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Abstract—In contrast to second-generation DNA sequencing
technologies, emerging third-generation technologies are capa-
ble of delivering reads that are long enough to enable perfect
genome assembly. Unfortunately, the benefits of long reads are
accompanied by higher rates of read errors. This motivates a
question of fundamental import: what read-length and error-
rate combinations allow for perfect assembly of the genome?
Formal investigation of this tradeoff is complicated by the fact
that tractable probabilistic models for the genome sequence and
error process fail to capture key features of the problem: real
genomes contain long repetitive patterns, and read errors are
often bursty and sequence-dependent. In order to circumvent
these modeling barriers and take a first step toward the study of
this question, we consider a simple setting: the genome sequence
is arbitrary, and the read errors are erasures that can occur at
adversarially chosen positions, up to a limit in the number of
erasures per read and per genome position. In this context, we
show that a natural error-correction scheme is optimal in the
sense that it recovers the error-free k-spectrum of the genome
for the largest possible k. The worst-case nature of our analy-
sis ensures that the proposed error-correction method is robust
and allows us to study its performance under stochastic error
models. As a result, we show that, for several real genomes, the
impact of read errors on the information-theoretic requirements
for perfect assembly is relatively mild.

Index Terms—Genome assembly, DNA sequencing, error cor-
rection, erasure model.

I. INTRODUCTION

CURRENT DNA sequencing technologies are based on a
two-step process. First, tens or hundreds of millions of

fragments from random locations on the DNA sequence are
read via shotgun sequencing. Second, these fragments, called
reads, are merged to each other based on regions of overlap,
using an assembly algorithm.
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Roughly speaking, different shotgun sequencing platforms
can be distinguished from the point of view of three main
metrics: the read length, the read error rate, and the read
throughput. In the last decade, the so-called next-generation
sequencing platforms have attained considerable success at
employing heavy parallelization in order to achieve high-
throughput shotgun sequencing data.

In order to guarantee low error rates, most of these next-
generation technologies are restricted to short read lengths,
shifting some of the burden of sequencing to the assembly
step. In practice, this results in very fragmented assemblies,
with large gaps and little linking information between frag-
ments [1]. On the other hand, recent technologies that generate
longer reads suffer from lower throughput and much higher
error rates.1

Given this technology trend, the natural questions to ask
are: what is the impact of read errors on the performance
of assemblers? Is the negative impact of read errors more
than offset by the increase in read lengths in long-read tech-
nologies? It is well known that read errors have a significant
impact on assembly algorithms. For example, in de Bruijn
graph based algorithms [2]–[4], read errors create extrane-
ous nodes and edges in the assembly graph, which results
in added complexity and poses challenges to the assembly of
reliable contigs. In practice, this issue is often dealt with using
k-mer filtering [6] and error-correction tools [5], [7]–[11] that
attempt to clean up the reads before the assembly algorithm
is applied. In fact, it has been shown that even noisy long
reads, if properly preprocessed, can be used to obtain fin-
ished assemblies of bacterial genomes [12]–[16]. However,
such claims must usually be made on a dataset-by-dataset
basis. Moreover, error correction tools and assembly pipelines
are in general evaluated relative to each other, and the eval-
uation is contingent on the existence of a reliable reference
genome.

A more fundamental question regarding the performance of
assembly pipelines can be asked from an information-theoretic
point of view: given a read length, an error rate and a coverage
depth (number of reads per base), is there enough informa-
tion in the read data to uniquely reconstruct a target genome?

1One example of a short-read-length technology is Illumina, with reads of
length ∼ 200 base pairs and error rates of about 1%. In contrast, PacBio reads
can be several thousand base pairs long, with error rates of about 10-15%.
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Fig. 1. Feasibility region for a target error probability ϵ = 0.01. The thick
black curve is a feasibility lower bound for any algorithm, and the green line
represents the performance of the Multibridging algorithm [18]. In the vertical
axis, the normalized coverage depth is N/NLW , where NLW ≈ (G/L) log(G/ϵ)
is the Lander-Waterman coverage depth; i.e., the number of reads required to
cover the whole genome with a probability 1 − ϵ.

Do errors significantly increase the read length and/or cover-
age depth requirements? An answer to these basic feasibility
questions can provide an algorithm-independent framework
for evaluating different sequencing technologies and assembly
pipelines.

Such a framework was initiated in [17] and [18] for error-
free reads. In [18], a feasibility curve relating the read length
and coverage depth needed to perfectly assemble a genome
was characterized in terms of the repeat complexity of the
genome (see examples in Fig. 1). Evaluating this curve on sev-
eral genomes revealed an interesting threshold phenomenon:
if the read length is below a certain critical value ℓcrit, recon-
struction is impossible; a read length slightly above ℓcrit and
a coverage depth close to the Lander-Waterman depth cLW
(i.e., just enough reads to cover the whole sequence) is suf-
ficient. The critical read length ℓcrit is given by the length of
the longest interleaved repeat in the genome (Fig. 2). and had
appeared in earlier works by Ukkonen [19] and Pevzner [20]
in the context of sequencing by hybridization.

Given this framework, the impact of read errors on genome
assembly can be studied by asking how the information-
theoretic requirements captured by these feasibility curves
change when there are errors in the reads. In particular, under-
standing the impact of errors in the critical read length ℓcrit
is important from a practical point of view: while increas-
ing the coverage depth of the experiment incurs a (roughly)
proportional increase in cost, the read length is usually dic-
tated by the technology and chemistry utilized and cannot be
tuned. Hence, designing assembly algorithms which succeed
whenever the read length exceeds the information-theoretic
requirement is highly desirable.

