

GCC(1) USER COMMANDS GCC(1)

GNU Tools 1993/10/13 96

gcc man page

NAME

gcc, g++ – GNU project C and C++ Compiler (v2.6)

SYNOPSIS

gcc

 [

option

|

filename

]...

g++

 [

option

|

filename

]...

WARNING

The information in this man page is an extract from the full documentation of the GNU C compiler, and is
limited to the meaning of the options.

This man page is not kept up to date except when volunteers want to maintain it. If you find a discrepancy
between the man page and the software, please check the Info file, which is the authoritative documentation.

If we find that the things in this man page that are out of date cause significant confusion or complaints, we
will stop distributing the man page. The alternative, updating the man page when we update the Info file, is
impossible because the rest of the work of maintaining GNU CC leaves us no time for that. The GNU project
regards man pages as obsolete and should not let them take time away from other things.

For complete and current documentation, refer to the Info file ‘

gcc’

or the manual

Using and Porting GNU
CC (for version 2.0).

Both are made from the Texinfo source file

gcc.texinfo

.

DESCRIPTION (edited for use in CS 9C and 9F)

The C and C++ compilers are integrated. Both process input files through one or more of four stages: pre-
processing, compilation, assembly, and linking. Source filename suffixes identify the source language, but
which name you use for the compiler governs default assumptions:

gcc

 assumes preprocessed (

.i

) files are C and assumes C style linking.

g++

assumes preprocessed (

.i

) files are C++ and assumes C++ style linking.

Suffixes of source file names indicate the language and kind of processing to be done:

.c

C source; preprocess, compile, assemble

.C

C++ source; preprocess, compile, assemble

.cc

C++ source; preprocess, compile, assemble

.cxx

C++ source; preprocess, compile, assemble

.m

Objective-C source; preprocess, compile, assemble

.i

preprocessed C; compile, assemble

.ii

preprocessed C++; compile, assemble

.s

Assembler source; assemble

.S

Assembler source; preprocess, assemble

.h

Preprocessor file; not usually named on command line

Files with other suffixes are passed to the linker. Common cases include:

.o

Object file

.a

Archive file

Linking is always the last stage unless you use one of the

–c

,

–S

, or

–E

 options to avoid it (or unless compi-
lation errors stop the whole process). For the link stage, all

.o

files corresponding to source files,

–l

 libraries,
unrecognized filenames (including named

.o

 object files and

.a

 archives) are passed to the linker in command-
line order.

OPTIONS

Options must be separate: ‘

–dr’

is quite different from

 ‘–d –r

 ’.

GCC(1) USER COMMANDS GCC(1)

GNU Tools 1993/10/13 97

Most ‘

–f’

and

 ‘–W’

options have two contrary forms:

–f

name

 and

–fno–

name

(or

–W

name

 and

–Wno–

name).

Only the non-default forms are shown here.

Here is a summary of all the options, grouped by type. Explanations are in the following sections.

Overall Options

–c –S –E –o

file

 –pipe –v –x

language

Language Options

–ansi –fall–virtual –fcond–mismatch –fdollars–in–identifiers –fenum–int–equiv
–fexternal-templates –fno–asm –fno–builtin –fno–strict–prototype –fsigned–bitfields –fsigned–char
–fthis–is–variable –funsigned–bitfields –funsigned–char –fwritable–strings –traditional
–traditional–cpp –trigraphs

Warning Options

–fsyntax–only –pedantic –pedantic–errors –w –W –Wall –Waggregate–return
–Wcast–align –Wcast–qual –Wchar–subscript –Wcomment –Wconversion –Wenum–clash
–Werror –Wformat –Wid–clash–

len

 –Wimplicit –Winline –Wmissing–prototypes
–Wmissing–declarations –Wnested–externs –Wno–import –Wparentheses –Wpointer–arith
–Wredundant–decls –Wreturn–type –Wshadow –Wstrict–prototypes –Wswitch
–Wtemplate–debugging –Wtraditional –Wtrigraphs –Wuninitialized –Wunused –Wwrite–strings

Debugging Options (edited for use in CS 9C and 9F)

–g –g

level

 –p –pg

Optimization Options (edited for use in CS 9C and 9F)

–O –O2

Preprocessor Options (edited for use in CS 9C and 9F)

–include

file

 –M –MD –MM –MMD

Assembler Option

–Wa,

option

Linker Options

–l

library

 –nostartfiles –nostdlib –static –shared –symbolic –Xlinker

option

 –Wl,

option

 –u

symbol

Directory Options

–B

prefix

 –I

dir

 –I– –L

dir

Target Options (see online man entry for information)

Configuration Dependent Options (see online man entry for information)

Code Generation Options (see online man entry for information)

OVERALL OPTIONS

–x

language

Specify explicitly the

language

for the following input files (rather than choosing a default based on
the file name suffix) . This option applies to all following input files until the next ‘

–x’ option.

