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Comments and Corrections
Comments on “Canalizing Boolean Functions

Maximize Mutual Information”
Thomas A. Courtade, Member, IEEE

Abstract— In their recent paper “Canalizing Boolean
Functions Maximize Mutual Information,” Klotz et al. argued
that canalizing Boolean functions maximize certain mutual
informations by an argument involving Fourier analysis on the
hypercube. This note supplies short new proofs of their results
based on a coupling argument and also clarifies a point on the
necessity of considering randomized functions.

Index Terms— Boolean functions, mutual information.

A (possibly randomized) Boolean function
f : {0, 1}n → {0, 1} is said to be canalizing in xi if
there exists v ∈ {0, 1} such that f (xn) is constant for all xn

having xi = v. These functions are of interest due in part
to their relevance to genetic network models [1]. In a recent
paper, Klotz et al. showed that canalizing Boolean functions
maximize certain mutual informations by way of an argument
involving Fourier analysis on the hypercube [2]. Specifically,
Klotz et al. established necessary and sufficient conditions
for a Boolean function g to maximize mutual information
subject to a bias constraint in the following problem:

I (g(Xn); Xi ) = max
f :E f (Xn)=Eg(Xn)

I ( f (Xn); Xi ), (1)

where the maximum is taken over all (possibly randomized)
Boolean functions f with bias E[ f (Xn)] equal to that of g.

In this note, we give short new proofs of their results using
a simple coupling lemma as our primary tool1 and also clarify
a point on the necessity of considering randomized functions
in (1). For reference, we now recall the results of [2].

Theorem 1 [2, Th. 1,2]: Fix i ∈ {1, . . . , n}. Let Xn be
arbitrarily distributed on {0, 1}n, and suppose 0 < E[Xi ],
E[g(Xn)] < 1/2 for a Boolean function g.

i) If E[Xi ] ≥ E[g(Xn)], then (1) holds iff g is canalizing
in xi with g(xn) = 0 whenever xi = 0.

ii) If E[Xi ] ≤ E[g(Xn)], then (1) holds iff g is canalizing
in xi with g(xn) = 1 whenever xi = 1.

In Theorem 1, we exclude min{E[Xi ], E[g(Xn)]} = 0
to avoid degeneracy: if E[g(Xn)] = 0, then g is trivially
canalizing in all variables; if E[Xi ] = 0 then Xi = 0 with
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1In fact, we generalize the results in [2] since Klotz et al. restrict their

attention to product distributions on {0, 1}n .

probability one, implying that I ( f (Xn); Xi ) = 0 for any
function f , not only those that are canalizing.

The case where max{E[Xi ], E[g(Xn)]} = 1/2 is ambiguous
in [2, Th. 2] due to sign(0) being undefined, and is also
excluded from Theorem 1 above. Nevertheless, it is possible
to deduce the following result:

Theorem 2 [2, Th. 1,2]: Fix i ∈ {1, . . . , n}. Let Xn be
arbitrarily distributed on {0, 1}n, and suppose min{E[Xi ],
E[g(Xn)]} > 0 and max{E[Xi ], E[g(Xn)]} = 1/2 for a
Boolean function g.

i) If E[Xi ] ≥ E[g(Xn)], then (1) holds iff g is canalizing in
xi with g(xn) = 0 whenever xi = v for some v ∈ {0, 1}.

ii) If E[Xi ] ≤ E[g(Xn)], then (1) holds iff g is canalizing
in xi with g(xn) being constant for all xn having xi = 1.

Remark 1: The constraint max{E[Xi ], E[g(Xn)]} ≤ 1/2 is
not present in [2], but does not sacrifice generality in the stated
versions of Theorems 1 and 2. Indeed, mutual information is
invariant to relabeling, so complementing Xi and/or g(Xn)
does not change the value of I (g(Xn); Xi ).

When interpreting Theorems 1 and 2 (and the results that
ensue), it is necessary to consider randomized functions. This
means that functions need not depend on their inputs in a
deterministic manner. In other words, a randomized function
f (xn) is a binary random variable with distribution that
depends on xn:

f (xn) =
{

0 with probability q(xn)

1 with probability 1 − q(xn).
(2)

Note that the definition of ‘canalizing’ applies equally to
deterministic or randomized functions. In particular, a random-
ized function f that is canalizing in xi satisfies P{ f (Xn) =
u|Xi = v} = 1 for some u, v ∈ {0, 1}. That is, xi = v
implies f (xn) = u.

