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Abstract—We pose the following extremal conjecture: Let X,Y
be jointly Gaussian random variables with linear correlation ρ.
For any random variables U, V for which U,X, Y, V form a
Markov chain, in that order, we conjecture that:

2−2[I(X;V )+I(Y ;U)] ≥ (1− ρ2)2−2I(U ;V ) + ρ22−2[I(X;U)+I(Y ;V )].

By letting V be constant, we see that this inequality generalizes a
well-known extremal result proved by Oohama in his work on the
quadratic Gaussian one-helper problem. If valid, the conjecture
would have some interesting consequences. For example, the
converse for the quadratic Gaussian two-encoder source coding
problem would follow from the converse for multiterminal source
coding under logarithmic loss, thus unifying the two results under
a common framework.

Although the conjecture remains open, we discuss both ana-
lytical and numerical evidence supporting its validity.

I. INTRODUCTION

This paper is a brief exposition on the following conjecture,
its potential applications, and evidence supporting its validity.
To this end, we propose:

Conjecture 1. Suppose X,Y are jointly Gaussian, each with
unit variance and correlation ρ. Then, for any U, V satisfying
U −X − Y − V , the following inequality holds:

2−2[I(Y ;U)+I(X;V |U)] ≥ (1− ρ2) + ρ22−2[I(X;U)+I(Y ;V |U)].
(1)

In the statement of Conjecture 1, we employ the conven-
tional notation U−X−Y −V to denote that U,X, Y, V form a
Markov chain, in that order. Throughout this paper, X,Y will
have the distribution given in the statement of the conjecture.

Our interest in Conjecture 1 stems from previous work by
two of the present authors on multiterminal source coding
under logarithmic loss [1]. In order to illustrate the connection
between these problems, define R ⊂ R2 as follows. Let
(R, I) ∈ R if and only if there exists Q independent of X,Y ,
and U, V satisfying

R ≥ I(X,Y ;U, V |Q) (2)
I ≤ I(X;U, V |Q) + I(Y ;U, V |Q), (3)

and, conditioned on Q, the Markov relation U −X − Y − V .
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Next, let PXY denote the joint distribution of X,Y , and
assume (Xn, Y n) ∼∏n

i=1 PXY (xi, yi). For functions

fx : Xn 7→ fx(X
n) ∈ {1, 2, . . . , 2nRx} (4)

fy : Y n 7→ fy(Y
n) ∈ {1, 2, . . . , 2nRy}, (5)

define

I(n, fx, fy)

, 1

n

(
I(Xn; fx(X

n), fy(Y
n)) + I(Y n; fx(X

n), fy(Y
n))
)
,

mmse(Xn|fx, fy)

, 1

n

n∑

i=1

E
[(
Xi − E[Xi|fx(Xn), fy(Y

n)]
)2]

, (6)

and mmse(Y n|fx, fy) in an analogous manner. These quantities
satisfy the inequality

−1

2
log
(
mmse(Xn|fx, fy)

)
− 1

2
log
(
mmse(Y n|fx, fy)

)

≤ I(n, fx, fy), (7)

which easily follows by convexity, the maximum entropy
property of Gaussian random variables, and the memoryless
property of Xn, Y n.

An immediate consequence of the converse for mul-
titerminal source coding under logarithmic loss is that
(Rx +Ry, I(n, fx, fy)) ∈ R, which easily follows from [1]
and the corresponding entropy characterization result [2, The-
orem 2].

Now, to show an interesting application of Conjec-
ture 1, assume (1) holds. Combined with the fact that
(Rx +Ry, I(n, fx, fy)) ∈ R, elementary manipulations on (1)
and (7) would reveal that

R1 +R2 ≥
1

2
log

[
(1− ρ2)β(D)

2D

]
, (8)

where we have defined

D , mmse(Xn|fx, fy)×mmse(Y n|fx, fy), and (9)

β(ξ) , 1 +

√
1 +

4ρ2ξ

(1− ρ2)2 (10)
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for notational convenience. We note that (8) is precisely the
sum-rate constraint for the quadratic Gaussian two-encoder
source coding problem first established in the seminal work
[3] by Wagner et al.

Thus, while we have only sketched the argument here, we
hope the reader is convinced that the sum-rate constraint for
the quadratic Gaussian two-encoder source coding problem
would follow in a relatively straightforward manner from
known results on compression under logarithmic loss and the
conjectured extremal inequality (1). In fact, the entire converse
(not only the sum-rate constraint) for the quadratic Gaussian
two-encoder source coding problem would follow from Con-
jecture 1 and the characterization of the rate-distortion region
for compression under log loss. Details are omitted due to
space constraints.