Possible values of

language

are ‘

c’, ‘objective–c’, ‘c–header’, ‘c++’,

 ‘

cpp–output’, ‘assembler’,

and

 ‘assembler–with–cpp’.

–x none

Turn off any specification of a language, so that subsequent files are handled according to their file
name suffixes (as they are if ‘

–x’

 has not been used at all).

If you want only some of the four stages (preprocess, compile, assemble, link), you can use ‘

–x’

(or filename
suffixes) to tell

 gcc

where to start, and one of the options ‘

–c’, ‘–S’, or ‘–E’

to say where

gcc

is to stop. Note
that some combinations (for example, ‘

–x cpp–output –E’)

instruct

 gcc

to do nothing at all.

–c

 Compile or assemble the source files, but do not link. The compiler output is an object file
corresponding to each source file.

GCC(1) USER COMMANDS GCC(1)

GNU Tools 1993/10/13 98

By default, GCC makes the object file name for a source file by replacing the suffix ‘

.c’, ‘.i’, ‘.s’

,
etc., with ‘

.o’

. Use

–o

to select another name.

GCC ignores any unrecognized input files (those that do not require compilation or assembly) with
the

–c

 option.

–S

 Stop after the stage of compilation proper; do not assemble. The output is an assembler code file
for each non-assembler input file specified.

By default, GCC makes the assembler file name for a source file by replacing the suffix ‘

.c’, ‘.i’

,
etc., with ‘

.s’

. Use

–o

to select another name.

GCC ignores any input files that don’t require compilation.

–E

 Stop after the preprocessing stage; do not run the compiler proper. The output is preprocessed
source code, which is sent to the standard output.

GCC ignores input files which don’t require preprocessing.

–o

file

Place output in file

file.

This applies regardless to whatever sort of output GCC is producing,
whether it be an executable file, an object file, an assembler file or preprocessed C code.

Since only one output file can be specified, it does not make sense to use ‘

–o’

when compiling more
than one input file, unless you are producing an executable file as output.

If you do not specify ‘

–o’

, the default is to put an executable file in ‘

a.out’

, the object file for

‘

source

.

suffix’

in ‘

source

.o’

, its assembler file in

 ‘source.s’, and all preprocessed C source on
standard output.

–v Print (on standard error output) the commands executed to run the stages of compilation. Also print
the version number of the compiler driver program and of the preprocessor and the compiler proper.

–pipe Use pipes rather than temporary files for communication between the various stages of compilation.
This fails to work on some systems where the assembler cannot read from a pipe; but the GNU
assembler has no trouble.

LANGUAGE OPTIONS

The following options control the dialect of C that the compiler accepts:

–ansi Support all ANSI standard C programs.

This turns off certain features of GNU C that are incompatible with ANSI C, such as the asm, inline
and typeof keywords, and predefined macros such as unix and vax that identify the type of system
you are using. It also enables the undesirable and rarely used ANSI trigraph feature, and disallows
‘$’ as part of identifiers.

The alternate keywords __asm__, __extension__, __inline__ and __typeof__ continue to work
despite ‘–ansi’. You would not want to use them in an ANSI C program, of course, but it is useful
to put them in header files that might be included in compilations done with ‘–ansi’. Alternate
predefined macros such as __unix__ and __vax__ are also available, with or without ‘–ansi’.

The ‘–ansi’ option does not cause non-ANSI programs to be rejected gratuitously. For that,
‘–pedantic’ is required in addition to ‘–ansi’.

The preprocessor predefines a macro __STRICT_ANSI__ when you use the ‘–ansi’ option. Some

GCC(1) USER COMMANDS GCC(1)

GNU Tools 1993/10/13 99

header files may notice this macro and refrain from declaring certain functions or defining certain
macros that the ANSI standard doesn’t call for; this is to avoid interfering with any programs that
might use these names for other things.

