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Adaptive Synchronization Design for Chaotic
Systems via a Scalar Driving Signal
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Abstract—Using a scalar driving signal, synchronization for
a class of chaotic systems has been developed in this study. For
chaotic systems characterized by nonlinearity, which depends
only on the available output, a unified approach is developed by
carefully extending the conventional adaptive observer design.
For exactly known chaotic systems, an exponential convergence
of synchronization is achieved in the large. When mismatched
parameters are presented, this method performs the asymptotic
synchronization of output state in the large. The convergence of
the estimated parameter error is related to an implicit condition
of persistent excitation (PE) on internal signals. From the broad
spectrum characteristics of the chaotic driving signal, we reformu-
late the implicit PE condition as an condition on injection inputs.
If this condition is satisfied, the estimated parameters converge to
true values and exponential synchronization of all internal states
is guaranteed. Two typical examples, including Duffing–Holmes
system and Chua’s circuit, are considered as illustrations to
demonstrate the effectiveness of the adaptive synchronizer.
Furthermore, the robustness of adaptive synchronization in
presence of measurement noise is considered where the update
law is modified. Finally, numerical simulations and DSP-based
experiments show the validity of theoretical derivations.

Index Terms—Adaptive observer, chaotic synchronization, per-
sistent excitation.

I. INTRODUCTION

CHAOTIC systems have been studied and known to exhibit
complex dynamical behavior in past two decades. The in-

terest in chaotic systems lies mostly upon their complex, unpre-
dictable behavior, and extreme sensitivity to initial conditions
as well as parameter variation. These properties in turn, are the
ones most commonly characterized as their prominent features.
In light of a broad-spectrum and noise-like chaotic signal, many
theories of control and synchronization have been developed.

According to the synthesis method proposed in [1], chaotic
synchronization is where two chaotic systems with suitable cou-
pling produce identical oscillations after a transient time even
when starting from arbitrary initial conditions. In many works
[2]–[18], different theories have been proposed to achieve
synchronization with exactly known or uncertain conditions.
From the observation of coupling configurations [2], the current
synchronization structures are classified into: 1) master–slave
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synchronization [3]–[10] and 2) mutual synchronization [2].
The former has unidirectional coupling, while the latter is
with bidirectional coupling. Most theoretical frameworks and
stability analysis for synchronization have stemmed from the
master–slave configuration. This master–slave configuration
consists of the original chaotic system as adrive systemto
provide acoupling signalto drive another system called the
response systemto synchrony. Several control approaches,
including model reference control and observer design, are
widely used for synchronization. For model reference control
approach (or state feedback control), the states of the response
system converge to the drive system by available inputs (driving
signals) [12]–[14]. The drawback of this technique is that the
full states of the drive system are usually required in imple-
mentation. On the other hand, a response system plays the role
of a observer to reconstruct or to estimate the dynamics of the
given chaotic drive system via an available output. The main
feature of observer-based concepts, employing linear-observer
or nonlinear-observer design, is that it is systematic. However,
most of these schemes, when concerned with the region of con-
vergence, are at best arbitrarily large by using high gains from
assuming Lipschitz conditions of nonlinear terms [6]–[8], or
transmitting the nonlinear terms [9], [10]. For more advanced
works, adaptive synchronization [11]–[18] are introduced
to present not only nonidentical initial conditions but also
parameter mismatch between master and slave systems. A
Lyapunov based approach [15], [16], using the LMS adaptive
algorithm, is proposed to solve the adaptive synchronization
of general chaotic systems. Although adaptive synchronization
can be developed for master–slave and mutual configurations,
the adaptive mechanism is implemented by full-state feedback
for full parameter mismatch. To overcome this problem, the
speed-gradient method [17] has been successfully applied
to synchronization by using an approximate mean-value
compensation of states. For the mutual coupling structure, a
passification approach [18] is designed by utilizing output
feedback. Several works ensure only semi-global convergence
due to assuming Lipschitz conditions on the nonlinear terms.

