2

(see [45, Th. 6.1] and the discussion at the top of page 1526).
Moreover,

E[λn] ≤ 1 + E[|λn − 1|] ≤ 1 + E
[√∑

(λi − 1)2

]

.

From this estimate we deduce

E
[√∑

(λi − 1)2

]

≤

√√√√4 + 3E
[√∑

(λi − 1)2

]2√
2

t (1− t)
δEPI,t (µ, γ ).

Since r/
√

1 + r2 ≥ c min(r, 1) and 2E
[√∑

(λi − 1)2
]
≥

n−1/2W1,1(µ, γ ), we conclude
√

2δEPI,t (µ, γ )/(t (1− t)) ≥ C min(n−1/2W1,1(µ, γ ), 1),

and the result follows.

D. Proof of Theorem 9

For a probability measure ν, let I (ν∥γ ) and D(ν∥γ ) denote
the relative Fisher information and relative entropy, respec-
tively, of ν with respect to the standard Gaussian measure γ
on Rn . Since we shall only be concerned with γ as reference
measure, we opt henceforth for the more compact notation
I (ν) := I (ν∥γ ) and D(ν) := D(ν∥γ ) to simplify the
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expressions in this section. Thus, if h is the density of ν with
respect to γ , then

D(ν) := D(ν∥γ ) =
∫

h log h dγ

and

I (ν) := I (ν∥γ ) =
∫ |∇h|2

h
dγ ,

provided h is sufficiently smooth.
If X ∼ ν and Z ∼ γ are independent, we let νt denote

the law of e−t X + (1 − e−2t )1/2 Z . In other words, νt is
the evolution of ν at time t along the Ornstein-Uhlenbeck
process. The following integral form of de Bruijn identity is
classical [6], [46], [47]: If ν is centered and has finite second
moment, then

D(ν) =
∫ ∞

0
I (νs)ds. (21)

In the proof of [10, Th. 1], Fathi, Indrei and Ledoux
established the following inequality:

Theorem 18: If ν is a centered probability measure with
spectral gap λ > 0, then for all t ≥ 0

I (νt ) ≤ e−2t I (ν)
1

1 + λ(e2t − 1)
.

We also note that the convolution inequality for Fisher infor-
mation implies that I (νt ) ≤ e−2t I (ν), so Theorem 18 yields a
stability result for the exponential decay of Fisher information
along the Ornstein-Uhlenbeck process, provided the starting
measure has positive spectral gap.

We now aim to establish the following Corollary of (18),
from which Theorem 9 will follow.

Corollary 19: If ν is a centered probability measure with
spectral gap λ, then for all t ≥ 0

D(νt ) ≤ e−2t D(ν) max
(

1
1 + λ(e2t − 1)

, e−2t
)

Proof: In their proof of [10, Th. 1], Fathi, Indrei and
Ledoux also noted that if ν has spectral gap λ, then νs has
spectral gap at least

λs = λe2s

1 + λ(e2s − 1)

So, as a consequence of this and Theorem 18, we have

I (νt+s) ≤ e−2t I (νs)
1

1 + λs(e2t − 1)

= e−2t I (νs)
1 + λ(e2s − 1)

1 + λ(e2(t+s) − 1)
. (22)

By de Bruijn’s identity4:
∫ ∞

0
I (νt+s)ds = D(νt ),

4Positive spectral gap implies finite moments of all orders, so an explicit
assumption of finite second moment is not necessary here.

so we need only integrate the RHS of (22). Using the
differential form of de Bruijn’s identity d

ds I (νs ) = −D(νs),
integration by parts gives
∫ ∞

0
I (νs)

1 + λ(e2s − 1)

1 + λ(e2(t+s) − 1)
ds

= −
[

D(νs)
1 + λ(e2s − 1)

1 + λ(e2(t+s) − 1)

]∞

0
+

∫ ∞

0
D(νs)u′(s)ds

= D(ν)
1

1 + λ(e2t − 1)
+

∫ ∞

0
D(νs)u′(s)ds, (23)

where, for convenience, we have defined

u(s) := 1 + λ(e2s − 1)

1 + λ(e2(t+s) − 1)
.

Now, we note that

u′(s) = 2
e2s(e2t − 1)(λ− 1)λ

(1 + λ(e2(s+t) − 1))2 .

