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Abstract—Nonfeedback methods of chaos control are suited for practical applications because of their
speed, flexibility, no online monitoring and processing requirements. For applications where none, no real-
time, or only highly restricted measurements of the system are available, or where the system behavior is
to be altered more drastically, these schemes are quite useful. These methods convert the chaotic motion
to any arbitrary fixed point or periodic orbit or quasiperiodic orbit. These attributes make them promising
for controlling chaotic circuits, fast electro-optical systems, systems in which no parameter is accessible for
control, and so on. For possible practical applications of the control methods, the robustness of the
methods in the presence of noise is of special interest. The noise can be in the form of external disturbances
to the system or in the form of uncertainties due to inexact modelling of the system. In this paper, we make
an analysis of the control performance of various nonfeedback methods in controlling the chaotic behavior
in the presence of noise in the chaotic system. The various nonfeedback methods considered for the analysis
are: addition of (i) constant force, (ii) weak periodic force, (iii} periodic delta-pulses, (iv) rectangular-
pulses. The examples considered for this study are the Murali-Lakshmanan—Chua Circuit, and Duffing—
Ueda oscillator. © 1999 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

Controlling chaos is very important in many circumstances from the point of view of preventing
disaster and collapse in a dynamical system. In recent years, after the pioneering work of Ott,
Grebogi and Yorke (OGY) [1], controlling chaos has become more and more interesting in
academic research and practical applications. Chaos control algorithms can be broadly classified
into two categories: feedback and nonfeedback. Feedback methods [1-6] control chaos by
stabilizing a desired unstable periodic orbit embedded in a chaotic attractor by applying small
temporal perturbations to an accessible system parameter. The perturbation required is calculated
at every instance and is proportional to the difference between the actual state and the desired
state. In the nonfeedback methods [7-11] chaotic motion is suppressed by converting the system
dynamics to a periodic orbit. In this case, weak periodic perturbations are applied on some
control parameters or variables. No knowledge of the fixed points in phase-space is required.
Nonfeedback methods of chaos control are suited for practical applications because of their
speed, flexibility, no online monitoring and processing requirements. It is also suitable for
applications where none, no real-time, or only highly restricted measurements of the system are
available, or where the system behavior is to be altered more drastically. Besides we can convert
the chaotic motion to any periodic orbit. The nonfeedback methods include addition of constant
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force or bias [9], addition of weak periodic parametric perturbation [8], addition of second
periodic force [7], addition of weak periodic pulses, entrainment control [10], and addition of
quasiperiodic force [11]. Recently, various nonfeedback methods have been briefly discussed in
[12] for controlling chaos in the MLC circuit and control by entrainment in the FitzHugh—
Nagumo equation.

For possible practical applications of the control methods, the robustness of the methods in
the presence of noise is of special interest. The noise can be in the form of external disturbances
to the system or in the form of uncertainties due to inexact modelling of the system. Nitsche and
Dressler, in their earlier work [2], have investigated the robustness of the feedback control
methods, namely, the original method of OGY [1], and the two modified versions [2] of the OGY
method, in the presence of measurement noise. Recently, the effect of external noise in the form
of a Gaussian white noise with zero mean and standard deviation equal to one has been
investigated [13] in the study of generalized synchronization of chaos using symbolic analysis
technique.

This paper investigates the control performance of the nonfeedback methods in controlling
chaos in the presence of random noise in the system. We have considered the control schemes
for two dissipative, non-autonomous systems, viz., Murali-Lakshmanan-Chua (MLC) circuit
[9, 12] and Duffing—Ueda oscillator [14]. The noise is introduced into the system equations in the
form of a random noise signal given by &n into the system equations, where ¢ is a parameter
specifying the intensity of the noise and # is a random variable chosen to be uniformly distributed
in the interval [— 1, 1]. The noise is input at each integral step.