When reads have errors, a natural conjecture is that one
should view approximate repeats as exact repeats, and the crit-
ical read length required for assembly, instead of ℓcrit, would
be ℓcrit, app, defined as the length of the longest approximate
interleaved repeats, illustrated in Fig. 2(b). This number always
exceeds ℓcrit and, when evaluated on real genomes (for an
appropriate definition of approximate repeats) can be seen to
be substantially larger than ℓcrit.

But is L > ℓcrit, app actually required from a fundamen-
tal point-of-view? In this work, we study this question under
a simple erasure error model and show that L > ℓcrit, app is

Fig. 2. (a) Interleaved repeats and (b) an approximate interleaved repeats.

not needed for perfect assembly. In fact, under this model,
the fundamental read length requirement essentially remains
unchanged by the addition of errors, as illustrated in Fig. 3.

The impact of read errors on genome assembly was previ-
ously studied in [21] and [22]. Motahari et al. [21] proposed
an assembly scheme based on first using a typicality test to
generate a set of cleaned up reads and then assembling them as
if they were error free. Based on this approach, they obtained
a result in the same spirit of the main result in this paper. More
precisely, they showed that, as long as the error rate is below
a threshold, the requirements for assembly in terms of read
length and coverage depth are the same for noisy and noiseless
reads. However, two important modeling assumptions were
necessary in order to establish this result.

1) The genome was assumed to be an i.i.d. sequence of
length G, and the asymptotic regime G → ∞ was
considered.

2) Errors were assumed to be i.i.d. for some fixed and
known probability p.

It is well known that in practice the main obstacle to assembly
are long repeats in the genome, which are not well mod-
eled by i.i.d. sequences. Therefore, due to (1), the asymptotic
result in [21] cannot be used to characterize sequence-specific
bounds such as those in Fig. 3. While (2) is motivated by
nominal error rates that are usually provided for each sequenc-
ing technology, read errors often occur in bursts (generating
so-called chimeric segments) and in a sequence-specific fash-
ion (e.g., in homopolymers). Typicality-based approaches are
usually sensitive to deviations from the probabilistic model
assumed, even if the true error process is more tractable than
the one assumed (i.e., it has a lower error rate, or a higher
capacity). Hence, an error-correction scheme that does not rely
heavily on the error model is desirable.

In this work, we take an initial step in studying this problem
without assumptions (1) and (2), and consider the following
setting: the genome sequence is deterministic and comprises a
single chromosome, and the read errors are erasures2 that can
occur at adversarially chosen positions, but under constraints
in the number of erasures per read and per base in the genome.

Under this framework, we ask a fundamental question: when
is there enough information in the set of reads to allow error
correction to be performed in an unambiguous way? We for-
mally pose this question by defining the k-spectrum of the
genome (i.e., the set of all error-free length-k substrings) as the
goal of the error correction problem. As we argue, reconstruct-
ing the k-spectrum for a large k is as difficult as the perfect
reconstruction problem, and we can focus on the problem of

2When a base is erased, it is replaced by an erasure symbol ε. Erasure
models are easier to analyze than models with insertions, deletions and sub-
stitutions, and hence are are commonly used in information theory as a starting
point in the study of fundamental performance limitations.



SHOMORONY et al.: FUNDAMENTAL LIMITS OF GENOME ASSEMBLY UNDER ADVERSARIAL ERASURE MODEL 201

Fig. 3. Lower bound for assembly feasibility region with error-free reads and upper bound when reads have erasures with probability p.

characterizing the largest value of k for which the set of reads
unambiguously determines the k-spectrum.

In order to answer this question, we develop a notion of
worst-case typicality, which serves as a test to identify true
k-mers based on the read data. Under the adversarial sequence
and erasure model considered, this typicality approach has
strong theoretical guarantees: it can reconstruct the k-spectrum
for the largest possible k. Furthermore, the techniques devel-
oped under this adversarial model, once carried over to a
probabilistic erasure model, exhibit nice robustness properties.
This allows us to combine this typicality test with assembly
algorithms developed for error-free reads to gain insight into
the fundamental performance limitations of genome assembly
from reads with errors. In particular, we can explicitly compute
the requirements for perfect assembly in terms of read length
and coverage depth for small bacterial genomes, and show that
they do not differ significantly from the error-free case con-
sidered in [18], as illustrated in Fig. 3. This result is relevant
as it suggests that the higher error rates of current long-read
sequencing technologies may not fundamentally impact their
ability to yield perfect assemblies.

The rest of the paper is organized as follows. In Section II,
we motivate the spectrum reconstruction problem as a way to
study the error correction problem, describe the erasure model,
and state our main result. In Section III, we describe the worst-
case typicality test, which we use to prove our main result.
Section IV is dedicated to show that, although our main results
are derived under an adversarial erasure model, they can be
used to compute feasibility curves for a probabilistic erasure
model. Finally, Section V discusses practical limitations of the
approach considered in this paper, and Section VI concludes
the paper.

II. ASSEMBLY VIA SPECTRUM RECONSTRUCTION

In the DNA assembly problem, the goal is to reconstruct a
sequence s = (s[1], . . . , s[G]) of length G with symbols from
the alphabet $ = {A, G, C, T}. In order to simplify the expo-
sition and avoid edge effects, we will assume a circular DNA
model; thus, {s[i]}∞i=1 is a periodic sequence with (minimum)
period G. Our results hold in the non-circular case as well

under minor modifications. We will let sℓ
i be the substring of

length ℓ starting at s[i]; i.e., sℓ
i = (s[i], s[i+1], . . . , s[i+ℓ−1]).

