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ABSTRACT

In the present work a method has been
developed for the detection of chaotic responses
in microwave circuits. The new technique is
based on the use of commercial harmonic
balance software, which constitutes a major
advantage for microwave circuit designers. In
order to validate the new method, the bifurcation
loci of Chua’s chaotic circuit have been obtained
and successfully compared with time domain
simulations. The proposed method is readily
applicable to IMPATT, Gunn and tunnel diode
microwave oscillators.

INTRODUCTION

Chaos is an operating regime often found
in microwave circuits of autonomous nature,
such as oscillators and analog frequency
dividers, which is characterized by a sensitive
dependence on the initial conditions and a
continuous spectrum [1]. Due to the latter
characteristic, chaotic responses are associated
to an anomalous increase of the noise level in
the measured spectra. The prediction of these
undesirable responses at the simulation step of
the circuit design process is essential for MMIC
design in order to reduce development cycles
and lower manufacturing cost.
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At the time to analyze the chaotic
responses of microwave circuits, time domain
simulations will not generally be possible, due to
their long transients. On the other hand, the
spectrum continuity prevents the wuse of
frequency domain techniques, such as harmonic
balance (HB), for the simulation of the steady
chaotic solutions. When the main interest is the
prediction of chaotic responses, a good strategy
can be the detection of possible routes, or
bifurcation sequences, leading to chaos.

In the present paper, a HB technique is
proposed for the detection of chaotic behavior
through the homoclinic route [2], which is a
multi-harmonic  generalization of the one
presented by Genesio [3], and based on the use
of the description function. A new specific
technique has also been developed here in order
to easily analyze this route to chaos using HB
commercial software.

For a rigorous validation of the new
simulation method, the well known Chua’s
circuit [4] has been chosen, as it represents a
paradigm for the study of chaotic behavior. The
classic two-dimensional bifurcation diagram has
been traced from the HB commercial simulator
HP-MDS. The use of discrete linear elements
allowed a comparison with time domain
simulations, obtaining an excellent agreement.
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Fig.1 Chua’s oscillator, based on a cubic
nonlinearity. R=1.43Q, L=13.6pH, C,=10pF,
C,=0.1nF.
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HOMOCLINIC ROUTE TO CHAOS

The constant (DC) solutions of a
nonlinear circuit are given by the equilibrium
points (EP) of the nonlinear differential
equations, describing its behavior. For a saddle
equilibrium point, the eigenvalues of the
linearized circuit equations will have negative
and positive real parts [2], respectively
associated to its stable and unstable manifolds
(nonlinear equivalents of the eigenspaces).
Under some circumstances, the stable and
unstable manifolds may intersect [2]. Then a
trajectory leaving the equilibrium point through
the unstable manifold will return to it through
the stable one, giving rise to what is called a
homoclinic orbit.

The theorem of Shilnikov establishes a
relationship between the existence of homoclinic
orbits and the presence near them of a Smale
horseshoe [2] (stretching and folding of the
Poincare mapping [2]), that will give rise to
chaotic behavior. For a further modification of
the parameter the homoclinic orbit will be
destroyed, the solution period growing ad
infinitum. In nonlinear circuits homoclinic orbits
may form through the collision of a limit cycle
with a saddle equilibrium point as a parameter is
modified. The formation of this orbit is often
preceded by period doubling bifurcations [3],
[4].
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CHAOS DETECTION THROUGH
HARMONIC BALANCE

The new method is illustrated here by
means of its application to a Chua’s circuit, in
which the nonlinear resistor has a van der Pol
cubic characteristic (fig.1). In general, the
method directly applies to the circuits in which
the current-voltage characteristics are N-shaped
like Gunn, and Tunnel diode oscillators [5].
Chua’s circuit is commonly studied as a function
of two parameters:
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As these parameters vary different operating
modes may be obtained, ranging from DC stable

solutions to chaotic behavior.
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Fig.2 Determination of the autonomous circuit

equilibrium points.

In order to determine the equilibrium
points, a specific technique has been developed,
based on the connection of an auxiliary DC
source in parallel with the non-linearity. Then a
DC sweep is performed over a wide range of
voltage values. The equilibrium points will be
given by the voltages values for which the
current flowing through the DC source is equal
to zero. In Chua’s circuit three equilibrium
points are found through this technique (fig.2):



V=-15V,0V and 1.5 V, which agrees with
the theoretical results [4].

In a second step the periodic solution, i.e.
the limit cycle, existing for some particular
ranges, must be obtained. However, for circuits
with multiple equilibrium points, the standard
oscillation test in HB software can search for the
oscillation conditions around an equilibrium
point different from the one at which oscillations
start up. Such is the case of the circuit in fig.1,
for which the oscillation test failed to find a
solution, since it was systematically carried out
around the equilibrium point V = 0V. Actually
the oscillation starts up at the equilibrium points
V=1.5V or V=-1.5V, through a Hopf type
bifurcation. This difficulty is sorted out here by
means of a judicious voltage shift in the non-
linear function. Then the periodic solution is
correctly simulated (fig.3).

LV
N AN 4
- ~ - v EP=1.5V
— / /
£ N\ AN
i
o=
Frelquency =13.415|GHE
0]
Ous time 585.5ps

Fig.3 Free running oscillation around the
equilibrium point V=1.5V, for a=7.4 and p=15.

The third step is the determination of the
parameter values for frequency division by two.
The conditions are checked out around the
steady oscillation solution, obtained in the
former step, making use of the so-called probe
technique [6]. In the present case, two probes are
connected in parallel with the non-linearity. The
frequency and amplitude of probe 1 are
respectively set equal to the frequency ®, and
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first harmonic amplitude V, of the steady
oscillating solution, so this will not be perturbed.
Probe 2 operates at ,/2 having a neglecting
amplitude, which represents a small signal
perturbation at the divided frequency. Then the
conditions for the start up of the period-two
solution will be Im[Y(wy/2)] 0 and
Re[Y(04/2)] <0. To check for them, the phase of
probe 2 is swept from 0° to 180° representing
the resulting admittance in a polar graph. In
figure 4, the graphical prediction of a period-two
solution is depicted.
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Fig.4 Prediction of a period doubled solution for
0=9.09 and B=15.

Finally, the fourth step checks for the
existence of a homoclinic orbit, due to the
collision between the limit cycle and the
equilibrium point. As an example, figure 5
shows the particular moment at which this
interaction happens.

In fig.6 the complete bifurcation loci of
Chua’s circuit, as a function of o and B, have
been obtained through the proposed technique,
superimposing time domain simulations. The
good agreement confirms the validity of the new
method. The small discrepancies in the
prediction of the chaotic operation border come
from the fact that the limit cycle-equilibrium
point interaction has been calculated neglecting



the frequency division. To our knowledge this is
the first time that the bifurcation loci of Chua’s
circuit are obtained through harmonic balance
and, furthermore, using commercial software.
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Fig.5 Interaction between the limit cycle and the
equilibrium point V=0V, for a=9.7 and p=15
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Fig.6 Bifurcation diagram. Region (a) DC stable
solution. Region (b) free running oscillation.
Region (¢) period doubling.

CONCLUSION

In the present paper a new method is proposed
for the detection of the onset of chaos through
the harmonic balance technique. The method is
thus specially suitable for microwaves
frequencies, where time domain techniques are
often inapplicable. In addition the new method
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makes use of HB commercial software, with the
advantages of a great flexibility and an easy
utilization by microwave circuit designers.
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