
Concavity of Entropy Power:
Equivalent Formulations and Generalizations

Thomas A. Courtade
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley

Abstract—We show that Costa’s entropy power inequality,
when appropriately formulated, can be precisely generalized to
non-Gaussian additive perturbations. This reveals fundamental
links between the Gaussian logarithmic Sobolev inequality and
the convolution inequalities for entropy and Fisher informa-
tion. Various consequences including a reverse entropy power
inequality and information-theoretic central limit theorems are
also established.

I. INTRODUCTION

Costa’s entropy power inequality (EPI) asserts that entropy
power is concave with respect to the variance of additive
Gaussian noise [1], and is regarded as one of the classical
results in the information theory literature. Since its introduc-
tion, Costa’s EPI has found applications in many converse
proofs and has been generalized in several ways. Two related
directions were explored by Payaró and Palomar [2] and Liu,
Liu, Poor and Shamai [3], who considered concavity of en-
tropy power with respect to a matrix-valued argument. Cheng
and Geng recently investigated the higher-order derivatives of
entropy power, showing that they alternate in sign through the
fourth derivative [4]. Separately, Villani gave a short proof
of Costa’s EPI showing that it also holds for heat flow on
Riemannian manifolds with nonnegative Ricci curvature [5].
Finally, an equivalent form of Costa’s EPI extends to a broad
class of other diffusion processes (e.g., [6]), and plays a
fundamental role in their analysis. This latter point does not
appear to have been explicitly noted in the literature, so we
explain the connection following Proposition 1, stated below.

In the present paper, we provide generalizations of Costa’s
EPI, and demonstrate applications ranging from deficit es-
timates for functional inequalities to information-theoretic
central limit theorems. Before doing so, let us first establish
notation. For a random vector X on Rd with density f , the
entropy and Fisher information are defined by1

h(X) = −
∫

f log f, J(X) =

∫
f |∇ log f |2 , (1)

provided the integrals exist, with |·| denoting Euclidean length.
We adopt the convention that J(X) = ∞ if the defining
integral does not exist. The entropy power of X is defined
according to

N(X) =
1

2πe
e
2
dh(X). (2)

Entropy power and Fisher information famously satisfy con-
volution inequalities, which enjoy broad applications ranging
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1Throughout, we adopt the convention that all logarithms have base e

from converse proofs in information theory (e.g., [7]) to central
limit theorems (e.g., [8]). In his 1948 paper, Shannon proposed
the entropy power inequality (EPI): For independent random
vectors X,Y ,

N(X + Y ) ≥ N(X) +N(Y ). (3)

Although Shannon’s proof was incomplete, the EPI was even-
tually proved by Stam [9]. In the course of his proof, Stam
also established the Fisher information inequality (FII)

1/J(X + Y ) ≥ 1/J(X) + 1/J(Y ). (4)

Closely related to entropy and Fisher information are their
relative counterparts. For a distribution P , absolutely contin-
uous with respect to Q, the relative entropy is defined as

D(P∥Q) = EP

[
log dP

dQ

]
, (5)

and the relative Fisher information is defined as

I(P∥Q) = EP

[∣∣∣∇
(
log dP

dQ

)∣∣∣
2
]
, (6)

provided the expectation exists. If it does not, we again adopt
the convention that I(P∥Q) = ∞. Note that we have made use
of the shorthand notation EP [f ] := E[f(X)], where X ∼ P .
When X ∼ P and Y ∼ Q, we also write D(X∥Y ) and
I(X∥Y ) to denote D(P∥Q) and I(P∥Q), respectively.

Throughout, we let Z ∼ N(0, I) denote a standard normal
random vector; its dimension will be clear from context.
Completely equivalent to (3) and (4), respectively, are the
inequalities

tD(X∥Z) + t̄ D(Y ∥Z) ≥ D(
√
tX +

√
t̄ Y ∥Z) (7)

tI(X∥Z) + t̄ I(Y ∥Z) ≥ I(
√
tX +

√
t̄ Y ∥Z), (8)

where X,Y are independent zero-mean random vectors with
finite second moments, t ∈ [0, 1] and t̄ := (1− t). Given their
equivalence, we shall refer to inequalities (3) and (7) collec-
tively as the entropy power inequality (EPI), and inequalities
(4) and (8) collectively as the Fisher information inequality
(FII).