On the term “Data Processing”

As the title suggests, we refer to (1) as a data processing
inequality since it gives the upper bound

I(Y ;U) + I(X;V |U)

≤ −1

2
log
[
1− ρ2 + ρ22−2[I(X;U)+I(Y ;V |U)]

]
. (11)

By straightforward calculus, a simple corollary is, for example,
the upper bound

I(Y ;U) ≤ ρ2I(X;U), (12)

which falls into the category of so-called strong data process-
ing inequalities (cf. [4], [5]). Since (1) is met with equality
when U,X, Y, V are jointly Gaussian, (11) would provide the
best possible data processing inequality of the form

I(Y ;U) + I(X;V |U) ≤ ψ(I(X;U) + I(Y ;V |U)), (13)

under our assumptions on U,X, Y, V .

II. OBSERVATIONS ON CONJECTURE 1

There are many equivalent forms of Conjecture 1. It seems
particularly useful to consider dual forms of Conjecture 1. For
instance, one such form is stated as follows:

Conjecture 2. Let X,Y be jointly Gaussian, each with unit
variance and correlation ρ. For λ > 1/ρ2, the infimum of

I(X;U) + I(Y ;V |U)− λ
(
I(Y ;U) + I(X;V |U)

)
(14)

taken over all U, V satisfying U−X−Y −V is attained when
U,X, Y, V are jointly Gaussian.

Note that we only conjecture that the minimum of (14)
is attained by U, V which are jointly Gaussian with X,Y .
Clearly, since mutual information is invariant under one-to-
one transformations, there are minimizers of (14) which are
non-Gaussian.

Let F ?λ be the infimum of the functional (14) for fixed
λ > 1/ρ2. If Conjecture 1 were to hold, then straightforward
computations reveal that F ?λ would be given by

F ?λ =
1

2

[
log

(
ρ2(λ− 1)

1− ρ2
)
− λ log

(
λ− 1

λ(1− ρ2)

)]
. (15)

It is interesting to note that we also have1

inf
U :U−X−Y

{
I(X;U)− λI(Y ;U)

}

=
1

2

[
log

(
ρ2(λ− 1)

1− ρ2
)
− λ log

(
λ− 1

λ(1− ρ2)

)]
. (16)

Since (14) can be rewritten as
(
I(X;U)− λI(Y ;U)

)
+
(
I(Y ;V )− λI(X;V )

)

+ (λ− 1)I(U ;V ) (17)

by Markovity, the conjecture implies an unexpected conser-
vation property: either U and V can be optimized jointly in
minimizing (14), or we can set V to be constant and only
optimize over U (or vice versa). Assuming the conjecture is
valid, both approaches yield the same optimal value, which
suggests one should eliminating one of the variables is a viable
proof strategy. Unfortunately, this has proved difficult to do.
In any case, (16) and (17) yield the lower bound

F ?λ ≥
[
log

(
ρ2(λ− 1)

1− ρ2
)
− λ log

(
λ− 1

λ(1− ρ2)

)]
, (18)

which reveals why we need only consider λ > 1/ρ2 in
Conjecture 2: for λ ≤ 1/ρ2, the infimum of (14) is zero.

Moving on, if we were to assume the conjecture were true,
and let optimizing U?, V ? be of the form

U? = ρuX + Zu (19)
V ? = ρvX + Zv, (20)

where Zu ∼ N(0, 1 − ρ2u) and Zv ∼ N(0, 1 − ρ2v) are
independent additive Gaussian noises, then the parameters
ρu, ρv should satisfy the following equation, which gives
an intuitive sense for the tension between the conjectured
optimizers U? and V ?:

(1− ρ2)(1− ρ2ρ2uρ2v) = ρ2(λ− 1)(1− ρ2u)(1− ρ2v). (21)

In particular, for given ρ, λ, there is a continuously
parametrized family of conjectured optimizers.

III. ANALYTICAL EVIDENCE SUPPORTING CONJECTURE 1

There are several partial results which suggest the validity
of Conjecture 1. To this end, note that Conjecture 1 generalizes
the following well-known consequence of the conditional
entropy power inequality to a longer Markov chain.