The sequencer provides a set of N reads R = {r1, . . . , rN}
from s, each of length L. In the noiseless case, each read is a
length-L substring of s with an unknown starting location. Our
focus, however, will be on noisy read models, where each read
in R may be corrupted by noise. We define the k-spectrum
of s as the multiset Sk(s) = {sk

t : t = 1, . . . , G}, and we let
supp(Sk(s)) ⊂ $k be the support of such multiset. Whenever
the sequence s is clear from the context, we will simply write
Sk and supp(Sk). Following the convention in the field, we
will often refer to a length-k sequence in $k as a k-mer. In
this work, we consider three related assembly problems. In
decreasing order of difficulty, they are
A1. Reconstruct the entire sequence s from R .
A2. Reconstruct the k-spectrum of s, Sk(s), from R , for some

k ≤ L.
A3. Reconstruct the support of the k-spectrum of s,

supp(Sk(s)), from R , for some k ≤ L.
While reconstructing the spectrum or just its support rather
than the complete sequence s may seem significantly more
modest goals than (A1), we claim they are almost as difficult
as perfect assembly, and can be seen as intermediate steps
towards (A1).

Consider the problem (A2) of reconstructing the spectrum
Sk. We know from results in [19] and [20] that for every
sequence s, there exists a critical read length ℓcrit(s) as a func-
tion of the repeat statistics of s (see Appendix A for a formal
definition), for which we have the following.

Theorem 1: If k > ℓcrit(s), then s is the unique sequence
with k-spectrum Sk(s). Conversely, if k ≤ ℓcrit(s), there exists
a sequence s′ ̸= s for which Sk(s) = Sk(s′).

Hence by solving the assembly problem (A2) for sufficiently
large k, we also solve the (standard) assembly problem (A1).
As it turns out, similar guarantees can be given for the assem-
bly problem (A3). As we describe in Section VI, previous
results from [18] and [23] imply that there exists another crit-
ical read length ℓ̄crit(s) ≥ ℓcrit(s) such that, if k > ℓ̄crit(s), s
can be assembled from supp(Sk). More precisely, we have the
following.

Theorem 2 [18]: If k > ℓ̄crit(s), the Multibridging algo-
rithm correctly assembles s from supp(Sk).
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Therefore, by solving (A3) for sufficiently large k, we also
solve (A1). As we will discuss in the subsequent sections, aim-
ing to reconstruct the support of the spectrum of s has several
advantages with respect to reconstructing the complete spec-
trum. Moreover, as we describe in Appendix A, the difference
between ℓcrit(s) and ℓ̄crit(s) is a technicality, and in many prac-
tical settings ℓcrit(s) = ℓ̄crit(s). Therefore, in these cases, all
three problems are equivalent.

A. Adversarial Erasure Model

In this work, we will study the problem of error correction
of sequencing data by viewing it as the spectrum reconstruc-
tion problem. We will build upon the ideas from [24], and
consider this problem under an adversarial erasure model.
Given that actual sequencing noise profiles are complex (non-
i.i.d., sequence-dependent, bursty) and technology-dependent,
such an adversarial model is intended to prevent the devel-
opment of techniques that are tied to a specific probabilistic
model. In Section IV, we will evaluate the techniques devel-
oped under the adversarial erasure model on a probabilistic
erasure setting, and show that they still provide powerful error
correction techniques.

The adversarial erasure model herein proposed can be seen
as a generalization of the model considered in [24]. Erasures
can be practically motivated by the fact that sequencing tech-
nologies usually provide a quality score for each base that is
sequenced, which could be thresholded into “good” and “bad”
bases (although in practice the “good” bases are not guaran-
teed to be correct). The reads in R will be length-L sequences
from the alphabet $′ = {A, G, C, T, ε}, where ε corresponds
to an erasure. Thus, a read starting at position i from s can be
written as ri = (ri[0], . . . , ri[L−1]), where either ri[j] = s[i+j]
or ri[j] = ε, for 1 ≤ i ≤ G and 0 ≤ j ≤ L − 1. Notice that an
erasure is distinct from a deletion (which is more commonly
studied in the context of sequencing data) since the location
of an erasure is known due to the symbol ε.

In [24], we focused on the L-spectrum read model, or
the dense-read model. More precisely, R contained exactly
one length-L read from every position in s, and these reads
were corrupted by erasures in an adversarial manner. For a
fixed parameter D, the adversarial erasure model in [24] was
constrained as follows:
(a’) There are at most D erasures per read.
(b’) Each base s[t] is erased at most D times across all reads.

While the simplicity of this model made it analytically
tractable, the assumption of an even coverage depth across
the whole sequence is unrealistic. Hence in this work we move
away from this dense-read model and instead allow R to be
a set of N reads with arbitrary starting positions in s, with the
only constraint being that there is at least one read starting
in every W-length window.3 Thus, if we let R W

τ be the set of
reads with starting positions in s[τ ], s[τ +1], . . . , s[τ +W −1]
(R W

τ is not known by the assembler), we have |R W
τ | ≥ 1 for

3This is natural in the context of the standard Lander-Waterman prob-
abilistic model for sequencing, where a number of reads N = αNLW ≈
α(G/L) log(G/ϵ) implies the existence of at least one read starting in every
window of length L/α with probability 1−ϵ. As practical values of α may be
in the range 5 to 10, W can be thought of as a relatively small fraction of L.

Fig. 4. Illustration of adversarial model constraints given by (a) and (b).