For X independent of Z ∼ N(0, I), we write X +
√
tZ to

denote the usual Gaussian perturbation of X . Unless otherwise
specified, we similarly let Xt := e−tX+(1−e−2t)1/2Z denote
the Ornstein-Uhlenbeck process at time t, which starts with
distribution X . Fisher information and entropy are intrinsically
linked along these (equivalent) processes via de Bruijn’s
identity, which states d

dth(X +
√
tZ) = 1

2J(X +
√
tZ). This

can be equivalently stated in terms of the Ornstein-Uhlenbeck
process as d

dtD(Xt∥Z) = −I(Xt∥Z).
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With basic notation established, we now establish equivalent
formulations of Costa’s EPI. A proof is given in the appendix.

Proposition 1. The following are equivalent:
1) (Costa’s EPI) For any 0 ≤ t ≤ 1 and any random vector

X having density on Rd with E|X|2 < ∞,

N(X +
√
tZ) ≥ (1− t)N(X) + tN(X + Z). (9)

2) For any t ≥ 0 and any random vector X having density
on Rd with E|X|2 < ∞,

N(X +
√
tZ) ≤ N(X)

(
1 +

t

d
J(X)

)
. (10)

3) For any t ≥ 0 and any random vector X having density
on Rd,

D(X∥Z) ≤ 1− e−2t

2
I(X∥Z) +D(Xt∥Z). (11)

Costa’s original proof of (9) was accomplished by explicitly
establishing the inequality d2

dt2N(X +
√
tZ) ≤ 0. In light of

the equivalences presented in Proposition 1, a proof of Costa’s
EPI is immediate from the convolution inequality for Fisher
information by integrating de Bruijn’s identity2. Indeed,

D(X∥Z)−D(Xt∥Z) =

∫ t

0
I(Xs∥Z) ds ≤

∫ t

0
e−2sI(X∥Z) ds

=
1− e−2t

2
I(X∥Z).

This argument reveals how Costa’s EPI may be interpreted
as a precise interpolation between a tautology and the EPI.
Indeed, letting t ↓ 0 yields the trivially sharp inequality 0 ≤ 0.
On the other hand, letting t → ∞ yields the Gaussian logarith-
mic Sobolev inequality (LSI) D(X∥Z) ≤ 1

2I(X∥Z), which
is completely equivalent to the special case of (7) when Y is
standard normal (e.g., [6]); i.e., D(Xt∥Z) ≤ e−2tD(X∥Z).

Reformulation of Costa’s EPI as (11) provides a point of
departure that leads to a rich generalization in the context
of Markov processes. In particular, let e−ϕ be a probability
density, where ϕ is smooth and satisfies ∇2ϕ ≥ ρ Id for some
ρ ∈ R. Now, let P = (Pt)t≥0 denote the Markov semigroup
with generator L = ∆−∇ϕ ·∇. If (Xt)t≥0 is the associated
diffusion process with initial distribution X0 ∼ X , then a
similar argument as above gives

D(X∥V ) ≤ 1− e−2ρt

2ρ
I(X∥V ) +D(Xt∥V ), (12)

where V has density e−ϕ, corresponding to the stationary
distribution for this process. In the special case where (Xt)t≥0

is the standard Ornstein-Uhlenbeck process, then ρ = 1 and
V ∼ N(0, I), so that (12) coincides precisely with (11).
Interested readers are referred to [6] for a full treatment.

Organization: Proposition 1 is generalized to non-Gaussian
perturbations in Section II. Several applications are presented
in Section III. These include links between the EPI, FII and

2Dembo [10] gave another proof of Costa’s EPI using the FII which is
different from that given here. We are not aware of any place the present
proof appears in the literature (in particular, the content of Proposition 1), but
suspect it may be known to some, even if unpublished. Also, Costa’s EPI in
the form of (10) was rediscovered in [11].

LSI as well as connections between the LSI and convergence
in information-theoretic central limit theorems on short time-
scales. We close with two problems for future work in Section
IV.