Lemma 1 (From [6]). Suppose X,Y are jointly Gaussian,
each with unit variance and correlation ρ. For any U satisfying
U −X − Y , the following inequality holds:

2−2I(Y ;U) ≥ 1− ρ2 + ρ22−2I(X;U). (26)

Proof: Consider any U satisfying U−X−Y . Let Yu, Xu

denote the random variables X,Y conditioned on U = u. By
Markovity and definition of X,Y , we have that Yu = ρXu+Z,

1This is a consequence of Lemma 1 in Section III.
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Given P
(0)
U |X , P

(0)
V |Y , initialize PUVXY := P

(0)
U |XP

(0)
V |Y PXY

for i = 1, 2, ... do

P
(i)
U |X(u|x) :=

exp
{
λ
∫
PY |X(y|x) log

(
PU |Y (u|y)

)
dy − (λ− 1)

∫
PV |X(v|x) log

(
PU |V (u|v)

)
dv
}

∫
exp

{
λ
∫
PY |X(y|x) log

(
PU |Y (s|y)

)
dy − (λ− 1)

∫
PV |X(v|x) log

(
PU |V (s|v)

)
dv
}
ds

(22)

PUVXY ← P
(i)
U |XPV XY (23)

P
(i)
V |Y (v|y) :=

exp
{
λ
∫
PX|Y (x|y) log

(
PV |X(v|x)

)
dx− (λ− 1)

∫
PU |Y (u|y) log

(
PV |U (v|u)

)
du
}

∫
exp

{
λ
∫
PX|Y (x|y) log

(
PV |X(s|x)

)
dx− (λ− 1)

∫
PU |Y (u|y) log

(
PV |U (s|u)

)
du
}
ds

(24)

PUVXY ← P
(i)
V |Y PUXY (25)

Algorithm 1: Iterative procedure for solving the Euler-Lagrange equations (35)-(36).

where Z ∼ N(0, 1 − ρ2) is independent of Xu. Hence, the
conditional entropy power inequality implies that

22h(Y |U) ≥ ρ222h(X|U) + 2πe(1− ρ2) (27)

= 2πeρ22−2I(X;U) + 2πe(1− ρ2). (28)

From here, the lemma easily follows.
Lemma 1 can be applied to prove the following special case

of Conjecture 1. This result subsumes many special cases that
could be analyzed.

Proposition 1. Suppose X,Y are jointly Gaussian, each with
unit variance and correlation ρ. Let U be a random variable
for which X|{U = u} ∼ N(E[X|U = u], σ2) for all u. If
U −X − Y − V , then (1) holds.

Proof: Since X|{U = u} ∼ N(E[X|U = u], σ2), we
have h(X|U) = h(X|u) = 1

2 log(2πeσ
2), and therefore

I(X;U) = −1

2
log σ2. (29)

By Markovity, it is easy to see that Var(Y |U = u) = ρ2σ2 +
(1− ρ2), and hence

I(Y ;U) = −1

2
log
(
ρ2σ2 + (1− ρ2)

)
. (30)

Let Xu, Yu, Vu denote the random variables X,Y, V con-
ditioned on U = u, respectively. Define ρXY |u to be the
correlation coefficient between Xu and Yu. It is readily verified
that

ρXY |u =
ρσ√

ρ2σ2 + (1− ρ2)
, (31)

which does not depend on the particular value of u. By
plugging (29)-(31) into (1), we see that (1) is equivalent to

2−2I(X;V |U) ≥ (1− ρ2XY |u) + ρ2XY |u2
−2I(Y ;V |U). (32)

For every u, Xu, Yu are jointly Gaussian with correlation
coefficient ρXY |u and Xu − Yu − Vu form a Markov chain,
hence Lemma 1 implies

2−2I(Xu;Vu) ≥ (1− ρ2XY |u) + ρ2XY |u2
−2I(Yu;Vu). (33)

The desired inequality (32) follows by convexity of

log
[
(1− ρ2XY |u) + ρ2XY |u2

−2z
]

(34)

as a function of z.

IV. NUMERICAL EVIDENCE SUPPORTING CONJECTURE 1

Conjecture 2 is amenable to numerical experiments. Dis-
pensing with technicalities in favor of a cleaner exposition,
some insight can be gained by deriving the Euler-Lagrange
equations corresponding to the functional (14) and attempting
to solve them. To this end, the Euler-Lagrange equations are
given by:

logPU |X(u|x)

= λ

∫
PY |X(y|x) log

(
PU |Y (u|y)

)
dy

− (λ− 1)

∫
PV |X(v|x) log

(
PU |V (u|v)

)
dv − g(x), (35)

logPV |Y (v|y)

= λ

∫
PX|Y (x|y) log

(
PV |X(v|x)

)
dx

− (λ− 1)

∫
PU |Y (u|y) log

(
PV |U (v|u)

)
du− h(y), (36)

where the functions g(x) and h(y) serve for the pur-
pose of normalization so that

∫
PU |X(u|x)du = 1 and∫

PV |Y (v|y)dv = 1, for each x and y, respectively. Note that
(35) should hold for all x, u, and (36) should hold for all y, v.