Thus, if λ ≤ 1, then u′(s) ≤ 0 and therefore∫∞
0 D(νs )u′(s)ds ≤ 0. Hence, (22) together with (23) and

de Bruijn’s identity yields

D(νt ) ≤ D(ν)
1

1 + λ(e2t − 1)
.

On the other hand, if λ ≥ 1, then u′(s) ≥ 0, and we may
bound
∫ ∞

0
D(νs)u′(s)ds

≤ D(ν)

∫ ∞

0
e−2su′(s)ds

= D(ν)2(e2 t − 1)(λ− 1)λ

∫ ∞

0

1
(1 + λ(e2(s+t) − 1))2 ds

= D(ν)
λ(e2 t − 1)

(λ− 1)

(
λ− 1

1 + λ(e2 t − 1)
+ log

(
1− λ− 1

λe2t

))

to conclude
∫ ∞

0
I (νs)

1 + λ(e2s − 1)

1 + λ(e2(t+s) − 1)
ds

= D(ν)
1

1 + λ(e2t − 1)
+

∫ ∞

0
D(νs)u′|(s)ds

≤ D(ν) + D(ν)
λ(e2 t − 1)

(λ− 1)
log

(
1− λ− 1

λe2t

)

≤ e−2t D(ν),

where the last inequality is due to log(1− x) ≤ −x for x < 1.
So, as before, (22) together with (23) and de Bruijn’s identity
yields

D(νt ) ≤ e−2t D(ν),

completing the proof. !
Remark 20: In principle, Corollary 19 should follow via

an application of Gronwall’s lemma to Theorem 18. However,
the integration involved there appears no less tedious than the
computations above, so we have opted for the direct proof
given here.
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Now, Theorem 9 follows immediately. In particular if ν
is centered and has spectral gap λ, then definitions and
Corollary 19 yield the desired inequality

δEPI,e−2t (ν, γ )

= e−2t D(ν)− D(νt )

≥ e−2t (1− e−2t )D(ν) min
(

λ

e−2t + λ(1− e−2t )
, 1

)

≥ e−2t (1− e−2t ) min (λ, 1) D(ν).

IV. EXTENSIONS

The proof of Theorem 3 uses the fact that, under the
assumptions of uniform log-concavity, the Brenier maps are
Lipschitz to bound the square of the largest eigenvalue λ2

max
in the deficit estimate for the log-concavity of the deter-
minant. A natural question is whether we can use weaker
assumptions on the map and still obtain a deficit estimate for
the EPI. It turns out that we can get an estimate, provided the
largest eigenvalue of ∇T (x) grows at most linearly at infinity.
We shall later see that in dimension 1, as well as for multi-
dimensional radially symmetric measures, this assumption of
eigenvalue growth holds as soon as the law of the random
variable satisfies a Cheeger isoperimetric inequality, which
is a stronger assumption than the spectral gap assumption
used for the one-dimensional result of [15], but equivalent in
(non-uniformly) log-concave situations.

A first case in which we establish a deficit estimate is when
one of the two variables is Gaussian:

Proposition 21: Let µ be a centered probability measure
on Rn, and let T be the Brenier map sending the standard
Gaussian measure γ onto µ. If T is C1 and satisfies the
pointwise bound λmax(∇T (x)) ≤ c

√
1 + |x |2 for all x , for

some c > 1, then

δEPI,t (µ, γ ) ≥ t (1− t)
8c2n

W 2
2 (µ, γ ).

This estimate can be compared to Theorem 8. Its advantage
is that it involves the more natural W2 distance, and that
its assumptions may be satisfied in certain non-log-concave
situations (as we shall later see for one-dimensional random
variables). However, it has the downside of sometimes being
worse, even for product measures in high dimension, and of
requiring more quantitative information on the measure µ, via
the constant c in the eigenvalue bound.

Proof: Using the assumption, the combination of (15) and
Lemma 15 gives

δEPI,t (µ, γ ) ≥ t (1− t)
2c2 E

[
∥∇T (X∗)− I∥2F

1 + |X∗|2

]

.

According to [48, Corollary 5.6] (see also [49] for the one-
dimensional case), the standard Gaussian measure in dimen-
sion n satisfies the weighted Poincaré inequality

E
[ |∇ f (X∗)|2

1 + |X∗|2
]
≥ 1

4n
Var( f (X∗)).