This paper is organized as follows: In Section 2, we consider the addition of constant bias or
force to MLC equation and Duffing-Ueda equation and investigate the control performance in
the presence of random noise in the systems. In Section 3, we study the control performance in
the presence of noise in the two systems when the control is effected by the addition of weak
periodic force. Section 4 considers the control performance in the presence of noise in the systems
when the control is effected by the addition of periodic pulses, and also when periodic short-
width rectangular force is applied to the system. Finally, summary and conclusions are given in
Section 5.

2. CONTROL PERFORMANCE IN THE PRESENCE OF NOISE WHEN CONTROL IS
EFFECTED BY ADDITION OF CONSTANT BIAS OR FORCE TO A CHAOTIC SYSTEM

2.1. MLC Circuit

The MLC circuit shown in Fig. 1 [12] is the simplest dissipative non-autonomous chaotic
nonlinear circuit. It consists of a linear capacitor (C), a linear inductor (L), a linear resistor (R)
and a nonlinear Chua’s diode (N) and an external periodic forcing source. The mathematical
model for this circuit is [9]

&

at =i, —g(v) (H
diy : :

La— = —Ri, —v+fsin(Q¢) 2)

where f'is the amplitude, Q is the frequency of the external periodic signal, v is the voltage and i,
is the current through the inductor and g(») represents the v—i characteristic of the Chua’s diode
and is given by [9]
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Fig. 1. Circuit diagram of the MLC circuit: R=1360 Q, L=18mH, C=10nF and the frequency of the external force
=8890 Hz.
9(@)=Gw+0.5(G,— Gy)(Jv+ By| —[v— B, |) 3

where G,, G, and B, are diode constants. By introducing rescaled variables and parameters, the
above equations can be written in dimensionless form as [9]

x=y—g(x) (4)
y= —oy—fx+ Fsin(ws) 5

where
gx)=bx+0.5(a=>b)[|x+1|—|x—1]] (6)

and g, 8, a and b are rescaled circuit parameters of egs. (1-2).

Chaotic behavior is found in the circuit for the specific choice [9] of the parameters C= 10 nf,
L=18mH, R=1360 ohm, G,= —0.76ms, G,= —0.41 ms, B,= 1.0V, external forcing frequency
Q/2n=8890 Hz and f=0.107 V.. For these parameters, the values of B, 6, », F, a and b in eqs.
(4-6) are calculated as [9] 1.0, 1.015, 0.75, 0.15, —1.02, and —0.55 respectively.

The bifurcation diagram is shown in Fig. 2(a) with F as a bifurcation parameter which shows
a period-doubling route to chaos. For the above parameter values, upon numerical integration
of egs. (4-5), a double scroll attractor is found to occur which is shown in Fig. 2(b).
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Fig. 2. (a) Bifurcation diagram of eqns. (4-5) as a function of F. (b). Chaotic attractor of eqns. (4-5) for o=1.015,
p=1.0,w=0.75 F=0.15,a= —1.02, b= —0.55.
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Fig. 3. (a) Bifurcation diagram of eqns. (7-8) in the presence of constant bias E, £=0. (b). Maximal Lyapunov exponent
of eqns. (7-8) in the presence of constant bias E, ¢=0.
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Fig. 3(c). The controlled period-17 attractor of eqns. (7-8) for E=0.04, £=0.

Now a constant bias voltage source and random noise are added in series with the periodic
signal f{(¢). In the presence of the bias element and the random noise, egs. (4-5) become

X=y—g(x) (N
y= —ay—pfx+ Fsin(w)+E+en (8)

where E is the constant bias. Here & is the noise term where ¢ is a parameter specifying the
intensity of the noise and 7 is a random variable chosen to be uniformly distributed in the interval
[—1, 1]. Equations (7) and (8) are numerically integrated using the fourth-order Runge-Kutta
method with a time step of At= T/100, where 7= 2n/w. Figure 3(a) shows the bifurcation diagram
of eqs. (7-8) with E as the bifurcation parameter and without noise in the system (¢=0). It
shows the suppression of chaos by inverse period-doubling bifurcation. Figure 3(b) shows the
corresponding maximal Lyapunov exponent spectrum. Periodic behavior is found for £20.023.
The controlled period-1T orbit for £=0.04 and without noise is shown in the x—y phase plane
in Fig. 3(c).