Though characterizing the family of solutions to the non-
linear system of equations given by (35) and (36) may be
difficult, it may be possible to compute a particular solution
satisfying (35) and (36). In this case, the iterative procedure
given by Algorithm 1 is a natural candidate for computing
a stationary point. In fact, Algorithm 1 has the desirable
property of monotone convergence, which we discuss in the
next subsection.
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A. Monotone Convergence of Algorithm 1

Let I(i)(X;U), I(i)(Y ;V ), etc. be mutual informations
evaluated for the joint distribution P (i)

UVXY = P
(i)
V |Y P

(i)
U |XPXY ,

and define the corresponding functional:

Fλ(i) , I(i)(X;U)− λI(i)(Y ;U)

+ I(i)(Y ;V |U)− λI(i)(X;V |U). (37)

Although a proof is omitted due to space constraints, for any
i ≥ 1, we have the inequality

Fλ(0)− Fλ(i)

≥
i∑

j=1

[
D
(
P

(j−1)
U |X

∥∥∥P (j)
U |X

)
+D

(
P

(j)
U

∥∥∥P (j−1)
U

)

+D
(
P

(j−1)
V |Y

∥∥∥P (j)
V |Y

)
+D

(
P

(j)
V

∥∥∥P (j−1)
V

)]
. (38)

Since Fλ(i) is bounded from below according to (18), the
sum on the right hand side of (38) must converge (assuming
the initial test channels P (0)

U |X , P
(0)
V |Y satisfy Fλ(0) < ∞). In

particular, (38) implies that Fλ(i) decreases monotonically and
converges to some limit, say Fλ(∞) , limi→∞ Fλ(i).

B. Numerical Experiments

Of course, given the infinite-dimensional nature of the
problem, it is impractical to implement Algorithm 1 as stated.
However, it is a simple matter to quantize the variables
U,X, Y, V to a finite number of values. In this case, the
integrals in updates (22) and (24) become sums over their re-
spective variables, and (35) and (36) become KKT conditions
for the corresponding discretized optimization problem.

The monotone convergence property discussed in the pre-
vious section carries over to the discretized variation of
Algorithm 1. Therefore, by Pinsker’s inequality, there ex-
ists a distribution2: QUVXY = QU |XQV |Y PXY such that
P

(i)
UVXY

TV−−−→ QUVXY and hence, by continuity of mutual
information, Fλ(i)↘ IQ(X;U)−λIQ(Y ;U)+IQ(Y ;V |U)−
λIQ(X;V |U), where IQ(·; ·) indicates mutual information
evaluated with respect to the distribution QUVXY . Note that
QUVXY will be a stationary point of the KKT conditions.

The plot shown in Figure 1 is a typical example of the
evolution of Fλ(i) when running the discretized variation
of Algorithm 1. In particular, over thousands of trials with
randomly instantiated test channels P (0)

U |X and P
(0)
V |Y , Fλ(i)

has always converged to the conjectured minimum value given
by (15). Moreover, this convergence takes place quite rapidly
(usually within a few iterations), as exemplified in Figure 1.

The fact that Algorithm 1 converges monotonically, com-
bined with the empirical observation that it converges to
the conjectured optimum without exception, suggests that
traditional perturbation techniques for proving entropy power
inequalities which construct a monotone path from any starting
point to a global optimum (see, e.g., [7], [8]) could be adapted

2Abusing notation for simplicity, we use PXY to represent the distribution
of the jointly Gaussian variables X,Y and their quantized counterparts.
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Fig. 1: Evolution of Fλ(i) for ρ = 0.5, λ = 3/ρ2. The
variables U,X, Y, V were quantized to 101 evenly spaced
values on the interval [−6, 6], and P (0)

U |X , P
(0)
V |Y were randomly

instantiated.

to our setting. Unfortunately, despite several attempts, the
technical issue of preserving the long Markov chain has proven
to be a significant barrier in doing so.

V. CONCLUDING REMARKS

In summary, Conjecture 1 represents an elegant and natural
extension of Lemma 1. Given the widespread use of EPIs in
proving converse results, we believe the conjectured extremal
inequality (1) could be a useful tool with many applications.
As a motivating example, we described an application to the
quadratic Gaussian two-encoder source coding problem.
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