τ = 1, 2, . . . , G. While constraint (a’) above translates to this
general model in a straightforward manner, we need a new
way to redefine constraint (b’). Hence we will define an addi-
tional parameter p ∈ (0, 1) (the erasure rate) and require that
the erasures satisfy the following constraints:

(a) There are at most pL erasures per read.
(b) Each base s[t] is erased in at most a fraction p of the

reads in R W
τ , for t − L < τ ≤ t − W + 1.

Notice that if t − L < τ ≤ t − W + 1, all reads in R W
τ cover

s[t] and (b) is well defined. For the L-spectrum read model
from [24], the constraints in (a) and (b) reduce to (a’) and
(b’) for W = L and p = D/L.

We point out that although the erasure model is adversarial,
the constraints imposed mimic a probabilistic erasure process,
where bases are erased with some probability p. Therefore,
if one assumes a standard probabilistic model where reads
are sampled independently and uniformly at random from the
genome and each base is erased independently with probabil-
ity p, this adversarial model can be shown to hold with high
probability as N → ∞ for a fixed W.

B. Maximum Reconstructible Support

We will focus on studying the support reconstruction
problem under the adversarial model given by (a) and (b). Thus
we are interested in assembling the support of the k-spectrum
from the set of erased reads R , for k as large as possible.
As DNA sequences tend to be highly repetitive and present
patterns that are difficult to model, we will once again take
a worst-case approach by considering a minimax formulation
of (A3). Let R(s, p, W) be the set of all possible sets of reads
R from s with erasures satisfying the adversarial constraints
(a) and (b). We will write R ⇒ supp(Sk) if the set of reads
R implies supp(Sk), in the sense that supp(Sk) is the only
possible support of the k-spectrum that is consistent with R
under the erasure model in (a) and (b). We are then interested
in characterizing the maximum reconstructible support

k⋆(p, W) = min
s, R ⊂R(s,p,W)

max{k : R ⇒ supp(Sk)}. (1)

In words, k⋆(p, W) is the largest k whose spectrum can
be unambiguously reconstructed for any sequence s from
adversarially corrupted set of reads. Intuitively, characterizing
k⋆(p, W) corresponds to devising an error-correction scheme
that takes the set of noisy reads R and attempts to construct a
set of “clean” reads of length k, one from each position in the
genome, for k as large as possible. The worst-case nature of
(1) guarantees that the devised error-correction scheme does
not exploit potentially unrealistic assumptions of probabilistic
models.
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As we describe in Appendix B, the following upper and
lower bounds hold:

min(L − W + 1, ⌈1/p⌉ − 1) ≤ k∗(p, W) ≤ L − W + 1. (2)

In particular, we point out that the lower bound ⌈1/p⌉ − 1
can be understood as representing the k-mer count approach
to error correction. Since 1/p is the average length of an error-
free segment, one can reconstruct the (⌈1/p⌉−1)-mer spectrum
of s by simply extracting all (⌈1/p⌉−1)-mers of all reads, and
keeping those with no errors.

While characterizing k∗(p, W) exactly in general is chal-
lenging, it is unclear how relevant this quantity is to the
assembly problem of real genomes, since considering the
worst-case sequence s can be too pessimistic. Ideally, we
would like to characterize (1) after we restrict s to be in a
large set that contains most real genomes, but is still amenable
to an analytical solution. We will show that by constraining
the set of sequences s to sequences that do not have too many
long approximate repeats, the upper bound of L − W + 1 is in
fact achievable.

C. Main Result

We derive a method for estimating the k-spectrum Sk based
on a test that decides, given the set of reads R , whether a given
k-mer should be included in the reconstruction Ŝk. This allows
us to achieve the upper bound in (2) under a mild restriction
on the possible sequences s. Hence, under this restriction, the
proposed method is worst-case optimal from the point of view
of obtaining the maximum reconstructible support (1).

Motivated by the results in [24], we will use the approxi-
mate repeat statistics in order to define this set of “allowed”
sequences in the maximum reconstructible support formula-
tion from Section II-B. For a set of segments U of a given
length ℓ; i.e., U ⊂ $ℓ, we define the radius of U to be

ρ(U) = min
x∈$ℓ

max
y∈U

dH(y, x), (3)

where dH(y, x) is the Hamming distance between y and x. We
will say that the segments in U are q-approximate copies if
ρ(U) ≤ qℓ. As illustrated in Fig. 5, if one were to plot Sℓ(s) as
points in the metric space $ℓ, the existence of several points
in close proximity, i.e., a large set U ⊂ Sℓ with a small radius
ρ(U) implies that s has more ambiguity in terms of assembly.
To capture that, we let Vs(r, ℓ) be the maximum number of
r-approximate length-ℓ segments in s; i.e.,

Vs(r, ℓ) ! max{|U| : U ⊂ Sℓ(s), ρ(U) ≤ r}. (4)

This quantity was used in [24] to characterize when the set
of reads R uniquely determines Sk, but under the assump-
tion of dense reads; i.e., R contains one read starting at each
position of s. More precisely, it is shown that if

L > k + D · Vs(D, k + 1), (5)

where D is the error parameter in the erasure model in (a’)
and (b’), then R uniquely determines the full spectrum Sk
(thus solving problem (A2) for this setting). In this work, we

Fig. 5. If we consider plotting Sℓ as points in $ℓ, Vs(r, ℓ) is the maximum
number of points that can be enclosed by a ball of radius r.