The control performance in the presence of noise is studied for £=0.04 by varying the noise
intensity. The noise is added at every time step from time #=0. The control is activated at 200"
drive cycle. The Poincaré points of x at each drive cycle is plotted for different noise intensities
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in Fig. 4. After the control is activated, if the deviation of the points in the Poincaré section in
the presence of noise in the system from the points in the Poincaré section without noise in the
system exceeds a radius of {=0.5, the system is assumed to be out of control. This criterion for
robustness of the control methods in the presence of noise has been followed throughout this
paper. Thus for a noise intensity £ > 0.2 the MLC system loses control when the control is effected
by the addition of constant bias as shown in Fig. 4(i).

2.2. Duffing—Ueda oscillator

The equation of motion for a Duffing—Ueda oscillator is given by [14]

J=ap+y* + A cos(wi) 9)

In state space form eqn (9) can be written as
X, =X, (10)
X, = —ax, —xi + A cos{wf) (11)

where a=0.1 and @ =1.0. The bifurcation diagram of this model is shown in Fig. 5 with 4 as a
bifurcation parameter. We consider the case of 4=11.5 for which the chaotic attractor is shown
in Fig. 6.

Now a constant force and random noise term are added to eqn (11) to study the influence of
noise on the control performance. Thus eqns. (10-11) become

X=X, (12)
X, = —ax, —x; +Acos(wt)+F+en (13)

where F is the constant forcing term and ey is the noise term where ¢ is a parameter specifying
the intensity of the noise and # is a random variable chosen to be uniformly distributed in the
interval [— 1, 1].

Equations (12) and (13) are numerically integrated using fourth-order Runge-Kutta method
with a time step of Ar=7/200, where T'=2n/w. Bifurcation diagram of eqns. (12) and (13) with
F as a bifurcation parameter and ¢=0 is shown in Fig. 7. Periodic motions are found to exist for
2.1<F<2.52 and F>3.1. The controlled period-17 orbit for F=4.0 and ¢=0 is shown in Fig.
8. We now add noise to the system from time +=0 with different values of noise intensity ¢
ranging from 0.0 to 0.5. The control is activated at 200" drive cycle. The plot of Poincaré points
are shown for the variable x; with different values of noise intensity & for 500 drive cycles in Fig.
9. It is found that the control is lost ({ >0.5) for noise intensity £0.5.

3. ADDITION OF WEAK-PERIODIC FORCE AND INFLUENCE OF RANDOM NOISE
3.1. MLC Circuit
With the addition of a second weak-periodic force and random noise term the MLC circuit
eqns. (4-5) become
X=y—g(x) (14)
y=—0oy—px+ Fsin(wf)+ F, sin(w,f) +en (15)

where F, sin(w,¢) is the weak-periodic force and ¢ is the random noise term where ¢ is a parameter
specifying the intensity of the noise and # is a random variable chosen to be uniformly distributed
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Fig. 4. Poincaré points of x of eqns. (7-8) for £=0.04 (a) without noise; and with noise of intensity (b) 0.01, (c) 0.05,
(d) 0.06, (e) 0.07, (£) 0.08, (g) 0.09, (h) 0.1, (i) 0.2, (j} 0.3, (k) 0.5. The control is switched on at time period =200.
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Fig. 5. Bifurcation diagram of eqns. (10) and (11) with A4 as a bifurcation parameter (x=0.1, w=1.0).
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Fig. 6. Chaotic attractor of eqns. (10) and (11) for a=0.1, w=1.0and 4=11.5.
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Fig. 7. Bifurcation diagram of eqns. (12-13) in the presence of constant force F (¢=0).

in the interval [—1, 1]. For 6 =1.015, §=1.0, F=0.15, »=0.75, 0,=0.75, a= —1.02, b= —0.55
and e=0, the bifurcation diagram is shown in Fig. 10(a) with F, as the bifurcation parameter.
The corresponding maximal Lyapunov spectrum is shown in Fig. 10(b).
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Fig. 8. The controlled period-17 orbit of eqns. (12-13) for F=4.0 and ¢=0.