II. MAIN RESULTS

We will establish that the three equivalent forms of concav-
ity of entropy power in Proposition 1 may be suitably general-
ized to non-Gaussian additive perturbations. The starting point
of our investigation is the following inequality for entropy
powers, established by the author in [12]:

Theorem 1. Let X,Y,W be independent random vectors on
Rd, with W being Gaussian. Then

N(X +W )N(Y +W )

≥ N(X)N(Y ) +N(X + Y +W )N(W ). (13)

We will see shortly that this inequality extends (9) in a way
that subsumes the results we have discussed thus far. As a first
demonstration, it was remarked in [12] that (13) immediately
implies the vector generalization of Costa’s EPI due to Liu,
Liu, Poor and Shamai by taking Y,W to be appropriately
scaled Gaussians and simplifying:

Corollary 1. [3] Let X and G ∼ N(0,Σ) be independent
random vectors on Rd, with Σ positive definite. For positive
semidefinite A ≼ I commuting3 with Σ,

N(X +A1/2G) ≥ |I−A|1/dN(X) + |A|1/dN(X +G).

From the above example, we see Theorem 1 evidently
generalizes Costa’s EPI (9) and its vector extension. The
second and third equivalent formulations of Proposition 1 can
be similarly extended. Specifically,

Theorem 2. The following are true and equivalent:
1) For independent random vectors X,Y having density on

Rd with finite second moments,

dN(X + Y ) ≤ N(X)N(Y ) (J(X) + J(Y )) . (14)

2) For independent centered random vectors X,Y having
density on Rd, and all 0 ≤ t ≤ 1,

D(X∥Z) +D(Y ∥Z) ≤ t̄

2
I(X∥Z) +

t

2
I(Y ∥Z)

+D(
√
tX +

√
t̄ Y ∥Z). (15)

Specializing (14) by taking Y =
√
tZ recovers (10).

Similarly, letting Y be standard normal in (15) recovers (11).
Taken together with the fact that Y need not be Gaussian in
Theorem 1, we see that Costa’s EPI (in each of its equivalent
forms) can be suitably generalized to non-Gaussian additive
perturbations.

Unlike the three equivalent formulations of Costa’s EPI in
Proposition 1, the inequality of Theorem 1 appears stronger
than the two equivalent forms presented in Theorem 2. Indeed,
(14) is equivalent to, for any s ≥ 0,

N(X + Y +
√
2sZ) ≤ d

ds

(
N(X +

√
sZ)N(Y +

√
sZ)

)
.

3The commutativity hypothesis was not stated in [3], but the inequality can
fail without it [13].
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Integrating both sides over s ∈ [0, t] gives

N(
√
tZ)

1

t

∫ t

0
N(X + Y +

√
2sZ) ds

≤ N(X +
√
tZ)N(Y +

√
tZ)−N(X)N(Y ). (16)

This would be capable of recovering (1) if it were true that
1
t

∫ t
0 N(X + Y +

√
2sZ) ds ≥ N(X + Y +

√
tZ). However,

this inequality actually goes in the reverse direction due to
Jensen’s inequality and concavity of entropy power.

Proof of Theorem 2. We first establish (14) as a consequence
of Theorem 1. To this end, let W =

√
tZ in (13), so that (13)

particularizes to

N(X +
√
tZ)N(Y +

√
tZ)−N(X)N(Y )

t
≥ N(X + Y +

√
tZ) ≥ N(X + Y ).

Letting t ↓ 0, an application of de Bruijn’s identity and the
chain rule for derivatives yields (14). Note that in applying de
Bruijn’s identity, we may assume the Fisher informations are
finite, else (14) is trivially true.

We now prove equivalence of (14) and (15), which is
inspired by Carlen’s proof of equivalence between Stam’s
inequality and Gross’ logarithmic Sobolev inequality [14] (see
also Raginsky and Sason [15]). Before doing so, we recall the
scaling properties N(tX) = t2N(X) and t2J(tX) = J(X).
Also, if Gs ∼ N(0, sI), the relative entropy D(X∥Gs) and
Fisher information I(X∥Gs) are related to h(X) and J(X)
via

h (X)− d

2
log(2πes) = −D(X∥Gs) +

1

2s
E|X|2 − d

2
(17)

J(X) = I(X∥Gs) +
2

s
d− 1

s2
E|X|2, (18)

holding for any random vector X on Rd with E|X|2 < ∞.
Further, N(·), J(·) are translation invariant, so we may assume
without loss of generality that all random vectors are centered.