TABLE I
L = ℓCRIT AND W = 0.15L

depart from the assumption of dense reads and use (4) instead
to define our set of genomes of interest as

G(p, L, W) = {s : Vs(pL, L − W + 1) < 1/p}. (6)

In words, a sequence s is in G(p, L, W) if it contains less
than (1/p) pL-approximate repeats of length L − W + 1. As
we remarked in Section II-B, W should be thought of as a
small fraction of L, in which case requiring s ∈ G(p, L, W)

corresponds to requiring the number of approximate repeats at
a length close to L to not exceed 1/p. As shown in Table I, by
computing Vs(pL, L − W + 1) for several real genomes when
L = ℓcrit (the required read length for assembly from noiseless
reads) and W = 0.15L, we have Vs(pL, L − W + 1) ≤ 4,
which guarantees that s ∈ G(p, L, W) as long as the worst-case
erasure rate satisfies p < 1/4.

Our main result is the characterization of the maximum
recoverable support under this restriction to “reasonable”
genomes.

Theorem 3: For the adversarial erasure model in (a) and (b)
with p < 1/2, we have

k⋆
(
p, W, G

)
! min

s∈G(p,L,W),R ⊂R(s,p,W)
max{k : R ⇒ supp(Sk)}

= L − W + 1. (7)

The result in Theorem 3 states that, as long as s ∈ G , a set
of noisy reads satisfying (a) and (b) always allows the recon-
struction of the (L − W + 1)-spectrum. In other words, even if
the noise on the reads is adversarial and the sequence is the
worst case in the set G , one can still unambiguously obtain a
set of cleaned up reads of length L − W + 1. Therefore, the
effective loss in read length incurred by read errors is W in
the worst-case and, when W is a relatively small fraction of L
(which is a natural assumption when sequencing at a reason-
able coverage, as we argued before), this result supports the
message that noisy reads are essentially as good as noiseless
reads, first observed in [21].

To prove this result we will describe a technique to construct
an estimate of the k-spectrum Ŝk from the set of noisy reads R .
In the spirit of the approach in [21], this construction can
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Fig. 6. The 7-mer T C G G C G T A is (3, 2, 5)-typical.

be seen as a typicality-like test, which, nonetheless, does not
assume a specific probability distribution for the erasures or
for the underlying sequence s.

III. A WORST-CASE TYPICALITY TEST

In order to prove Theorem 3, we will introduce a test that
decides whether a k-mer is a true k-mer (i.e., a k-mer that
appears in s) by clustering similar reads satisfying certain
properties. In the flavor of [21], we can view this procedure as
a typicality test, where we check for a given k-mer x, whether
there are reads in R that look like typical outputs of passing
x through the erasure channel. However, since we are dealing
with the adversarial erasure model described in Section II-A,
the test can be thought of as a worst-case typicality test.

Definition 1: Given the set of reads R , a k-mer x ∈ $k

is (Dh, Dv, m)-typical if we can find k-mers x1, . . . , xm from
distinct reads in R satisfying

1) consistency: xi[t] = ε or xi[t] = x[t], for 1 ≤ i ≤ m
and 1 ≤ t ≤ k

2) horizontal constraint: |{t : xi[t] = ε}| ≤ Dh, for
1 ≤ i ≤ m

3) vertical constraint: |{i : xi[t] = ε}| ≤ Dv, for 1 ≤ t ≤ k
Notice that given the consistency property, the horizontal

constraint can also be written as dH(x, xi) ≤ Dh, where the
Hamming distance is defined over the extended alphabet $′.

In Fig. 6, we provide an example of a typical k-mer.
Intuitively, we would like to choose the parameters Dh (hor-
izontal error rate), Dv (vertical error rate), and m to generate
a test that is guaranteed to work under the worst-case model
given by (a) and (b). The main property that makes this notion
of typicality powerful is that, depending on the choice of
parameters and the approximate repeat statistics of s given by
Vs(·, ·), it has a no-false-positive guarantee. This is expressed
in the following theorem.

Theorem 4: Given a set of reads R , if x is a (Dh, Dv, m)-
typical k-mer and DvVs(Dh, k) < m, then x ∈ Sk.

Proof: Consider a (Dh, Dv, m)-typical k-mer x and the
k-mers x1, . . . , xm satisfying the properties in Definition 1.
Each of these k-mers (with erasures) must have originated
from some k-mer in s. Let S = {sk

t1, . . . , sk
tM } ⊂ Sk be the

length-k segments in s from which at least one of x1, . . . , xm
originated. Since dH(x, xi) ≤ Dh for i = 1, . . . , m, we
have dH(x, sk

i ) ≤ Dh for i = 1, . . . , M. This implies that
ρ({sk

t1, . . . , sk
tM }) ≤ Dh and hence M ≤ Vs(Dh, k). We will

show that we must have x = sk
ti for some i ∈ {1, . . . , M}.

Suppose by contradiction that x ̸= sk
ti for i = 1, . . . , m. Then

each sk
ti must differ from x in at least one position. Now parti-

tion the k-mers U = {x1, . . . , xm} into U1, . . . , UM according

to which length-k block sk
ti they originated from. All reads

from Ui must have an erasure in the position where x and sk
ti

differ. Since x is a (Dh, Dv, m)-typical k-mer, from the third
property in Definition 1, we must have |Ui| ≤ Dv. Since this
holds for i = 1, . . . , M, we have

|U| =
M∑

i=1

|Ui| ≤ MDv ≤ DvVs(Dh, k) < m,

which is a contradiction as |U| = m.
The requirement that DvVs(Dh, k) < m may be intuitively

understood if we rewrite it as Dv/m < 1/Vs(Dh, k). For many
real genomes, as shown in Table I, provided that k ≈ ℓcrit,
Vs(Dh, k) is a small number often no larger than 4. Since
Dv/m can be thought of as the erasure rate, we are essentially
requiring the erasure rate to be the reciprocal of the maxi-
mum number of approximate repeats. We say that Theorem 4
implies a no-false-positive property because of the following
direct consequence.