Periodic behavior with period-37 is observed for F,>0.03. The controlled period-37T attractor
for F,=0.06 is shown in Fig. 10(c).

Random noise is added to the system from time =0 with different noise intensity &. The
control is activated at the 200" drive cycle. The plot of Poincaré points of the dynamical variable
x at each drive cycle is shown in Fig. 11 for 500 drive cycles with noise intensity ranging from
0.0 to 0.1. The control is found to be lost ({>0.5) for noise intensity of ¢>0.07 as seen in Fig.

11(1).

3.2. Duffing—Ueda Oscillator

In the presence of a second weak-periodic force and random noise term the Duffing-Ueda
eqns. (10) and (11) become

X)=x; (16)
X, = —ax, —xj + A cos(wi) + A, cos(w, 1) +en (17)

where A, cos(w.t) is the weak-periodic control force and e is the random noise term where ¢ is
a parameter specifying the intensity of the noise and # is a random variable chosen to be uniformly
distributed in the interval [—1, 1]. For a=0.1, =1, 4=11.5, w.=3.0, ¢=0 the bifurcation
diagram of eqns. (16) and (17) with A, as the bifurcation parameter is shown in Fig. 12(a).
Periodic motions are found for 0.2<4,<0.9 and 1.06< 4,<1.43 for w.=3.0. The controlled
period-2T attractor for 4,=1.2, e=0 and w.=3.0 is shown in Fig. 12(b). Here T=2n/w.

Now the control performance is investigated by adding noise of different intensity from time
t=0. Equations (16) and (17) are numerically integrated and the plot of Poincaré points of x, is
shown in Fig. 13 for different intensity of noise for 4, =1.2 and w,=3.0. The control is activated
from the 200" drive cycle. The control is lost ({ >0.5) for noise intensity £>0.2 as can be seen in
Fig. 13(e).

4. ADDITION OF WEAK PERIODIC DELTA-PULSES, RECTANGULAR PULSES AND
INFLUENCE OF RANDOM NOISE

4.1. Addition of weak periodic delta-pulses and influence of random noise in MLC circuit

In this case the external control perturbations are applied at discrete times only. With the
addition of delta-pulses and random noise term eqns. (4) and (5) become
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Fig. 9. Poincaré points of x, of eqns. (12-13) for F=4.0 (a) without noise; and with noise of intensity (b) 0.05, (c) 0.06,
(d) 0.1, (e) 0.2, (f) 0.3, (g) 0.4, (h) 0.5. The control is switched on at time period = 200.

X=y—g(x) (18)
y= —ay—ﬂx-+—Fsin(wt)+cxi5(!——an)+£n (19)

where ¢ is the random noise term, ¢ is a parameter specifying the intensity of the noise and 7 is
a random variable chosen to be uniformly distributed in the interval [— I, 1]. The added force is
nonzero only at times t=ntT, n=1,2,. where T=2n/w. The effect of the force is to shift (x, y) to
(x, y+a) at t=ntT. Chaotic motion is observed in eqns. (18) and (19) for 6=1.015, f=1.0, a=
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Fig. 10. (a) Bifurcation diagram of eqns. (14) and (15) in the presence of weak periodic force for a=1.015, f=1.0,
F=0.15, 0=0.75, @,=0.75, a= —1.02, b= —0.55 and £=0. (b). Maximal Lyapunov exponent spectrum of eqns. (14)
and (15) in the presence of weak periodic force for ¢ =1.015, §=1.0, F=0.15, ©=0.75, 0,=0.75, a= —1.02, b= —0.55
and £=0. (c). The controlled period-3T attractor of eqns. (14) and (15) for F,=0.06, £¢=0.

—1.02, 5= —0.55, ®=0.75 and F=0.1 in the absence of the J-force and random noise. Fixing t
at 0.25, the bifurcation diagram of eqns. (18) and (19) are obtained as a function of a without
noise (¢=0) as shown in Fig. 14(a). With t=0.25, periodic motions are observed for o> 0.08.
The controlled period-2T attractor for «=0.15, t=0.25, ¢=0, is shown in Fig. 14(b) in the x—y
phase-plane.