Inspired by works [15]–[18], an adaptive observer-based
approach is proposed for a class of chaotic systems in this
paper. The main results of this work are that synchronization
and adaptive synchronization without Lipschitz conditions can
be solved simultaneously by using a scalar driving signal. If the
chaotic signal is sufficiently rich, namely persistent excitation
(PE) condition is satisfied, estimated parameters converge to
true values and the exponential synchronization of complete
states are guaranteed. The PE condition can be satisfied easier
if the transmitted signal is a chaotic signal. This is reasonable
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since chaotic systems are broadband, noise-like and have a
rich dynamical pattern. The proposed framework allows one to
solve the problem for a class of chaotic systems characterized
by the nonlinear terms of the drive system depending only on
the available output. This is valid even after an appropriate
change of coordinates. From the viewpoint that the nonlinear
terms are injection inputs in the dynamics of a drive system, the
input–output equivalent representation is easily obtained. Then
a unified framework is devoted to synchronization and adaptive
synchronization by carefully extending the adaptive observer
scheme [19]. Furthermore, the robustness of the proposed
adaptive synchronization is established with the converse
Lyapunov method. To further show the validity of theoretical
derivations, numerical simulations and DSP-based experiments
are carried out on the Chua’s circuit.

The paper is organized as follows. In Section II, a unified
design method for synchronization and adaptive synchroniza-
tion is presented. Two examples of typical chaotic systems, in-
cluding Duffing equations and Chua’s circuit, are illustrated in
Section III. Also, the effectiveness of the proposed adaptive
scheme is demonstrated by numerical simulations. For the ro-
bustness issue with respect to measurement noise, a modified
adaptive law is suggested in Section IV. Some oscilloscope im-
ages of DSP-based experiments are shown to illustrate the con-
sistency of the theoretical results with practical implementations
in Section V. Finally, some conclusions are made in Section VI.

II. SYNCHRONIZATION AND ADAPTIVE SYNCHRONIZATION

A. Model Representation

For a class of chaotic systems in which the nonlinearity de-
pends only on the available output, we introduce an approach
for chaotic synchronization using a scalar driving signal. The
general output injection form for these systems is described by

(1)

where represents the state vector; the system output
denotes the driving signal; the injection inputs ,

, may denote the driving signal, the nonlinearity
in the system dynamics, the oscillated force, dc bias or a com-
bination of them; and , are constant matrices with ap-
propriate dimensions. Some examples of this class of nonlinear
systems include the Duffing–Holmes equation, Van der Pol os-
cillator, Chua’s circuit and Rossler system, etc. Furthermore,
we assume the matrix pair is observable and

are controllable. These properties are satisfied
when we rewrite the mentioned chaotic systems into the form
(1).

The synchronization for this category of chaotic systems is
based on the linear observer design derived using the output
signal to drive the response system. This technique, presented
in [7], [8], needs the Lipschitz condition on nonlinear terms

, which results in the convergence achieved by high observer
gains. To overcome this problem, we introduce an observer-
based approach to chaotic synchronization. In preparation for

the synchronizer design, a property of system is discussed
as follows:

Proposition 1: System is input–output equivalent to a
dimensional system

(2)

where ;
; and are constant ma-

trices with appropriate dimensions. Furthermore, the original
states can be expressed in terms of the new states
as for a constant matrix .

Proof: The terms arising from the output injec-
tion can be regarded as inputs to system. From this view-
point, is described by the following strictly proper transfer
functions:

(3)

where represents a monic characteristic polynomial with
degrees; , for , denote the numerator of the
transfer function with appropriate degrees forand . Let
as a monic Hurwitz polynomial, defined as

where ; with
and ,

, for . By adding and substracting
to the right-hand side of (3), the fol-

lowing is obtained:

(4)

Let and , then the transfer
function (3) will have a Hurwitz denominator represented as

(5)

where is the coefficient vector of the polynomial ,
for . To find a state-space representation of (5)
as (2), let us denote

- - - - - - - - - - - - - - - - - - - - -

...
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We can see that and

where is the first element of and .
Now based on transfer function (5), the system (1) is
equivalently written as the state equation in (2) with

, .
The constant matrix may be determined by differentiating the
output equations of (1) and (2). Notice that the matrixis
dependent only on system parameters.