• Proof of (14) ⇒ (15): We assume I(X∥Z), I(Y ∥Z) < ∞,
else (15) is a tautology. Now, finiteness of I(X∥Z) implies
E|X|2 < ∞, and similarly for Y (see, e.g., [16, Proof of
Thm. 5]). Using the scaling properties of N(·) and J(·), (14)
implies

N
(√

tX +
√
t̄ Y

)
≤ N(X)N(Y )

(
t̄ J(X) + t J(Y )

d

)
,

Now, taking logarithms, multiplying through by d/2 and
recalling log x ≤ x− 1, we have:

h
(√

tX +
√
t̄ Y

)
− d

2
log(2πe)

≤ h (X)− d

2
log(2πe) + h (Y )− d

2
log(2πe) (19)

+
d

2
log

(
t̄ J(X) + t J(Y )

d

)

≤ h (X)− d

2
log(2πe) + h (Y )− d

2
log(2πe) (20)

+
1

2

(
t̄ J(X) + t J(Y )

)
− d

2
.

Now, (15) follows from the identities (17) and (18) for s = 1.

• Proof of (15) ⇒ (14): We may assume X,Y have finite
Fisher information and second moments. With this assumption
in place, consider any s > 0 and observe via rescaling using
the identities (17)-(18) that (15) is equivalent to

D(X∥Gs) +D(Y ∥Gs) ≤ s

(
t̄

2
I(X∥Gs) +

t

2
I(Y ∥Gs)

)

+D
(√

tX +
√
t̄ Y

∥∥Gs

)
. (21)

Hence, using (17)-(18) again and rearranging, we find that this
is the same as

logN
(√

tX +
√
t̄ Y

)
≤ logN(X)N(Y )

+ s
t̄ J(X) + t J(Y )

d
− log s− 1.

Recalling 1 + log a = infs>0 (as− log s), we may minimize
the RHS over s > 0 to obtain

dN
(√

tX +
√
t̄ Y

)
≤ N(X)N(Y ) (t̄ J(X) + t J(Y ))

= N(
√
tX)N(

√
t̄ Y )

(
J(

√
tX) + J(

√
t̄ Y )

)
,

where the last equality follows via the scaling properties of
N(·) and J(·). A simple rescaling recovers (14) and completes
the proof.

III. CONSEQUENCES

In this section, we explore several consequences of Theorem
2. Further examples may be found in [17].

A. Links between deficits in information inequalities
There has been a growing literature on quantitative deficit

estimates for functional inequalities (see, e.g., [18], [19]).
Here, we show that the deficits of the LSI, EPI and FII — three
of the most fundamental functional inequalities in information
theory — are intrinsically linked to one another.

For independent centered random vectors X,Y on Rd,
define the following (non-negative) quantities, which capture
associated deficits in the LSI, EPI and FII respectively:

δLSI(X) =
1

2
I(X∥Z)−D(X∥Z)

δEPI,t(X,Y ) = tD(X∥Z) + t̄ D(Y ∥Z)−D(
√
tX +

√
t̄ Y ∥Z)

δFII,t(X,Y ) = tI(X∥Z) + t̄ I(Y ∥Z)− I(
√
tX +

√
t̄ Y ∥Z).

With these definitions in hand, (15) may be concisely rewritten
as

δEPI,t(X,Y ) ≤ t̄ δLSI(X) + tδLSI(Y ), (22)

holding for any centered random vectors X,Y . Definitions
yield the following equivalent form:

Theorem 3. For centered random vectors X,Y ,

δLSI(
√
tX +

√
t̄ Y ) +

1

2
δFII,t(X,Y ) ≤ δLSI(X) + δLSI(Y ).

Two interesting consequences follow. The first is a convo-
lution inequality for the deficit in the LSI which may be of
independent interest. Indeed, since δFII,t(X,Y ) ≥ 0, it follows
immediately that

δLSI(
√
tX +

√
t̄ Y ) ≤ δLSI(X) + δLSI(Y ), (23)
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showing that not only are relative entropy and Fisher infor-
mation well-behaved under convolution of densities, but so is
their difference (as captured by δLSI).

Second, when expressed in the form of Theorem 3, we
observe that our estimates are essentially best-possible. Indeed,
from Theorem 3, it follows that for any t ∈ [0, 1]

δLSI(X) + δLSI(Y )

≥ 1

2

(
δLSI(

√
tX +

√
t̄ Y ) +

1

2
δFII,t(X,Y )

)

+
1

2

(
δLSI(

√
t̄ X +

√
tY ) +

1

2
δFII,t̄(X,Y )

)
. (24)

However, definitions and the fact that δEPI,t ≥ 0 imply

δLSI(X) + δLSI(Y ) ≤ δLSI(
√
tX +

√
t̄ Y ) +

1

2
δFII,t(X,Y )

+ δLSI(
√
t̄ X +

√
tY ) +

1

2
δFII,t̄(X,Y ),

establishing that the lower bound (24) derived from Theorem
3 is tight within constant factor of 2 for all t ∈ [0, 1].