Applying this result and following the same steps as in the
proof of Theorem 3 yields

δEPI,t (µ, γ ) ≥ t (1− t)
8c2n

W 2
2 (µ, γ ).

which concludes the proof. !
We also prove a lower bound when neither of the two

measures are Gaussian, but with an even worse dependence
on the dimension:

Proposition 22: Let T1 and T2 be the Brenier maps sending
Gaussians to X and Y , respectively. Assume that X and Y are
centered and that the maps Ti are C1 and satisfy the pointwise
bound λmax(∇Ti (x)) ≤ c

√
1 + |x |2 for all x , for some c > 1.

Then there is a universal constant C > 0 such that

δEPI,t (µ, ν)

≥ Ct (1− t)
(cn)2 inf

γ1,γ2∈$
(W 2

2 (µ, γ1) + W 2
2 (ν, γ2) + W 2

2 (γ1, γ2)).

Proof: Let us define

cn := E[(1 + |X∗|2)−1],
A := c−1

n E
[∇T1(X∗)− I

1 + |X∗|2
]
,

B := c−1
n E

[∇T2(Y ∗)− I
1 + |Y ∗|2

]
.

As in the proof of Theorem 3, we have

δEPI,t (µ, ν) ≥ t (1− t)
2c2 E

[
∥∇T1(X∗)− I− (∇T2(Y ∗)− I)∥2F

(1+ |X∗|2)(1+ |Y ∗|2)

]

,

where we have used the naïve bound λ2
max ≤ c2(1 + |x |2)

(1 + |y|2), which ultimately leads to the worsening of the
dependence on the dimension. We then have

E
[
∥∇T1(X∗)− I − (∇T2(Y ∗)− I)∥2F

(1 + |X∗|2)(1 + |Y ∗|2)

]

= E
[
∥∇T1(X∗)− I− cn A∥2F
(1 + |X∗|2)(1 + |Y ∗|2)

]

+ E
[
∥∇T2(Y ∗)− I− cn B∥2F
(1 + |X∗|2)(1 + |Y ∗|2)

]

+ c2
n∥cn(A − B)∥2F

− 2E
〈∇T1(X∗)− I− cn A

1 + |X∗|2 ,
∇T2(Y ∗)− I− cn B

1 + |Y ∗|2
〉

+ 2E
[〈

cn(A − B)

1 + |Y ∗|2 ,
∇T1(X∗)− I − cn A

1 + |X∗|2
〉]

− 2E
[〈

cn(A − B)

1 + |X∗|2 ,
∇T2(Y ∗)− I− cn B

1 + |Y ∗|2
〉]

= cnE
[
∥∇T1(X∗)− (I + cn A)∥2F

(1 + |X∗|2)

]

+ cnE
[
∥∇T2(Y ∗)− (I + cn B)∥2F

(1 + |Y ∗|2)

]

+ c2
n∥cn A − cn B∥2F

and then the proof continues in the same way as for the
previous proposition. The constant cn above is the expectation
of (1 + |X∗|2)−1, which is of order n−1. !

To apply these results, we want to know when does the
Brenier map satisfy the eigenvalue bound. We shall prove
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that for one-dimensional measures and for radially symmetric
log concave measures, such an assumption holds when the
measure satisfies a certain isoperimetric inequality.

Proposition 23: If the law of X is given by an exponential
measure µ(dx) = 1

2 exp(−|x |)dx, then the Brenier map T
transporting a standard Gaussian random variable onto X
satisfies the bound

T ′(x) ≤ c
√

1 + x2

for some c > 0
Proof: The optimal map from a measure µ onto a

measure ν with positive densities in dimension one is given
by x −→ F−1

ν (Fµ(x)), where Fµ(x) = µ(] −∞, x]) is the
distribution function associated with µ. For the exponential
measure the distribution function can be explicitly computed
as Fexp(x) = 1− e−x/2 for x ≥ 0 and ex/2 for x < 0.

