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Suppose that (A, b) and (A, b) are controllable. Then system (18)
z{nd system (19) are linearly conjugate if the eigenvalues of A and
A are the same and the eigenvalues of A + bw! and A + bw/
are the same for each .

Proof: Let K = K(AT,b7) and K = K(AT,b”), which by
hypothesis are nonsingular. Using the transformations x = K7y,
and X = K7§, we get the following systems.

y=(K")TAKy
R f(WITKTvagKTY7 cowi KTy, - ')(KT)_lb
= ATyf (waTy,ngTy, cen ,wiTKTy, . ~)e1
y=(K")TAK"y
+ £ (WIK"y, wiKy, - WK g, ) KT) 7D

= ATy + f(WIRTS, WIKy, - WK G, Jer

where A is defined in (2). By Lemma 3 and the hypothesis, for
each 4, the vectors Kw; and Kw; are uniquely determined by the
eigenvalues of A and A +bw? and are thus equal to each other. l

IV. CONCLUSION

In this letter we showed how Lur’e type systems are linearly
conjugate whenever the scalar nonlinearities and certain sets of
eigenvalues are matched. Furthermore, two Lur’e type systems are
linearly conjugate if the equilibrium points are matched and the
eigenvalues of the Jacobian matrices are matched. This implies that
almost all continuous piecewise-linear vector fields with parallel
boundary planes are linearly conjugate if the boundary planes,
equilibrium points and eigenvalues in corresponding regions are
matched.

Note Added in Proof: Theorem 1 has also been proved in [5].
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On a Conjecture Regarding the Synchronization in
an Array of Linearly Coupled Dynamical Systems

Chai Wah Wu and Leon O. Chua

Abstract—In this letter, we give supporting evidence for a conjecture
regarding the amount of coupling needed to synchronize an array of
linearly coupled dynamical systems. Roughly speaking, the conjecture
says that the coupling needed to synchronize an array of coupled systems
is inversely proportional to the nonzero eigenvalue of the coupling graph
that is smallest in magnitude. The conjecture implies that the coupling
needed to synchronize an array can be derived from the coupling topology
and the coupling needed to synchronize two coupled dynamical systems.

I. INTRODUCTION

In [1], a sufficient condition for synchronization in an array
of linearly coupled identical dynamical systems is obtained. This
sufficient condition is related to the eigenvalues of the coupling
matrices. It was conjectured in [1] that the minimal coupling needed
also follows the same asymptotic behavior as the number of cells
goes to infinity. In this letter, we propose a more general and precise
statement of this conjecture and provide some evidence for it. Before
we state the conjecture, let us give some motivation using an example.

Consider m identical Chua’s oscillators connected in a chain (Fig.
1), where G. is the value of the coupling conductance. Calculating
G = Gmin, the minimum amount of coupling conductance needed
to completely synchronize the array, we find that G,.;, increases
with the number of Chua’s oscillators m. Fig. 2 shows the graph of
G versus m.

The graph corresponding to Fig. 1 is the path graph and has a
Laplacian matrix

1 =1

-1 1
The smallest nonzero eigenvalue of L is equal to 4 sin® (Z), which
we plot in Fig. 3. We notice that Fig. 3 is similar to Fig. 2. In fact, the
conjecture states that except for a constant factor, these two graphs

are identical. The purpose of this letter is to give supporting evidence
for this conjecture based on numerical simulations.

II. SYNCHRONIZATION IN AN ARRAY OF
LINEARLY COUPLED DYNAMICAL SYSTEMS

The general framework we consider is an array of coupled identical
systems, consisting of m cells, each cell being an n-dimensional
system:
f(xy,t)

: +a(Go®D)x (¢))
f(Xm, t)
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Fig. 1. An array of identical Chua’s oscillators arranged in a chain. G is

the conductance of the coupling resistors.
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Fig. 3. Smallest nonzero eigenvalue of L as a function of m.

where x = (Xl,...,xm)T,x,- ER"f:R" xR —- R, G is an
m X m real-valued matrix which depends on the coupling topeology
of the array, D is an n X n real-valued matrix and ® denoctes the
Kronecker product operator. The real scalar-valued parameter « is
used to change the coupling strength.