B. Reverse Entropy Power and Fisher Information Inequalities

Due to its fundamental role in information theory, there
has been sustained interest in obtaining reverse forms of
the entropy power inequality (3). As shown by Bobkov and
Chistyakov [20], the EPI cannot be reversed in general, at
least not up to a constant factor. Nevertheless, progress has
been made. A notable example of a reverse EPI is due to
Bobkov and Madiman [21], who show that for independent
random vectors X,Y with log-concave densities, there exist
linear volume preserving maps u, v such that

N(u(X) + v(Y )) ≤ C(N(X) +N(Y )), (25)

where C is an absolute constant. Bobkov and Madiman’s result
mirrors Milman’s reverse Brunn-Minkowski inequality, which
is pleasant since the EPI itself mirrors the Brunn-Minkowski
inequality. A similar statement holds for a more general class
of convex measures. Another example of a reverse EPI is due
to Ball, Nayar and Tkocz [22], who also restrict attention
to the class of log-concave densities and show the EPI can
be reversed in this setting if all terms are exponentiated by
a constant factor. See also the recent survey by Madiman,
Melbourne and Xu [23] for related results.

An immediate implication of Theorem 2 is the following
reverse EPI, noted previously by the author in [12]:

Theorem 4. Let X,Y be independent random vectors on Rd

with finite second moment, and choose λ to satisfy λ/(1−λ) =
N(Y )/N(X). Then

N(X + Y ) ≤ (N(X) +N(Y )) (λp(X) + (1− λ)p(Y )) ,

where p(X) := 1
dN(X)J(X).

Stam [9] observed that p(X) ≥ 1 (now referred to as Stam’s
inequality), with equality iff X ∼ N(0,σ2I) for σ2 > 0. As
a consequence of Theorem 2, if both X and Y each nearly
saturate Stam’s inequality, then the EPI (and also FII) will
be nearly saturated. A remarkable aspect of Theorem 4 in

comparison to the above reverse EPIs is that no regularity
assumptions (e.g., log-concave densities) are imposed.

Finally, since Theorems 3 and 4 are equivalent in light of
Theorem 2, this reverse EPI is essentially best possible in the
context of the discussion of the previous section.

C. Short-term convergence in information-theoretic CLTs
Let X be a centered random vector on Rd with Cov(X) = I,

and define the normalized sums Un = 1√
n

∑n
k=1 Xk, where

X1, X2, . . . , Xn are independent copies of X . The entropic
central limit theorem (CLT) due to Barron [24] asserts that
D(Un∥Z) → 0, provided D(Un0∥Z) < ∞ for some n0.
Likewise, the CLT for Fisher information, due to Barron and
Johnson [8], asserts that I(Un∥Z) → 0, provided I(Un0∥Z) <
∞ for some n0.

Recently, Bobkov et al. [25] have settled a longstanding
conjecture and shown that under moment conditions

D(Un∥Z) = O(1/n), (26)

which is consistent with the convergence rates predicted by
the Berry-Esseen theorem. Although (26) provides good long-
term estimates on convergence in the entropic CLT, it does
not immediately provide any information about the short-term
behavior of D(Un∥Z).

The next result partially addresses this issue by establishing
a dimension-free lower bound on D(Un∥Z) in terms of
δLSI(X) and n. Roughly speaking, if δLSI(X) ≪ D(X∥Z),
then D(Un∥Z) is assured to decay slowly on short time
scales. A similar result holds for Fisher information. That is,
if δLSI(X) ≪ I(X∥Z), then I(Un∥Z) will decay slowly on
short time scales. Essentially, each of these quantities decay
at most linearly in n, with slope δLSI(X).

Theorem 5. Let X be a centered random vector on Rd with
finite second moments and define the normalized sums Un =
1√
n

∑n
k=1 Xk, where X1, X2, . . . , Xn are independent copies

of X . The following hold for all n ≥ 1:

D(Un∥Z) ≥ D(X∥Z)− (n− 1)δLSI(X) (27)
1

2
I(Un∥Z) ≥ 1

2
I(X∥Z)− n δLSI(X) + δLSI(Un). (28)

Proof. We apply Theorem 2 identifying t ← n
n+m , X ← Un

and Y ← Um. This yields the inequality

D(Un+m∥Z) ≥ D(Un∥Z) +D(Um∥Z) (29)

− m

2(m+ n)
I(Un∥Z)− n

2(m+ n)
I(Um∥Z).