–fno–asm
Do not recognize asm, inline or typeof as a keyword. These words may then be used as identifiers.
You can use __asm__, __inline__ and __typeof__ instead. ‘–ansi’ implies
‘–fno–asm’.

–fno–builtin
Don’t recognize built-in functions that do not begin with two leading underscores. Currently, the
functions affected include _exit, abort, abs, alloca, cos, exit, fabs, labs, memcmp, memcpy, sin,
sqrt, strcmp, strcpy, and strlen.

The ‘–ansi’ option prevents alloca and _exit from being builtin functions.

–fno–strict–prototype
Treat a function declaration with no arguments, such as ‘int foo ();’, as C would treat it—as saying
nothing about the number of arguments or their types (C++ only). Normally, such a declaration in
C++ means that the function foo takes no arguments.

–trigraphs
Support ANSI C trigraphs. The ‘–ansi’ option implies ‘–trigraphs’.

–traditional
Attempt to support some aspects of traditional C compilers. For details, see the GNU C Manual; the
duplicate list here has been deleted so that we won’t get complaints when it is out of date.

But one note about C++ programs only (not C). ‘–traditional’ has one additional effect for C++:
assignment to this is permitted. This is the same as the effect of ‘–fthis–is–variable’.

–traditional–cpp
Attempt to support some aspects of traditional C preprocessors. This includes the items that
specifically mention the preprocessor above, but none of the other effects of ‘–traditional’.

–fdollars–in–identifiers
Permit the use of ‘$’ in identifiers (C++ only). You can also use ‘–fno–dollars–in–identifiers’ to
explicitly prohibit use of ‘$’. (GNU C++ allows ‘$’ by default on some target systems but not
others.)

–fenum–int–equiv
Permit implicit conversion of int to enumeration types (C++ only). Normally GNU C++ allows
conversion of enum to int, but not the other way around.

–fexternal–templates
Produce smaller code for template declarations, by generating only a single copy of each template
function where it is defined (C++ only). To use this option successfully, you must also mark all files
that use templates with either ‘#pragma implementation’ (the definition) or ‘#pragma interface’
(declarations).

When your code is compiled with ‘–fexternal–templates’, all template instantiations are external.
You must arrange for all necessary instantiations to appear in the implementation file; you can do
this with a typedef that references each instantiation needed. Conversely, when you compile using
the default option ‘–fno–external–templates’, all template instantiations are explicitly internal.

–fall–virtual
Treat all possible member functions as virtual, implicitly. All member functions (except for
constructor functions and new or delete member operators) are treated as virtual functions of the
class where they appear.

GCC(1) USER COMMANDS GCC(1)

GNU Tools 1993/10/13 100

This does not mean that all calls to these member functions will be made through the internal table
of virtual functions. Under some circumstances, the compiler can determine that a call to a given
virtual function can be made directly; in these cases the calls are direct in any case.

–fcond–mismatch
Allow conditional expressions with mismatched types in the second and third arguments. The value
of such an expression is void.

–fthis–is–variable
Permit assignment to this (C++ only). The incorporation of user-defined free store management into
C++ has made assignment to ‘this’ an anachronism. Therefore, by default it is invalid to assign to
this within a class member function. However, for backwards compatibility, you can make it valid
with ‘–fthis-is-variable’.

–funsigned–char
Let the type char be unsigned, like unsigned char.

Each kind of machine has a default for what char should be. It is either like unsigned char by
default or like signed char by default.

Ideally, a portable program should always use signed char or unsigned char when it depends on
the signedness of an object. But many programs have been written to use plain char and expect it to
be signed, or expect it to be unsigned, depending on the machines they were written for. This option,
and its inverse, let you make such a program work with the opposite default.

The type char is always a distinct type from each of signed char and unsigned char, even though
its behavior is always just like one of those two.

–fsigned–char
Let the type char be signed, like signed char.

Note that this is equivalent to ‘–fno–unsigned–char’, which is the negative form of
‘–funsigned–char’. Likewise, ‘–fno–signed–char’ is equivalent to ‘–funsigned–char’.