We propose the following conjecture for the coupling required for
synchronization:

Conjecture 1: - Consider two arrays of coupled systems of m, and
ms cells, respectively.

f(x1,1)

x = : +a (G ®D)x @
f(Ximy,t)
£(%1,1)

x= + oz (Gy @ D)% (3)
£(Kims» 1)

where Gy and G are m1 X m1 and mg X mo matrices, respectively,
(m1,m2 > 2) and oy, ap are real numbers. Assume that G; and
G2 are symmetric, have zero row sums, and contain only nonpositive

eigenvalues such that 0 is an eigenvalue of multiplicity 1. Let pq
and po be the least negative nonzero eigenvalues of G and Go,
respectively. Suppose w1 and po are related as follows:

1 X = pg X Q. €]

Then array (2) globally synchronizes’ if and only if array (3) globally
synchronizes. . ;

Another way to state this conjecture is that if array (2) globally
synchronizes for some a1, then array (3) globally synchronizes for
ay = ﬁy;’u Note that the assumptions on G1 and G- are satisfied
if G1 and Go are zero row sum matrices which are symmetric and
irreducible, and have nonnegative off-diagonal elements, as is the
case with many coupling configurations studied in the literature [2],
[31, 141, [1].

The implication of this conjecture is that synchronization in an
array of cells can be determined from the Synchronization in two
coupled cells. ,

The purpose of this paper is to give supporting evidence for this
conjecture when the cell is Chua’s oscillator. )

In order to deduce that the array of Chua’s oscillators is synchro-
nized, we pick a random initial condition, simulate the system for
some time in order for the transients to die down, then calculate the
synchronization error as defined by

ng m—1

(WEIT Do lixst) = xgaa (8)?

i=1 j=1

where £1,...%,, are times after the transient time. If the synchro-
nization error is smaller than some threshold ¢, then the array is
considered synchronized.

Using this criteria, we calculate the minimal coupling (by varying
«a in (1)) needed to synchronize the array, and if Conjecture 1 is
true, then these minimal coupling should be related by (4). In other
words, ¢ X « should be a constant, where « is the minimal coupling
coefficient needed to synchronize the array (1) and p is the nonzero
eigenvalue of the coupling matrix G that is smallest in magnitude.

In the simulations, we fix the following values for £ and D:

o\ (& (B~ h(w)
f(X,t):f (05} = CLQ(EJ'J_?—UZ—’—Z:;) (5)
i3 —%(’Uz -+ Roi:«;) ’
where x = (vl,vg,ig)T and
o = 10x10°°
Ca = 100 x 107°
L = 18x107° ;
R = 1600 (6
Ro = 90
h(vi) = —0.409 x 1030,
—0.1735 x 107*{Joy + 1| — |v; = 1]}
and / ‘
c% 0 0 )
D=0 0 0}. @)
0 0 0

We choose G for various 7 and various topologies and calculate
the corresponding values of ~i;.

1

ie., ||x; —x;|| — 0 ast — oo for all 7, 5 and all initial conditions.
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Fig. 4. ";}TX as a function of m for the path graph configuration.
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Fig. 5. —,%Q as a function of m for the ring graph configuration.

2.1 Path graph configuration
First we choose Chua’s oscillators arranged in a path graph (Fig.
1). The corresponding G is given by

-1 1

The simulation results are shown in Fig. 4.
We see that the value of — El'& is relatively constant as m is varied
and centers around 2300.

2.2 Ring graph configuration
The matrix G corresponding to Chua’s oscillator in a ring graph
configuration is given by:
-2 1 1

The simulation results are shown in Fig. 5

2.3 Star Graph Configuration

We denote K; ; as the bipartite graph with ¢ and j vertices in the
two partitions, respectively. We denote K. as the complete graph
of m vertices.
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Fig. 6. — ‘%a as a function of m for the star graph (&1, —1) configuration.

Next we choose Chua’s oscillators arranged in a star graph, or
K 1. The corresponding G is given by:

-m+1 1 | R |
1 -1
G = 1 -1
1 ..
1 -1

The simulation results are shown in Fig. 6.