Corollary 1: If we have DvVs(Dh, k) < m, then the
k-spectrum assembler given by

Ŝk(Dh, Dv, m) !
{

x ∈ $k : x is (Dh, Dv, m)-typical
}

(8)

satisfies Ŝk(Dh, Dv, n) ⊂ Sk.
Furthermore, we point out that Theorem 4 and Corollary 1

are completely independent of the erasure model used. The
only constraint, namely that DvVs(Dh, k) < m, is just a func-
tion of the test parameters and of the sequence repeat statistics.
Hence, this result still holds in a probabilistic erasure model,
for instance. This fact will be explored later on, in Section IV.

Notice that through this typicality approach we cannot char-
acterize the multiplicity of each element in the multiset Sk
(i.e., Ŝk is a set, not a multiset). Hence, we can only hope for
Ŝk = supp(Sk).

Theorem 5: For any sequence s ∈ G(p, L, W) and set of
reads R satisfying the adversarial model in Section II-A,

⋃

m≥1

Ŝk(pL, pm, m) = supp(Sk). (9)

for any k ≤ L − W + 1.
Proof: First we notice that s ∈ G(p, L, W) implies pm ·

Vs(pL, k) < m for every m ≥ 1. Hence, from Corollary 1,
Ŝk(pL, pm, m) ⊂ supp(Sk) for m ≥ 1. Conversely, consider
an arbitrary k-mer sk

i from the sequence s. Now if we set
τ = i − W + 1, we will have t − L < τ ≤ t − W + 1 for
every t ∈ [i : i + k − 1]. Hence if we let m = |R W

τ |, among
the reads in R W

τ we have at most pm erasures for each base
in sk

i (see Fig. 7), implying that sk
i is (pL, pm, m)-typical for

m ≥ 1, and sk
t ∈ Ŝk(pL, pm, m). We conclude that supp(Sk) ⊂

∪m≥1Ŝk(pL, pm, m).
Theorem 3 now follows straightforwardly.
Proof of Theorem 3: The lower bound (achievability)

to k∗(p, W, G) follows from Theorem 5. Since for every
sequence s ∈ G(p, L, W) and R ∈ R, (9) provides a way
to unambiguously reconstruct supp(Sk) for k ≤ L − W + 1,
we must have L − W + 1 ≤ k⋆(p, W, G). By noticing that
the sequence used to derive the upper bound k⋆(p, W, G) ≤
L − W + 1 (see Appendix B) is in G(p, L, W) when p <

1/2, Theorem 3 follows.
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Fig. 7. Due to the k-mers in the dashed rectangle, the k-mer sk
i must be

(pL, pm, m)-typical for m = |R W
τ |.

Intuitively, reducing W corresponds to making the adversar-
ial model in (a) and (b) closer to a probabilistic i.i.d. model.
Hence, Theorem 5 suggests that in a probabilistic model one
should be able to reconstruct supp(SL−W+1) where L−W+1 ≈
L, as long as p < 1/Vs(pL, L − W + 1). Since we expect
Vs(pL, L−W +1) to be a small number for real genomes, this
result has a similar message to the one in [21]: up to a cer-
tain value of the error rate p, a typicality-type test can convert
noisy reads into noiseless reads that are almost as long as the
original reads.

IV. ANALYSIS UNDER A PROBABILISTIC MODEL

While the techniques in Section III were introduced with
the goal of characterizing the maximum reconstructible sup-
port of the spectrum in the worst-case setting described in
Section II-B, it can be seen as a general test to identify true
k-mers from a set of noisy reads R under any erasure model.
In particular, an important observation is that the no-false-
positive property stated in Corollary 1 is independent of the
erasure model described in Section II-A and holds under any
arbitrary erasure model. When the conditions (a) and (b) in
Section II-A are not satisfied everywhere, the spectrum recon-
struction in (9) may fail to contain the entire support but will
still satisfy ∪m≥1Ŝk(pL, pm, m) ⊂ supp(Sk(s)). Hence it can be
seen as a technique to generate an (error-free) subset of the
k-spectrum. It is then natural to consider the performance of
the approach introduced in Section III when applied to a prob-
abilistic setting where both the read locations and the erasures
are random.

For concreteness, let us consider the standard model where
N reads are sampled independently and uniformly at random
from the genome. Suppose the read errors are erasures that
occur independently with probability p. Due to Theorem 4,
and motivated by the spectrum assembler of Corollary 1, a
natural approach is to attempt to reconstruct the k-spectrum
by considering

⋃

m≥1

Ŝk(qL, qm, m) ⊂ supp(Sk(s)). (10)

The parameter q can be thought of as a fraction q > p that
we do not expect the rate of erasures to exceed. As long as
q · Vs(qk, k) < 1 (which is independent of the error model),
the above spectrum reconstruction approach is guaranteed by
Corollary 1 to generate a subset of supp(Sk). In fact, one can
do better by noticing that, for k′ > k, Vs(qk, k) ≤ Vs(qk′, k′),
and q · Vs(qk′, k′) < 1. Therefore, one can consider the set

R̃ k,q !
⋃

k′≥k

⋃

m≥1

Ŝk
(
qk′, qm, m

)
. (11)

of cleaned up k′-mers for different values of k′ ≥ k. As our
goal is to assemble s, we can view the (random) set R̃ k,q as
generating a set of error-free reads of variable lengths. The
problem of genome assembly from variable-length error-free
reads was studied in [18] and [25]. Sufficient conditions for
these algorithms to succeed were derived in [18] in terms
of “bridging” of repeats. Given the probabilistic model con-
sidered, one can compute the probability that R̃ k,q satisfies
these conditions, which would in turn guarantee that perfect
assembly can be achieved. By repeating this process for dif-
ferent values of the erasure probability p, we obtain the curves
in Fig. 3.