–fsigned–bitfields

–funsigned–bitfields

–fno–signed–bitfields

–fno–unsigned–bitfields
These options control whether a bitfield is signed or unsigned, when declared with no explicit
‘signed’ or ‘unsigned’ qualifier. By default, such a bitfield is signed, because this is consistent: the
basic integer types such as int are signed types.

However, when you specify ‘–traditional’, bitfields are all unsigned no matter what.

–fwritable–strings
Store string constants in the writable data segment and don’t uniquize them. This is for compatibility
with old programs which assume they can write into string constants. ‘–traditional’ also has this
effect.

Writing into string constants is a very bad idea; ‘‘constants’’ should be constant.

PREPROCESSOR OPTIONS (edited for use in CS 9C and 9F)

These options control the C preprocessor, which is run on each C source file before actual compilation.

–includefile
Process file as input before processing the regular input file. In effect, the contents of file are
compiled first. All the ‘–include’ options are processed in the order in which they are written.

GCC(1) USER COMMANDS GCC(1)

GNU Tools 1993/10/13 101

–M[–MG]
Tell the preprocessor to output a rule suitable for make describing the dependencies of each object
file. For each source file, the preprocessor outputs one make-rule whose target is the object file
name for that source file and whose dependencies are all the files ‘#included in it. This rule may be
a single line or may be continued with ‘\’-newline if it is long. The list of rules is printed on standard
output instead of the preprocessed C program.

‘–M’ implies ‘–E’.

‘–MG’ says to treat missing header files as generated files and assume they live in the same directory
as the source file. It must be specified in addition to ‘–M’.

–MM [–MG]
Like ‘–M’ but the output mentions only the user header files included with ‘#include "file"’.
System header files included with ‘#include <file>’ are omitted.

–MD Like ‘–M’ but the dependency information is written to files with names made by replacing ‘.o’ with
‘.d’ at the end of the output file names. This is in addition to compiling the file as specified—‘–MD’
does not inhibit ordinary compilation the way ‘–M’ does.

–MMD Like ‘–MD’ except mention only user header files, not system header files.

ASSEMBLER OPTION (see online man entry for information)

LINKER OPTIONS

These options come into play when the compiler links object files into an executable output file. They are
meaningless if the compiler is not doing a link step.

object-file-name
A file name that does not end in a special recognized suffix is considered to name an object file or
library. (Object files are distinguished from libraries by the linker according to the file contents.) If
GCC does a link step, these object files are used as input to the linker.

–llibrary
Use the library named library when linking.

The linker searches a standard list of directories for the library, which is actually a file named
‘liblibrary.a’. The linker then uses this file as if it had been specified precisely by name.

The directories searched include several standard system directories plus any that you specify with
‘–L’.

Normally the files found this way are library files—archive files whose members are object files.
The linker handles an archive file by scanning through it for members which define symbols that
have so far been referenced but not defined. However, if the linker finds an ordinary object file
rather than a library, the object file is linked in the usual fashion. The only difference between using
an ‘–l’ option and specifying a file name is that ‘–l’ surrounds library with ‘lib’ and ‘.a’ and searches
several directories.

–lobjc
You need this special case of the –l option in order to link an Objective C program.

–nostartfiles
Do not use the standard system startup files when linking. The standard libraries are used normally.

–nostdlib
Don’t use the standard system libraries and startup files when linking. Only the files you specify will
be passed to the linker.

–static

GCC(1) USER COMMANDS GCC(1)

GNU Tools 1993/10/13 102

On systems that support dynamic linking, this prevents linking with the shared libraries. On other
systems, this option has no effect.

–shared
Produce a shared object which can then be linked with other objects to form an executable. Only a
few systems support this option.

–symbolic
Bind references to global symbols when building a shared object. Warn about any unresolved
references (unless overridden by the link editor option ‘–Xlinker –z –Xlinker defs). Only a few
systems support this option.

–Xlinkeroption
Pass option as an option to the linker. You can use this to supply system-specific linker options
which GNU CC does not know how to recognize.

If you want to pass an option that takes an argument, you must use ‘–Xlinker’ twice, once for the
option and once for the argument. For example, to pass ‘–assert definitions’, you must write
‘–Xlinker –assert –Xlinker definitions’. It does not work to write ‘–Xlinker "–assert
definitions"’, because this passes the entire string as a single argument, which is not what the linker
expects.