Random noise is added as shown in eqns. (18) and (19) from time =0 at every time step and
the numerical integration is performed. For different values of noise intensity ¢, the Poincaré
points of the dynamical variable x are plotted for 500 drive cycles as shown in Fig. 15. The
control is activated at the 200" drive cycle. The system loses control ({>0.5) for noise intensity
£¢>0.02 as seen in Fig. 15(e).

4.2. Addition of weak periodic delta-pulses and influence of random noise in Duffing—Ueda oscillator

No effective chaos control is observed for a< 12.0 for 0.005<7<1.0.

4.3. Addition of periodic rectangular-pulses and influence of random noise in MLC circuit

Replacing the delta function force in eqns. (18) and (19) by a rectangular force of short width
h(?), we get

X=y—g(x) (20)

P= —oy—Px+Fsin(wt) +h()+en 21

where h(t)=x, for 0<+<0.027, 0.487<¢<0.52T and 0.987<¢< 7, with t mod 7. Otherwise
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Fig. 11. Poincaré points of x of eqns. (14) and (15) for F,=0.06 (a) without noise, and with noise of intensity (b) 0.01,
() 0.05, (d) 0.06, (e) 0.07, (f) 0.08, (g) 0.09, (h) 0.1. The control is switched on at time period =200.

h(1)=0. en is the random noise term where ¢ is a parameter specifying the intensity of the noise
and 7 is a random variable chosen to be uniformly distributed in the interval [—1, 1].

Foro=1.015, =1.0,a= —1.02, b= —0.55, ©=0.75, F=0.1, ¢=0, the bifurcation diagram
of eqns. (20-21) are plotted as a function of x as shown in Fig. 16(a). Periodic motion is found
to occur for «>0.025. The controlled period-2T attractor for x=0.2, e=0, is shown in Fig. 16(b).

The Poincaré points of the variable x are plotted for different intensities of noise which is
added to the system from time 7=0. The control is activated at the 1500"™ drive cycle. Figure 17
shows the Poincaré plots for 2500 drive cycles. The system loses control ({>0.5) for noise

intensity £¢>0.03 as seen in Fig. 17(e).
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Fig. 12. (a) Bifurcation diagram of eqns. (16) and (17) with 4, as the bifurcation parameter for x=0.1, w=1, A=11.5,
w.=3.0,e=0. (b). The controlled period-2T attractor of eqns. (16) and (17) fora=0.1, w=1, A=11.5, 4,=1.2, v,=3.0,
e=0.

4.4. Addition of weak periodic rectangular-pulses and influence of random noise in Duffing-Ueda
oscillator

In the presence of rectangular pulses and random noise eqns. (10) and (11) become
X=X, (22)
X= —ox, —x;+ Acos(w?) +h(t)+en (23)

where h(t)=f, for 0<t <0.027, 0487 <r<0.52T and 0.987 <:< T, with r mod T. Otherwise
h(t)=0. ey is the random noise term where ¢ is a parameter specifying the intensity of the noise
and # is a random variable chosen to be uniformly distributed in the interval [—1, 1].

Fora=0.1, 4=11.5, w=1.0, e=0, the bifurcation diagram of eqns. (22) and (23) are obtained
as a function of f as shown in Fig. 18(a). The controlled period-1T7 attractor of Duffing-Ueda
eqns. (22) and (23) in the presence of rectangular pulses for #=11.0 is shown in Fig. 18(b).

By adding the random noise term with different intensities from time /=0 and numerically
integrating eqs. (22) and (23) we get the Poincaré plots of the dynamical variable x, as shown in
Fig. 19. Here the control is activated from the 100® drive cycle. Long control transients are
observed for noise intensities of 0.03, 0.05, 0.09 and 0.1. The control is lost ({>0.5) for ¢ 0.2.