Consider x > 0. A direct computation shows that

T ′(x) = e−x2/2
√

2π

2
1− Fγ (x)

where Fγ is the distribution function of the standard Gaussian
measure. There exists a constant c such that 1 − Fγ (x) ≥

e−x2/2

c
√

1+x2 , and the bound on T ′ immediately follows. By sym-

metry, the same bound applies when x < 0.
To prove the lower bound on 1 − Fγ (x), we just use the

fact that

1− Fγ (x) = e−x2/2
√

2πx
− 1√

2π

∫ ∞

x

e−t2/2

t2 dt

≥ e−x2/2
√

2πx
− 1− Fγ (x)

x2 ,

and the existence of a suitable constant easily follows. !
Definition 24: A probability measure µ is said to satisfy a

Cheeger isoperimetric inequality with constant λ > 0 if for
any measureable set A we have

µ+(∂A) ≥ λµ(A)(1− µ(A))

where µ+(∂A) := lim supϵ↓0
µ(A+Bϵ )−µ(A)

ϵ , with Bϵ the ball
with center 0 and radius ϵ.

For log-concave measures (i.e., those having a log-concave
density), Buser’s theorem [50] states that satisfying a Cheeger
inequality and a Poincaré inequality is equivalent, up to
universal constants (or more precisely, the extension of Buser’s
theorem to weighted spaces [51]). In general, the Cheeger
inequality is stronger than the Poincaré inequality. It is equiv-
alent (up to universal constants) to the L1 Poincaré inequality∫

|∇ f |dµ ≥ c
∫

| f |dµ for every function with average zero.
More generally, for log-concave measures the isoperimetric
inequality and the exponential concentration property are
equivalent [52].

Theorem 25: Assume X is a one-dimensional random vari-
able with positive density and median 0, that satisfies a
Cheeger inequality with constant α. Then the optimal map
transporting the exponential measure onto X is α−1-Lipschitz.

As a consequence, the optimal map T transport-
ing the Gaussian measure onto the law of X satisfies
T ′(x) ≤ c

α (1 + |x |2).

This result can be extended to the non-centered case just by
translating.

Note that a measure that is the image of the exponential
measure by a Lipschitz map necessarily satisfies Cheeger’s
inequality, so the first part of this statement is actually an
equivalence.

Proof: Showing an upper bound on the derivative of the
map is the same as proving a lower bound on the derivative of
the inverse map T̃ (which is the optimal map sending µ onto
the exponential measure). A computation shows that, if we
denote by f the density of the law of X , we have for x positive

T̃ ′(x) = 2 f (x)

1− Fµ(x)
.

Since µ has median 0, the Cheeger inequality implies that for
x ≥ 0 we get f (x) ≥ α

2 (1 − Fµ(x)) and the first part of the
result immediately follows, after applying the same reasoning
for negative x .

The second part can be deduced just by using the fact that
in dimension 1 the optimal map from the Gaussian onto µ
is the composition of the map from the Gaussian onto the
exponential measure with T . !

The same argument can be generalized to radially symmet-
ric random vectors with log-concave density:

Proposition 26: Assume that X is a radially symmetric
random vector in Rn, whose law is log-concave and satisfies
a Cheeger inequality with constant α. There exists a constant
cn (depending on n, but otherwise independent of X) such that
the optimal map T transporting the Gaussian measure onto
X satisfies λmax(∇T (x)) ≤ cnα−1

√
1 + |x |2.

Remark 27: Bobkov [53] showed that the optimal constant
λ in the Poincaré inequality for a radially symmetric log-
concave random variable satisfies nE[|X |2]−1/12 ≤ λ ≤
nE[|X |2]−1. Since for log-concave measures the square of
the Cheeger constant and the Poincaré constant are equiva-
lent [51], the constant α in the Proposition always exists and
is comparable to

√
nE[|X |2]−1/2, up to universal constants.

Proof: Let µrad be the law of |X |, and T̃ be the optimal
transport sending γrad := rn−1√

2π
e−r2/2dr onto µrad. The Brenier

optimal map sending the Gaussian onto the law of X is then
given by x −→ T̃ (|x |)x/|x |. This can be checked by verifying
that it sends the Gaussian measure onto the law of X (which
is a simple change of variable argument) and that it is the
gradient of the convex function H (|x |) with H ′ = T̃ . Since
the Brenier map is the only transport map that arises as the
gradient of a convex function, T is necessarily the Brenier
map.

We then compute the gradient of the map T , which is given
by ∇T (x)v =

(
v
|x | − x

|x |3 ⟨v, x⟩
)

T̃ (|x |) + x
|x |2 T̃ ′(|x |)⟨x, v⟩.

Since T (0) = 0, using the mean value theorem, we therefore
have ∇T (x)v =

(
v − x

|x |2 ⟨v, x⟩
)

T̃ ′(t) + x
|x |2 T̃ ′(|x |)⟨x, v⟩ for

some t ∈ (0, |x |). From this, we see that to prove the desired
upper bound on the eigenvalues of ∇T , it is enough to show
that T̃ ′(r) ≤ c

√
1 + r2.