–Wl,option
Pass option as an option to the linker. If option contains commas, it is split into multiple options at
the commas.

–usymbol
Pretend the symbol symbol is undefined, to force linking of library modules to define it. You can
use ‘–u’ multiple times with different symbols to force loading of additional library modules.

DIRECTORY OPTIONS

These options specify directories to search for header files, for libraries and for parts of the compiler:

–Idir Append directory dir to the list of directories searched for include files.

–I– Any directories you specify with ‘–I’ options before the ‘–I–’ option are searched only for the case
of ‘#include "file"’; they are not searched for ‘#include <file>’.

If additional directories are specified with ‘–I’ options after the ‘–I–’, these directories are searched
for all ‘#include’ directives. (Ordinarily all ‘–I’ directories are used this way.)

In addition, the ‘–I–’ option inhibits the use of the current directory (where the current input file
came from) as the first search directory for ‘#include "file"’. There is no way to override this effect
of ‘–I–’. With ‘–I.’ you can specify searching the directory which was current when the compiler
was invoked. That is not exactly the same as what the preprocessor does by default, but it is often
satisfactory.

‘–I–’ does not inhibit the use of the standard system directories for header files. Thus, ‘–I–’ and ‘–
nostdinc’ are independent.

–Ldir Add directory dir to the list of directories to be searched for ‘–l’.

–Bprefix
This option specifies where to find the executables, libraries and data files of the compiler itself.

The compiler driver program runs one or more of the subprograms ‘cpp’, ‘cc1’ (or, for C++,
‘cc1plus’), ‘as’ and ‘ld’. It tries prefix as a prefix for each program it tries to run, both with and
without ‘machine/version/’.

GCC(1) USER COMMANDS GCC(1)

GNU Tools 1993/10/13 103

For each subprogram to be run, the compiler driver first tries the ‘–B’ prefix, if any. If that name is
not found, or if ‘–B’ was not specified, the driver tries two standard prefixes, which are ‘/usr/lib/
gcc/’ and ‘/usr/local/lib/gcc-lib/’. If neither of those results in a file name that is found, the compiler
driver searches for the unmodified program name, using the directories specified in your ‘PATH’
environment variable.

The run-time support file ‘libgcc.a’ is also searched for using the ‘–B’ prefix, if needed. If it is not
found there, the two standard prefixes above are tried, and that is all. The file is left out of the link
if it is not found by those means. Most of the time, on most machines, ‘libgcc.a’ is not actually
necessary.

You can get a similar result from the environment variable GCC_EXEC_PREFIX; if it is defined,
its value is used as a prefix in the same way. If both the ‘–B’ option and the GCC_EXEC_PREFIX
variable are present, the ‘–B’ option is used first and the environment variable value second.

WARNING OPTIONS

Warnings are diagnostic messages that report constructions which are not inherently erroneous but which are
risky or suggest there may have been an error.

These options control the amount and kinds of warnings produced by GNU CC:

–fsyntax–only
Check the code for syntax errors, but don’t emit any output.

–w Inhibit all warning messages.

–Wno–import
Inhibit warning messages about the use of #import.

–pedantic
Issue all the warnings demanded by strict ANSI standard C; reject all programs that use forbidden
extensions.

Valid ANSI standard C programs should compile properly with or without this option (though a rare
few will require ‘–ansi’). However, without this option, certain GNU extensions and traditional C
features are supported as well. With this option, they are rejected. There is no reason to use this
option; it exists only to satisfy pedants.

‘–pedantic’ does not cause warning messages for use of the alternate keywords whose names begin
and end with ‘__’. Pedantic warnings are also disabled in the expression that follows
__extension__. However, only system header files should use these escape routes; application
programs should avoid them.

–pedantic–errors
Like ‘–pedantic’, except that errors are produced rather than warnings.

–W Print extra warning messages for these events:

• A nonvolatile automatic variable might be changed by a call to longjmp. These warnings are
possible only in optimizing compilation.

The compiler sees only the calls to setjmp. It cannot know where longjmp will be called; in fact, a
signal handler could call it at any point in the code. As a result, you may get a warning even when
there is in fact no problem because longjmp cannot in fact be called at the place which would cause
a problem.