5. CONCLUSIONS

In this paper, we have investigated the effectiveness of the various nonfeedback methods in
controlling noisy chaotic systems. For illustration purpose, we have considered a chaotic non-
linear electrical circuit, viz., MLC circuit and a chaotic nonlinear mechanical oscillator, viz.,
Duffing-Ueda oscillator. It is found that the constant force method is more robust in controlling
the two noisy chaotic systems considered when compared to the other three methods of control.
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Fig. 13. Poincare points of x; of eqns. (16) and (17) for 4,=1.2, w.=3.0 (a) without noise, and with noise of intensity

(b) 0.01, () 0.05, (d) 0.1, (e) 0.02, (f) 0.3. The control is switched on at time period = 200.
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p=1.0,a= —1.02, b= —0.55, ®=0.75 and F=0.1. (b). The controlled period-2T attractor of eqns. (18) and (19) for

a=0.15,1=0.25¢=0.
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Fig. 15. Poincare points of x of eqns. (18) and (19) for 2 =0.15, t=0.25 (a) without noise, and with noise of intensity (b)
5.0% 1073, (c) 0.01, (d) 0.02, () 0.03. The control is switched on at time period =200.
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Fig. 16. (a) Bifurcation diagram of eqns. (20) and (21) in the presence of rectangular pulses for 6=1.015, =1.0, a=
—1.02,b= —0.55, 0=0.75, F=0.1, e=0 with « as the bifurcation parameter. (b). Controlled period-2T attractor of the
MLC circuit with addition of rectangular force for a=0.2, e=0.
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Fig. 17. Poincaré points of x of the MLC circuit with rectangular force (¢=0.2) (a) without noise, and with noise of
intensity (b) 0.005, (c) 0.01, (d) 0.02, (e) 0.03. The control is switched on at 1500™ drive cycle.
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Fig. 18. (a) Bifurcation diagram of eqns. (22) and (23) in the presence of rectangular pulses for x=0.1, A=11.5, w=1.0,
e=0 with f as the bifurcation parameter. (b). The controlled period-1T attractor of eqns. (22) and (23) in the presence
of rectangular pulses for §=11.0, §=0.
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Fig. 19. Poincaré points of x, of Duffing-Ueda oscillator with rectangular pulse (8=11.0) (a) without noise, and with
noise of intensity (b) 0.01, (c) 0.03, (d) 0.05, (e) 0.07, () 0.09, (g) 0.1, (h) 0.2. The control is switched on at time period
=100.



Chaos control by nonfeedback methods in the presence of noise 1489

Table 1. Comparison of the noise tolerance of the nonfeedback methods for controlling chaos in the MLC circuit and
the Duffing-Ueda oscillator

Periodic motion Noise tolerance
Control Method  Controller MLC Duff-Ueda MLC Duff-Ueda
Constant force C(t) =C,=constant C,=0.023 2.1<C<2.52and Cy > 3.1 £<0.2 £<0.5
Weak periodic C(t) =7 sin(Qt) 1n=0.03 0.2< 1<0.9 and £<0.08 £<0.2
force (Q=0.75) 1.06<n<1.43 (Q=3.0)
Periodic delta w s 0>0.08 No control for values of x £<0.03 —
pulses CO=aZL 0 —neT) 12025 upto 15.0

F=0.1
Short-width C(t)=u; 0<1<0.02T, 2>0.025 9.45<2<9.9; £<0.03 £<0.2
rectangular 0.48T <t<0.52T and 10.35<a<10.45;
pulses 0.98T <t<T. 10.65<x<10.9 and

=0; otherwise. 11<gag11.7

For the case of the MLC circuit, the addition of periodic delta pulses or the rectangular pulses
are equally effective with respect to each other in controlling chaos in the presence of noise in the
circuit but less robust compared to the constant force method. Also, for the case of MLC circuit,
control by the addition of weak periodic force is less robust to noise than constant force method
and more robust than delta pulses or rectangular force addition. Addition of delta pulses is not
found to be very effective in controlling chaotic Duffing—Ueda oscillator, even in the absence of
noise. Long control transients are observed for some noise intensities, in chaotic Duffing-Ueda
oscillator, with the addition of rectangular force. The robustness of the nonfeedback control
methods in the presence of random noise in the two systems considered are shown in Table 1.
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