2.4 Bipartitite Graph Configuration

In Fig. 7 simulation results are shown for Chua’s oscillators
arranged in the graph K|, 2| |m/2)+1 if m is odd and the graph
K\ /2,m/2 if m is even. The corresponding G is given by

G =

—|m/2] -1 1 1
’ 1 - 1
—|m/2] -1 1 1
1 1 —|m/2]
1 1
1 1 —lm/2)
when m is odd and G is given by
—m/2 1 1
’ . 1 1
- o -m/2 1 1
G= 1 1 —m/2
1 1
1 1 -m/2

when m is even.

2.5 Fully Connected Configuration

Next we choose Chua’s oscillators arranged in a fully connected
graph K,,. The corresponding matrix G is given by

-m+1 1 e 1

1 -m+1 1 - 1

G= 1 R | 1
1 e 1 —-m41

The simulation results are shown in Fig. 8.
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Fig. 9. Superposition of Figs. 4-8.

Superimposing the results above in Fig. 9, we see that the value of
- M% is relatively close to the constant value 2300 for the different
types of graphs considered.

In the previous cases —@G is the Laplacian matrix of a graph, i.e.,
it is symmetric, have zero-row sums and contains only 0 and —1 in
the off-diagonal elements [5]. Let us now consider more general G’s,

In particular, we generated G by picking the elements above
the main diagonal randomly and independently from a Gaussian
distribution with variance 1 and mean 1.5. We then set the other
elements such that G is symmetric and has zero row sums. The
results are shown in Fig. 10. We see that — HLQ is nearly constant, but
at a higher value that the previous simulation results.
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Fig. 10. —‘%a as a function of m for randomly chosen symmetric matrices
G.
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Fig. 11. _u% as a function of m for the unidirectional ring graph config-
uration. '

0. NONSYMMETRIC IRREDUCIBLE COUPLING MAfRIX G

In Conjecture 1, we require the coupling matrix G to be symmetric,
as is the case with the simulation results so far. Let us now look at
some cases where the matrix is irreducible but not symmetric and see
if the conclusion of the conjecture still holds. As the eigenvalues of
G can be complex now, we will choose —p to be the magnitude of
the nonzero eigenvalue of G with the smallest magnitude. \

3.1 Unidirectional Ring Configuration
In this configuration, the matrix G is given by ‘ N

-1 1

The simulation results are shown in Fig. 11. We notice that —-L

is nearly constant (except for the case m = 2), but the constant value
is lower than in the cases considered in. Section II.

3.2 Random Coupling Configuration

For this case, we generated G by picking the off-diagonal elements
randomly and independently from a Gaussian distribution with vari-
ance 1 and mean 1 and setting the diagonal elements such that G
has zero row sums. The results are shown in Fig. 12. We see larger
fluctuations in — ’%a but — }% still centers around some value.

o
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IV. CONCLUSION

Given the simulation results in Section II, we can estimate that an
array of Chua’s oscillators, coupled via linear resistors across the non-
linear resistors®, will synchronize if the coupling conductance G. is
larger than 1, where the parameters of Chua’s oscillator are given
by (5)—(6) and c is the algebraic connectivity3 of the corresponding
connectivity graph [5]. The value ﬁﬁ was found by finding the
minimal coupling conductance required to synchronize two coupled
Chua’s oscillators (for the given parameters) and multiplying it by
2, since 2 is the algebraic connectivity of the connected graph with
two vertices.

2This corresponds to D as given in (7) and G being symmetric. Fig. 1 is
an example of such coupling.

3The algebraic connectivity of a graph is defined as the smallest nonzero
eigenvalue of the corresponding Laplacian matrix.

g P! g Lap.

In general, we can conclude that the minimal coupling coefficient
«a follows the rule dictated by the conjecture fairly well, especially
when G is a symmetric matrix, has zero row sums and contains
only 0 and 1 in the off-diagonal elements. For more general G with
zero row sums, there is a larger fluctuation between the computed
and the predicted values. This case requires further research. The
conjecture allows us to predict the synchronization of an array
of cells based on the synchronization properties of two coupled
cells. We have only verified this conjecture using arrays of Chua’s
oscillators. It remains to be seen whether this conjecture is true in
general, for other types of systems and other types of linear coupling
(i.e., different' D). The motivation for this conjecture comes from
synchronization results obtained using a quadratic Lyapunov function.
The reason this conjecture is true for arrays of Chua’s oscillators
might depend on whether quadratic Lyapunov functions are optimal
or near-optimal for Chua’s oscillators. Further research is needed to
clarify this.
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