• A function can return either with or without a value. (Falling off the end of the function body is
considered returning without a value.) For example, this function would evoke such a warning:

GCC(1) USER COMMANDS GCC(1)

GNU Tools 1993/10/13 104

foo (a)
{
 if (a > 0)
 return a;
}

Spurious warnings can occur because GNU CC does not realize that certain functions (including
abort and longjmp) will never return.

• An expression-statement contains no side effects.

• An unsigned value is compared against zero with ‘>’ or ‘<=’.

–Wimplicit
Warn whenever a function or parameter is implicitly declared.

–Wreturn–type
Warn whenever a function is defined with a return-type that defaults to int. Also warn about any
return statement with no return-value in a function whose return-type is not void.

–Wunused
Warn whenever a local variable is unused aside from its declaration, whenever a function is declared
static but never defined, and whenever a statement computes a result that is explicitly not used.

–Wswitch
Warn whenever a switch statement has an index of enumeral type and lacks a case for one or more
of the named codes of that enumeration. (The presence of a default label prevents this warning.)
case labels outside the enumeration range also provoke warnings when this option is used.

–Wcomment
Warn whenever a comment-start sequence ‘/*’ appears in a comment.

–Wtrigraphs
Warn if any trigraphs are encountered (assuming they are enabled).

–Wformat
Check calls to printf and scanf, etc., to make sure that the arguments supplied have types
appropriate to the format string specified.

–Wchar–subscripts
Warn if an array subscript has type char. This is a common cause of error, as programmers often
forget that this type is signed on some machines.

–Wuninitialized
An automatic variable is used without first being initialized.

These warnings are possible only in optimizing compilation, because they require data flow
information that is computed only when optimizing. If you don’t specify ‘–O’, you simply won’t
get these warnings.

These warnings occur only for variables that are candidates for register allocation. Therefore, they
do not occur for a variable that is declared volatile, or whose address is taken, or whose size is other
than 1, 2, 4 or 8 bytes. Also, they do not occur for structures, unions or arrays, even when they are
in registers.

Note that there may be no warning about a variable that is used only to compute a value that itself is
never used, because such computations may be deleted by data flow analysis before the warnings
are printed.

These warnings are made optional because GNU CC is not smart enough to see all the reasons why

GCC(1) USER COMMANDS GCC(1)

GNU Tools 1993/10/13 105

the code might be correct despite appearing to have an error. Here is one example of how this can
happen:

{
 int x;
 switch (y)
 {
 case 1: x = 1;
 break;
 case 2: x = 4;
 break;
 case 3: x = 5;
 }
 foo (x);
}

If the value of y is always 1, 2 or 3, then x is always initialized, but GNU CC doesn’t know this.
Here is another common case:

{
 int save_y;
 if (change_y) save_y = y, y = new_y;
 ...
 if (change_y) y = save_y;
}

This has no bug because save_y is used only if it is set.

Some spurious warnings can be avoided if you declare as volatile all the functions you use that never
return.

–Wparentheses
Warn if parentheses are omitted in certain contexts.

–Wtemplate–debugging
When using templates in a C++ program, warn if debugging is not yet fully available (C++ only).

–Wall All of the above ‘–W’ options combined. These are all the options which pertain to usage that we
recommend avoiding and that we believe is easy to avoid, even in conjunction with macros.

The remaining ‘–W...’ options are not implied by ‘–Wall’ because they warn about constructions that we con-
sider reasonable to use, on occasion, in clean programs.

–Wtraditional
Warn about certain constructs that behave differently in traditional and ANSI C.

• Macro arguments occurring within string constants in the macro body. These would substitute the
argument in traditional C, but are part of the constant in ANSI C.

• A function declared external in one block and then used after the end of the block.

• A switch statement has an operand of type long.

–Wshadow
Warn whenever a local variable shadows another local variable.

–Wid–clash–len
Warn whenever two distinct identifiers match in the first len characters. This may help you prepare
a program that will compile with certain obsolete, brain-damaged compilers.

GCC(1) USER COMMANDS GCC(1)

GNU Tools 1993/10/13 106

–Wpointer–arith
Warn about anything that depends on the ‘‘size of’’ a function type or of void. GNU C assigns these
types a size of 1, for convenience in calculations with void * pointers and pointers to functions.