Although not addressed in their paper [2], Klotz et al.
must permit randomization in their formulation. In fact, the
results in [2] do not hold if only deterministic functions are
considered, as illustrated by the following counterexample:

Example 1: Let P{X2 = x2} = p1(x1)p2(x2), where
p1(1) = 1 − p1(0) = 1/5 and p2(1) = 1 − p2(0) = 2/5.
Consider the function g : {0, 1}2 → {0, 1} defined by:

x1x2 00 01 10 11

g(x2) 0 1 1 0

By inspection, g(x2) is not canalizing in either variable.
Furthermore, E[g(X2)] = 11/25, and is the only deterministic
Boolean function on {0, 1}2 with this expected value under the
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specified distribution. Hence, even though

I (g(Xn); X1) = max
f :E f (Xn)=Eg(Xn)

I ( f (Xn); X1) (3)

when the maximization is restricted to deterministic functions,
we can not assert that g is canalizing.

However, when Xn assumes the uniform distribution,
restriction to deterministic functions is possible since if
k = |{xn : f (xn) = 1}| ≤ 1

2 2n for a deterministic function f,
there always exists a deterministic canalizing function g
with k = |{xn : g(xn) = 1}|, implying E[g(Xn)] =
E[ f (Xn)] = k2−n .

We now show that Theorems 1 and 2 are consequences
of the following coupling lemma, which is proved in the
Appendix.

Lemma 1: Suppose U, V are binary random variables with
0 < E[U ] ≤ E[V ] ≤ 1/2. There exists a random variable Ṽ
with E[Ṽ ] = E[V ] such that P{Ṽ = 1|U = 1} = 1 and
I (U ; Ṽ ) ≥ I (U ; V ), with equality iff Ṽ = V or Ṽ = 1 − V .

Remark 2: Note that the second sufficient condition for
equality in Lemma 1 (i.e, that Ṽ = 1−V ) can only hold when
E[V ] = 1/2. Indeed, Ṽ = 1 − V implies E[Ṽ ] = 1 − E[V ],
and therefore E[V ] = 1/2, since E[Ṽ ] = E[V ] by definition.

In words, Lemma 1 couples U with a new random vari-
able Ṽ equal in distribution to V that i) improves mutual
information in the sense that I (U ; Ṽ ) ≥ I (U ; V ); and ii) is
‘canalizing in U ’ in the sense that {U = 1} ⇒ {Ṽ = 1}.

With Lemma 1 in hand, Theorems 1 and 2 are readily
proved by identifying appropriate assignments of U, V .

Proof of Theorems 1 and 2: We consider two cases.
◃ Case 1: E[Xi ] ≥ E[g(Xn)]. Define U = g(Xn) and

V = Xi . Applying Lemma 1, there exists Ṽ equal to V in
distribution, satisfying P{Ṽ = 1|U = 1} = 1 and
I (U ; Ṽ ) ≥ I (U ; V ), with equality iff V is in one-to-one cor-
respondence with Ṽ . If I (U ; Ṽ ) > I (U ; V ), then optimality
of g in (1) is contradicted, since taking q(xn) = P{U =
0|Ṽ = xi } in (2) defines a randomized function f which
satisfies I ( f (Xn); Xi) > I (g(Xn); Xi ) because ( f (Xn), Xi )
equals (U, Ṽ ) in distribution.

Therefore, assume I (U ; Ṽ ) = I (U ; V ). Supposing first that
E[Xi ] < 1/2, Lemma 1 and the remark that follows assert
that P{Xi = 1|g(Xn) = 1} = 1. By definition, this implies
that P{g(Xn) = 0|Xi = 0} = 1, so g is canalizing in xi as
stated. On the other hand, if E[Xi ] = 1/2, then we must have
P{Xi = v|g(Xn) = 1} = 1 for some v ∈ {0, 1}, which implies
that P{g(Xn) = 0|Xi = 1 − v} = 1.

◃ Case 2: E[Xi ] ≤ E[g(Xn)]. Reversing roles in the
previous case, we define V = g(Xn) and U = Xi
and apply Lemma 1. Arguing as above, if g satisfies (1),
then we must have P{g(Xn) = 1|Xi = 1} = 1
when E[g(Xn)] < 1/2, showing g is canalizing in xi .
On the other hand, if E[g(Xn)] = 1/2, then we
must have P{g(Xn) = v|Xi = 1} = 1 for some
v ∈ {0, 1}. !