To prove this bound, we consider the symmetrized versions
of µrad and γrad by extending them by symmetry to R,
and dividing the density by 2 so that they are still
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probability measures. We denote these measures by
µ̂rad and γ̂rad . These measures are still log-concave,
and their Cheeger constants are comparable to those of the
original measures, up to a universal constant, via Bobkov’s
theorem we mentioned in Remark 27. Moreover, their median
is located at 0. We also extend T̃ to R by antisymmetry, and
denote the function we obtain by T̂ . It is easy to check that
T̂ is the optimal map sending γ̂rad onto µ̂rad.

Following the same arguments as for the one-dimensional
case, denoting by p the density of µ̂, we have for r ≥ 0

T̂ ′(r) ≤ Crn−1e−r2/2/p(F−1
µ̂rad

(Fγ̂rad (r))

≤ Cαrn−1e−r2/2 Fγ̂rad (r)−1(1− Fγ̂rad (r))−1

≤ Cαrn−1e−r2/2(1− Fγrad (r))−1

≤ Cα
√

1 + r2

where we have used the estimate 1− Fγrad (r) ≥ Ce−r2/2rn−2

for large enough r , and C was some positive constant that
changed from line to line. Note that the constant is dimension-
dependent in the final inequality. !

Remark 28: In this proof, the log-concavity is only used
to ensure that µ̂rad satisfies a Cheeger inequality with a
constant comparable to α. This is not necessarily the case for
non log-concave radially symmetric measures (for example,
the uniform measure on a two-dimensional annulus).

APPENDIX

AN ESTIMATE FOR THE LOG-DETERMINANT FUNCTION

Definition 29: A twice differentiable function f :
dom f → R is said to be m(x, y)-strongly convex between
x, y ∈ dom f if ∇2 f (tx + (1 − t)y) ≥ m(x, y)I, for all
t ∈ [0, 1].

Lemma 30: For all t ∈ [0, 1], a m(x, y)-strongly convex
function f between x and y satisfies

t f (x) + (1− t) f (y)

≥ f (tx + (1− t)y) + t (1− t)
m(x, y)

2
|x − y|2.

Proof: The Taylor series expansion of f for any two points
a, b ∈ dom f yields

f (a) = f (b) + ⟨∇ f (b), b − a⟩
+ 1

2
⟨b − a,∇2 f (t0a + (1− t0)b)(b − a)⟩ (24)

≥ f (b) + ⟨∇ f (b), b − a⟩+ m(a, b)

2
|a − b|2, (25)

where equation (24) holds for some t0 ∈ [0, 1], and inequal-
ity (25) follows from Definition 29.

Denote w " tx + (1− t)y. Applying inequality (25) twice
yields the two inequalities

f (x) ≥ f (w) +⟨∇ f (w),w −x⟩+ m(x, w)

2
|w − x |2 (26a)

f (y) ≥ f (w) +⟨∇ f (w),w −y⟩+ m(y, w)

2
|w − y|2. (26b)

We now multiply equation (26a) by t and (26b) by (1− t) and
add them to obtain

t f (x) + (1− t) f (y)

≥ f (w) + t (1− t)2m(x, w) + t2(1− t)m(y, w)

2
|y − x |2.

By definition, we have m(x, w) ≥ m(x, y) and m(y, w) ≥
m(x, y), and this proves the lemma. !

Proof of Lemma 15: The function f (·) = − log det(·)
is known to be strictly convex and twice differentiable in
the interior of the positive semidefinite cone. Substituting the
definition of function f into Lemma 30 yields

log det(t A + (1− t)B) ≥ t log det(A) + (1− t) log det(B)

+ t (1− t)
m(A, B)

2
∥A − B∥2F .

It is a standard fact that ∇2 f (M) = M−1 ⊗ M−1, with
⊗ denoting the Kronecker product. The minimum eigenvalue
of this Kronecker product is given by 1/λ2

max(M), where
λmax(M) is the largest eigenvalue of M . We therefore have

m(A, B) ≥ min
t∈[0,1]

1
λ2

max(t A + (1− t)B)
.

Using the convexity of the maximum eigenvalue then yields
the desired result. !
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