–Wcast–qual
Warn whenever a pointer is cast so as to remove a type qualifier from the target type. For example,
warn if a const char * is cast to an ordinary char *.

–Wcast–align
Warn whenever a pointer is cast such that the required alignment of the target is increased. For
example, warn if a char * is cast to an int * on machines where integers can only be accessed at two-
or four-byte boundaries.

–Wwrite–strings
Give string constants the type const char[length] so that copying the address of one into a non-const
char * pointer will get a warning. These warnings will help you find at compile time code that can
try to write into a string constant, but only if you have been very careful about using const in
declarations and prototypes. Otherwise, it will just be a nuisance; this is why we did not make
‘–Wall’ request these warnings.

–Wconversion
Warn if a prototype causes a type conversion that is different from what would happen to the same
argument in the absence of a prototype. This includes conversions of fixed point to floating and vice
versa, and conversions changing the width or signedness of a fixed point argument except when the
same as the default promotion.

–Waggregate–return
Warn if any functions that return structures or unions are defined or called. (In languages where you
can return an array, this also elicits a warning.)

–Wstrict–prototypes
Warn if a function is declared or defined without specifying the argument types. (An old-style
function definition is permitted without a warning if preceded by a declaration which specifies the
argument types.)

–Wmissing–prototypes
Warn if a global function is defined without a previous prototype declaration. This warning is issued
even if the definition itself provides a prototype. The aim is to detect global functions that fail to be
declared in header files.

–Wmissing–declarations
Warn if a global function is defined without a previous declaration. Do so even if the definition itself
provides a prototype. Use this option to detect global functions that are not declared in header files.

–Wredundant-decls
Warn if anything is declared more than once in the same scope, even in cases where multiple
declaration is valid and changes nothing.

–Wnested-externs
Warn if an extern declaration is encountered within an function.

–Wenum–clash
Warn about conversion between different enumeration types (C++ only).

–Woverloaded–virtual
(C++ only.) In a derived class, the definitions of virtual functions must match the type signature of
a virtual function declared in the base class. Use this option to request warnings when a derived class
declares a function that may be an erroneous attempt to define a virtual function: that is, warn when
a function with the same name as a virtual function in the base class, but with a type signature that
doesn’t match any virtual functions from the base class.

GCC(1) USER COMMANDS GCC(1)

GNU Tools 1993/10/13 107

–Winline
Warn if a function can not be inlined, and either it was declared as inline, or else the
–finline–functions option was given.

–Werror
Treat warnings as errors; abort compilation after any warning.

DEBUGGING OPTIONS (edited for use in CS 9C and 9F)

GNU CC has various special options that are used for debugging either your program or GCC:

–g Produce debugging information in the operating system’s native format (stabs, COFF, XCOFF, or
DWARF). GDB can work with this debugging information.

Unlike most other C compilers, GNU CC allows you to use ‘–g’ with ‘–O’. The shortcuts taken by
optimized code may occasionally produce surprising results: some variables you declared may not
exist at all; flow of control may briefly move where you did not expect it; some statements may not
be executed because they compute constant results or their values were already at hand; some
statements may execute in different places because they were moved out of loops.

Nevertheless it proves possible to debug optimized output. This makes it reasonable to use the
optimizer for programs that might have bugs.

–glevel Request debugging information and also use level to specify how much information. The default level
is 2.

Level 1 produces minimal information, enough for making backtraces in parts of the program that you don’t
plan to debug. This includes descriptions of functions and external variables, but no information about local
variables and no line numbers.

Level 3 includes extra information, such as all the macro definitions present in the program. Some debuggers
support macro expansion when you use ‘–g3’.

–p Generate extra code to write profile information suitable for the analysis program prof.

–pg Generate extra code to write profile information suitable for the analysis program gprof.

OPTIMIZATION OPTIONS (edited for use in CS 9C and 9F)

These options control various sorts of optimizations:

–O

–O1 Optimize. Optimizing compilation takes somewhat more time, and a lot more memory for a large
function.

Without ‘–O’, the compiler’s goal is to reduce the cost of compilation and to make debugging
produce the expected results. Statements are independent: if you stop the program with a breakpoint
between statements, you can then assign a new value to any variable or change the program counter
to any other statement in the function and get exactly the results you would expect from the source
code.

Without ‘–O’, only variables declared register are allocated in registers. The resulting compiled
code is a little worse than produced by PCC without ‘–O’.