The proof of (27) and (28) now follows by induction on
n+m. See [17] for details.

D. A ‘discrete-time’ variation on Costa’s EPI
Let X be a centered random vector on Rd with finite

second moments, put X0 = X , and for n ≥ 0 inductively
define Xn+1 = 1√

2
(Xn+X ′

n), where Xn, X ′
n are independent

copies of Xn. Note that there is some resemblance between
the discrete time process {Xn, n ≥ 0} and the continuous time
Ornstein-Uhlenbeck process (Xt)t≥0. Indeed, both sequences
tend to Gaussian (the former by the CLT). Additionally, as a
function of the time index, both sequences generally converge
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to the stationary distribution exponentially quickly. This can
be made precise in the case of the Ornstein-Uhlenbeck process
where D(Xt∥Z) ≤ e−2tD(X∥Z). Likewise, as discussed in
the previous section, we expect that D(Xn∥N(0,Cov(X))) =
O(2−n) under moment conditions. As we have witnessed
in (11), Costa’s EPI makes a (dimension-free) quantitative
statement about the decay of relative entropy in the Ornstein-
Uhlenbeck process. Below, we find that an analogous state-
ment holds for the decay of relative entropy corresponding to
the process {Xn, n ≥ 0}. The proof follows by iterating (22),
and is omitted due to space constraint.

Theorem 6. Let X , {Xn, n ≥ 0} be as above. For any n ≥ 0,

1

4

n−1∑

k=0

2−kI(Xk∥Z) ≥ D(X∥Z)− 2−nD(Xn∥Z). (30)

In essence, Costa’s EPI makes a precise statement about
the behavior of entropy as one interpolates between an arbi-
trary random vector X and Gaussian Z along the Ornstein-
Uhlenbeck process. The discrete time process {Xn, n ≥ 0}
may be thought of as another way of interpolating between
X and Gaussian, viz-à-vis repeated convolution. Remarkably,
Theorem 6 shows that this latter method of interpolation bears
strong resemblance to the de Bruijn identity for the Ornstein-
Uhlenbeck process:

∫ t

0
I(Xs∥Z) ds = D(X∥Z)−D(Xt∥Z) t ≥ 0.

Of course, we have already seen this implies Costa’s EPI since
1−e−2t

2 I(X∥Z) ≥
∫ t
0 I(Xs∥Z) ds.

IV. CLOSING REMARKS

We have seen that, when appropriately formulated, the con-
cavity of entropy power can be generalized to non-Gaussian
additive perturbations. On this note, we ask whether the
Gaussian assumption on W is necessary in Theorem 1. Despite
some effort in searching, no counterexample has been found.

Along a different line, we know that there is a strong
analogy between the EPI and the Brunn-Minkowski inequality.
In light of this, we are moved to speculate that a geometric
analogue to Theorem 1 may hold. In particular, for K,L,B
bounded convex sets in Rd, does it hold that:

|K + L+B|1/d|B|1/d+|K|1/d|L|1/d ≤ |K +B|1/d|L+B|1/d,

where |·| denotes d-dimensional volume? Convexity of the sets
is necessary, else L,B could be taken to be balls of specific
radii, implying the Costa-Cover conjecture [26] for non-convex
K. This was recently shown to be false [27].

APPENDIX

Proof of Proposition 1. We will show that (9) and (10) are
equivalent. The remaining claims follow as a special case of
our proof of Theorem 2. To this end, since J(X) < ∞, it
follows that J(X +

√
tZ) < ∞ by the convolution inequality

for Fisher information (4). By de Bruijn’s identity, (10) is
equivalent to N(X+

√
t+ sZ) ≤ N(X+

√
tZ)+s d

dtN(X+√
tZ) for t > 0 and s ≥ 0. Stated another way, N(X +

√
tZ)

lies below its tangent lines for t > 0, which is equivalent to
N(X +

√
tZ) being concave on t ∈ (0,∞). The conclusion

can be immediately extended to t ∈ [0,∞) since N(X) ≤
N(X +

√
tZ) for any t > 0.
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