We notice that for both genomes considered, these suffi-
ciency curves are not very far from the error-free lower bound,
particularly in terms of the read length required. The coverage
depth requirement for this scheme, however, is larger than the
Lander-Waterman coverage that is sufficient in the error-free
case. Part of the reason for this discrepancy is our strict objec-
tive of perfect assembly. This requires the set of error-corrected
reads R̃ k,q to cover the entire genome, which in turn requires
the original set of reads R to cover the entire genome multiple
times. Alternatively, one can consider relaxing this require-
ment, and allowing the final assembly to contain erasures at
a rate no larger then p. One can then modify the scheme to
utilize, in addition to the error-free reads in R̃ k,q, the original
reads in R that did not contribute to any of the typical k′-mers
included in R̃ k,q to “fill in” the gaps of coverage. Such an
approach, although not technically achieving the original goal
of perfect assembly, has milder coverage depth requirements,
as shown in Fig. 8. In fact, one can show that the sufficiency
curves obtained under this modified setting have a horizontal
asymptote at 1 (i.e., the Lander-Waterman coverage) matching
the lower bound.

V. PRACTICAL CONSIDERATIONS

The typicality-based error-correction scheme described in
Section III is theoretical in nature, and its main goal is to allow
us to study fundamental limits of error correction, illustrated
by the curves in Fig. 8. As the error correction of sequencing
data is a problem of significant practical importance, several
remarks on the limitations of the model and the connections
with practical approaches are in order.

Real sequencing platforms generate reads that are suscepti-
ble to substitution errors, insertions and deletions. Therefore,
the erasure model considered in this paper is restrictive and
should be understood as a first step towards considering the
more challenging case of general error models. We point out
that the typicality-based nature of the test considered makes it
straightforward to generalize our error correction scheme. In
particular, Definition 1 would regard a k-mer x as (Dh, Dv, m)-
typical if we can find segments x1, . . . , xm (not necessarily of
length k) such that dE(x, xi) ≤ Dh, where dE(·, ·) refers to
the edit distance, and these segments can be aligned to x so
that each base in x is supported by at least m − Dv. However,
besides the computational obstacles imposed by such a defini-
tion, the no-false-positive property of 1 does not hold under
this generalization, and new techniques must be developed
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Fig. 8. Sufficiency curves when erasures at a rate p are allowed on the assembled sequence. Reads are assumed to be sampled independently and uniformly
at random, and erasures occur independently with probability p.

in order to carry out an analysis similar to the one in this
paper.

The error correction scheme proposed in Section III does
not lend itself easily to a computationally tractable approach.
In fact, a naive implementation would require one to consider
all 4k possible k-mers and, for each one, attempt to align reads
to it to verify the typicality conditions, leading to a O(4kN(L−
k)k) running time. However, the idea of considering one k-mer
at a time is clearly not practical and one should use the k-mers
in the reads themselves as potential typical k-mers. Notice that
if there are m k-mers x1, . . . , xm satisfying dH(x, xi) ≤ Dh
for i = 1, . . . , m, it follows that dH(xi, xj) ≤ 2Dh for i, j ∈
{1, . . . , m}. Therefore, a practical proxy for identifying typical
k-mers is to first cluster k-mers extracted from the reads to
identify sets of k-mers with pairwise distance at most 2Dh and
then only test the typicality of k-mers that are well supported
by the cluster (or near the cluster center). The computational
bottleneck to such an approach would lie in the identification
of pairs of k-mers within a fixed distance of each other. This
would in principle require a O(N2(L − k)2k) running time,
which is still impractical, but hashing-based techniques (such
as the locality-sensitive hash used in [15]) can be used to speed
up this process at the expense of a small loss in accuracy. We
also point out that, when viewed in this way, the approach
proposed in this paper resembles cluster-based error correction
schemes such as those studied in [7] and [8], except that it
uses the worst-case typicality test in Section III instead of a
test based on a statistical model for the sequence and the error
process to infer the set of cleaned-up k-mers.

VI. CONCLUSION

In this work, we investigate the problem of genome assem-
bly without making probabilistic assumptions about the under-
lying sequence and the noise process. Adopting an adversarial
erasure model, we propose a typicality-based algorithm for
correcting read errors which clusters k-mers with a “worst-
case typical” erasure pattern and then uses these clusters to
infer error-free reads of (potentially) shorter length. Under the
worst-case formulation considered, this approach is proved
to be optimal in the sense that it recovers the maximum
reconstructible support of the spectrum for the target sequence.

By leveraging our worst-case analysis for fixed maximum
erasure rates, we compute conditions on read length and cover-
age depth that are sufficient for perfect assembly of several real
genomes under a stochastic erasure model. When evaluated
for real genomes, we observe that the information-theoretic
requirements for perfect assembly do not vary significantly
due to the introduction of erasures. More specifically, the crit-
ical read length required for perfect assembly in the presence
of erasures, a parameter dictated by available technology, is
approximately the same as that required for perfect assembly
from error-free reads.