With ‘–O’, the compiler tries to reduce code size and execution time.

–O2 Optimize even more. Nearly all supported optimizations that do not involve a space-speed tradeoff
are performed. Loop unrolling and function inlining are not done, for example. As compared to
–O, this option increases both compilation time and the performance of the generated code.

–O3 Optimize yet more.

GCC(1) USER COMMANDS GCC(1)

GNU Tools 1993/10/13 108

–O0 Do not optimize.

If you use multiple –O options, with or without level numbers, the last such option is the one that is
effective.

TARGET OPTIONS (see online man entry for information)

MACHINE DEPENDENT OPTIONS (see online man entry for information)

CODE GENERATION OPTIONS (see online man entry for information)

PRAGMAS

Two ‘#pragma’ directives are supported for GNU C++, to permit using the same header file for two purpos-
es: as a definition of interfaces to a given object class, and as the full definition of the contents of that object
class.

#pragma interface
(C++ only.) Use this directive in header files that define object classes, to save space in most of the
object files that use those classes. Normally, local copies of certain information (backup copies of
inline member functions, debugging information, and the internal tables that implement virtual
functions) must be kept in each object file that includes class definitions. You can use this pragma
to avoid such duplication. When a header file containing ‘#pragma interface’ is included in a
compilation, this auxiliary information will not be generated (unless the main input source file itself
uses ‘#pragma implementation’). Instead, the object files will contain references to be resolved at
link time.

#pragma implementation

#pragma implementation "objects.h"
(C++ only.) Use this pragma in a main input file, when you want full output from included header
files to be generated (and made globally visible). The included header file, in turn, should use
‘#pragma interface’. Backup copies of inline member functions, debugging information, and the
internal tables used to implement virtual functions are all generated in implementation files.

If you use ‘#pragma implementation’ with no argument, it applies to an include file with the same
basename as your source file; for example, in ‘allclass.cc’, ‘#pragma implementation’ by itself is
equivalent to ‘#pragma implementation "allclass.h"’. Use the string argument if you want a
single implementation file to include code from multiple header files.

There is no way to split up the contents of a single header file into multiple implementation files.

FILES

file.c C source file
file.h C header (preprocessor) file
file.i preprocessed C source file
file.C C++ source file
file.cc C++ source file
file.cxx C++ source file
file.m Objective-C source file
file.s assembly language file
file.o object file
a.out link edited output
TMPDIR/cc* temporary files
LIBDIR/cpp preprocessor
LIBDIR/cc1 compiler for C
LIBDIR/cc1plus compiler for C++
LIBDIR/collect linker front end needed on some machines
LIBDIR/libgcc.a GCC subroutine library

GCC(1) USER COMMANDS GCC(1)

GNU Tools 1993/10/13 109

/lib/crt[01n].o start-up routine
LIBDIR/ccrt0 additional start-up routine for C++
/lib/libc.a standard C library, see
intro(3)
/usr/include standard directory for #include files
LIBDIR/include standard gcc directory for #include files
LIBDIR/g++–include additional g++ directory for #include

LIBDIR is usually /usr/local/lib/machine/version.
TMPDIR comes from the environment variable TMPDIR (default /usr/tmp if available, else /tmp).

SEE ALSO

cpp(1), as(1), ld(1), gdb(1), adb(1), dbx(1), sdb(1).
‘gcc’,‘cpp’, ‘as’,‘ld’, and ‘gdb’ entries in info.
Using and Porting GNU CC (for version 2.0), Richard M. Stallman; The C Preprocessor, Richard M. Stall-
man; Debugging with GDB: the GNU Source-Level Debugger, Richard M. Stallman and Roland H. Pesch;
Using as: the GNU Assembler, Dean Elsner, Jay Fenlason & friends; ld: the GNU linker, Steve Chamberlain
and Roland Pesch.

BUGS

For instructions on reporting bugs, see the GCC manual.

COPYING

Copyright ! 1991, 1992, 1993 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice
and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verba-
tim copying, provided that the entire resulting derived work is distributed under the terms of a permission
notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the above
conditions for modified versions, except that this permission notice may be included in translations approved
by the Free Software Foundation instead of in the original English.

AUTHORS

See the GNU CC Manual for the contributors to GNU CC.