By the data processing inequality, I (g(Xn); Xi ) ≤ H (Xi)
with equality iff g(xn) is a dictatorship in xi (i.e., a one-to-one
function of xi ) assuming that Xi is nondegenerate. Hence, we
also have:

Theorem 3 [2, Th. 3]: Let Xn be arbitrarily distributed
on {0, 1}n with Xi not a.s. constant. A Boolean function g is
a dictatorship in xi iff I (g(Xn); Xi) = max f I ( f (Xn); Xi ).

A Boolean function f is said to be jointly canalizing in
T ⊂ [n] if there exists {vi }i∈T ∈ {0, 1}|T | such that f (xn)
is constant for all xn having xi = vi for i ∈ T . Define
XT = {Xi : i ∈ T }. A modification of the proof of Theorem 1
gives:

Theorem 4 [2, Th. 4]: Let Xn be arbitrarily distributed
on {0, 1}n. If

I (g(Xn); XT ) = max
f :E f (Xn)=Eg(Xn)

I ( f (Xn); XT ) > 0, (4)

then g is jointly canalizing in T.
Proof: Let k = |T |. By the assumption that

I (g(Xn); XT ) > 0, neither g(Xn) nor XT are constant.
Therefore, there must exist two sequences yk, zk ∈ {0, 1}k

such that 0 < P{XT = yk} ≤ P{XT = zk} < 1. Define A =
{yk, zk}, and observe that 0 < P{XT = yk|XT ∈ A} ≤ 1/2.
Further, by complementing g(Xn) if necessary, we may
assume without loss of generality that P{g(Xn) = 1|XT ∈
A} ≤ 1/2. If P{g(Xn) = 1|XT ∈ A} = 0, then g
is canalizing in T as desired. Therefore, we consider
0 < P{g(Xn) = 1|XT ∈ A} ≤ 1/2.

Conditioning on the event {XT ∈ A}, we repeat the
argument in the proof of Theorem 1 letting V = 1{XT = yk}
and U = g(Xn), or letting U = 1{XT = yk} and V = g(Xn),
depending on whether P{XT = yk|XT ∈ A} or P{g(Xn) =
1|XT ∈ A} is larger. By doing so, we can conclude that g(xn)
is constant when either xT = yk or xT = zk . The details are
the same as in the proof of Theorem 1 and are left to the
reader. !

CONCLUDING REMARKS

In this note, we recovered the results of Klotz et al. in [2]
by replacing the Fourier-analytic machinery they employed
with an alternative argument based on coupling and data
processing. In proceeding along this route, we avert the
need to restrict our attention to product distributions on Xn

as was required in the Fourier-based proof of Klotz et al.
On reflection, it should not be surprising that Fourier analysis
isn’t essential to the proofs since the mutual information
I (g(Xn); Xi ) only depends on the joint distribution of
the binary pair (g(Xn), Xi ), a fact emphasized in the
present paper.

APPENDIX

Proof of Lemma 1: To simplify notation, define µ̄ = 1 − µ
for µ ∈ [0, 1]. Also, let q = EV , p = EU and
ϵ = P{V = 0|U = 1}. Observe that p, q, ϵ completely specify
the joint distribution of U, V . Next, define t = (q − p)/ p̄,
which is in [0, 1] since p ≤ q ≤ 1. Finally, define δ = ϵq/q̄,
which is also in [0, 1] since q ≤ 1/2 ≤ q̄. Using these
definitions, we observe that the cascade shown in Figure 1
induces the correct joint distribution on U, V. Indeed, for
U ∼ Bernoulli(p) input to the cascade, we see that the V
has the desired marginal distribution:

P{V = 1} = (1 − ϵ)P{Ṽ = 1} + δP{Ṽ = 0}
= (1 − ϵ)(p + t (1 − p)) + δ(1 − t)(1 − p) = q.
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Fig. 1. A cascade relating U and V when EU ≤ EV ≤ 1/2.

Moreover, the probability of going from U = 1 to V = 0 in
the cascade is ϵ, which equals P{V = 0|U = 1} by definition.

Taking Ṽ to be the intermediate variable in the cascade
implies that U → Ṽ → V form a Markov chain, in that order.
Thus, the data processing inequality implies that I (U ; Ṽ ) ≥
I (U ; V ), with equality iff V is a one-to-one function of Ṽ .
Clearly P{Ṽ = 1|U = 1} = 1, so the proof is complete by
noting that Ṽ is equal in distribution to V as desired since

P{Ṽ = 1} = P{U = 1} + t P{U = 0} = p + q−p
p̄ p̄ = q.

!
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