While this paper focused on reads with erasures, a direc-
tion for future work is to extend the techniques to the more
general case of substitution errors and indels. We point out
that the typicality-based nature of the test considered makes
it straightforward to generalize our error correction scheme.
However, when errors are no longer erasures, the no-false-
positive property of Corollary 1 does not hold, and thus the
error correction scheme can produce false reads. As a result,
a performance analysis of standard assembly algorithms such
as [18] and [23], which are designed for error-free reads, on the
resulting set of “almost” error-corrected reads is highly non-
trivial. Nevertheless, we conjecture that similar results will
hold for more general error modes.

APPENDIX A

FROM SPECTRUM RECONSTRUCTION

TO PERFECT ASSEMBLY

In this section, we describe in detail the critical lengths
ℓcrit(s) and ℓ̄crit(s), which guarantee that, from Sk and supp(Sk)

respectively, one can reconstruct the complete sequence s.
A repeat of length ℓ in s is a subsequence appearing twice

at some positions t1 and t2 (so sℓ
t1 = sℓ

t2 ) that is maximal; i.e.,
s[t1 − 1] ̸= s[t2 − 1] and s[t1 + ℓ] ̸= s[t2 + ℓ]. Two pairs of
repeats sℓ

a1
, sℓ

a2
and sk

b1
, sk

b2
are interleaved if a1 < b1 < a2 <

b2. Due to the circular DNA model, since a subsequence sℓ
t

can also be written as sℓ
t+mG for any integer m, we additionally

require that b2 − a1 < G. The length of a pair of interleaved
repeats sℓ

a1
, sℓ

a2
and sk

b1
, sk

b2
is defined to be min(ℓ, k). We let

ℓinter(s) be the length of the longest pair of interleaved repeats
in s.
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Fig. 9. Sequence s for which supp(SL−W+2) cannot be reconstructed
unambiguously.

A triple repeat of length ℓ in s is a subsequence appearing
three times at some positions t1 < t2 < t3 (so sℓ

t1 = sℓ
t2 = sℓ

t3 )
that is maximal; i.e., s[t1 − 1], s[t2 − 1] and s[t3 − 1] are not
all equal and s[t1 + ℓ], s[t2 + ℓ] and s[t3 + ℓ] are not all equal.
Notice that, for the circular DNA model we consider, we can
define three segments A = st2−t1

t1 , B = st3−t2
t2 and C = sG+t3−t1

t3 .
We will say that a triple repeat is transpose-invariant if A, B
and C are not all distinct. The reason for this terminology is
that, if A = B for instance, the circular sequences defined by
ABC and ACB are the same. We will let ℓtriple(s) be the length
of the longest triple repeat in s that is not transpose-invariant,
and ℓ̄triple(s) be the length of the longest triple repeat in s.
Clearly, ℓ̄triple(s) ≥ ℓtriple(s).

Finally, we define the two critical read lengths as

ℓcrit(s) = max
[
ℓinter(s), ℓtriple(s)

]

ℓ̄crit(s) = max
[
ℓinter(s), ℓ̄triple(s)

]
.

The first critical read length provides the guarantee for
when s can be unambiguously assembled from the complete
k-spectrum Sk. More precisely, results in [19] and [20] imply
the following:

Theorem 6: If k > ℓcrit(s), then s is the unique sequence
with k-spectrum Sk(s). Conversely, if k ≤ ℓcrit(s), there exists
a sequence s′ ̸= s for which Sk(s) = Sk(s′).

Similarly, the second critical read length provides a guar-
antee of reconstruction of s when we have the support of the
k-spectrum.

Theorem 7 [18]: If k > ℓ̄crit(s), the Multibridging algo-
rithm correctly assembles s from supp(Sk).

We point out that the distinction between these two notions
of the critical read length is often not very explicit in the
literature.

APPENDIX B

SIMPLE BOUNDS ON k∗(p, W)

A simple lower bound for k⋆(p, W) can be obtained by
noticing that if we look at ⌈1/p⌉ − 1 consecutive posi-
tions in s and ⌈1/p⌉ − 1 ≤ L − W + 1, (b) guarantees
that there will be one read where none of these positions
is erased. To see this, consider some segment s⌈1/p⌉−1

i and
the length-W window to its left, and suppose by contradic-
tion that all reads (say m) starting in this window have at
least one erasure in s⌈1/p⌉−1

i . By the pigeonhole principle,
at least one of the symbols in s⌈1/p⌉−1

i is erased at least
m/(⌈1/p⌉ − 1) > pm times, which contradicts (b). Hence,
we always have R ⇒ supp(S⌈1/p⌉−1), and

min(L − W + 1, ⌈1/p⌉ − 1) ≤ k∗(p, W).

On the other hand, the example in Fig. 9 shows that L−W +1
is an upper bound.

In the sequence s in Fig. 9, there are two segments (in blue)
which are identical except at two locations. If the gap between
these two locations has length L − W, it is not difficult to see
that in order to unambiguously reconstruct supp(SL−W+2), we
would need at least one read that covers both of the distin-
guishing bases. But this is equivalent to requiring a read to
have a starting position in a window of length W − 1. Since
in our model we just require that R W

τ ̸= ∅ it is possible that
no read will cover both of these positions. This implies that

k∗(p, W) ≤ L − W + 1.

We point out that while the example above may seem contrived
at first, long nearly-exact repeats that only differ in a few
spread out positions are common genomic patterns, and indeed
represent a bottleneck for error correction in practice.
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