Remark 1: For chaotic systems, the trajectory evolves either
in a strange attractor, or on a periodic orbit/equilibrium point.
Therefore, the states in the drive system are considered to be
bounded chaotic signals. This implies that its equivalent real-
ization is bounded also.

Since ( ) is observable, system (1) can be rewritten as
follows:

where is Hurwitz; and , . Hence,
we have an alternative representation for the dynamical system
(1). From (3), it follows that

which is thus implemented as the following state equation:

(6)

where , which have the same structure as
and , respectively; and satisfy ,

, and .
Proposition 2: The system is input–output equivalent to

a dimensional system (6). Furthermore, for a
constant matrix .

B. Synchronizer Design With Exactly Known Dynamics

According to Proposition 1 and 2, system (1) is input–output
equivalent to (2) and (6) in different state-space representations.
Thus, we have the following result of synchronization.

Proposition 3: Consider the drive system in (1) provided
with a scalar driving signal, there exists a response system

(7)

with a transformation matrix defined in Proposition 1, such that
, where is exponentially synchronized to

, i.e., converges to zero exponentially.
The proof is a slight extension for the single input case in [20],

[21]. In addition, it can be followed by the proof of Proposition
5 and thus is omitted here.

Similarly, according to (6), we have the following result.

Proposition 4: Consider the drive system in (1) with
Hurwitz , there exists a response system

(8)

with a transformation matrix defined in Proposition 2 such
that will exponentially approach to.

The proof follows from the fact that and, thus,
exponentially converges to zero.
Remark 2: To reduce the dimensions of the response system,
may denote a combination of nonlinear terms and output.

We will emphasize this point in the examples in Section III.
Remark 3: In [21], a linear generalized synchronization is

defined by a synchronizing manifold ,
with a constant matrix , and . Since the inde-
pendent variables are less than the constraints, it is shown that
the generalized synchronization of chaos is achieved if and only
if via linear transformations. For our design approach,
the transformation matrix is existent based only on assuming
the linear part of the drive system is controllable and observ-
able. Therefore, the state of drive systemcan be reconstructed
by using a scalar signal.

C. Synchronization in Adaptive Case

Using as the scalar driving signal for synchronization,
a suitable response system with exactly known parameters was
developed in the above section. If there is uncertainty in system
parameters, the designed response systemand may
lead to degraded performance and even cause instability. Here
assuming the parameters of the chaotic systems are fully or
partially unknown, an adaptive mechanism is utilized in order
for the response system to synchronize the states of the drive
system.

Since the drive-system (1) can be equivalently written as (2)
[or (6)], the system output are rearranged in a linear combination
of the injection inputs and their filtered signals. According
whether the combinational parameters are known or not, we
have the following expression:

(9)

where is a -dimensional vector containing the unknown or
uncertain parameters; is an vector which is linear in
or ; and the sum of the remaining term are , which is
also linear in or . The properties for and are

(10)

(11)

where . The adaptive synchronizer proposed here
is constructed by substituting an estimated parametric vector
for the unknown actual parametric vectorin (9). Then, the
adaptive synchronizer is designed as

(12)
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The error dynamics are

(13)

(14)

where and denotes the estimated parameter
error.

Proposition 5: Given a dynamic system (1) provided with a
scalar driving signal , the response system (12) is tuned by the
update law

(15)

with adaptation gain . Then, error signals, in
(13), (14) will asymptotically converge to zero.

Proof: Consider a Lyapunov function candidate as

(16)

where is a scalar to be chosen, is an adap-
tation gain, and satisfies the Lyapunov equation

. The time derivative of (16) is

where the update law for tuning estimated parametersin (15)
is applied. From the properties of and , it follows that

and for some con-
stants , . Hence, yields

(17)

where . If is chosen to be greater than ,
then , which implies that is upper bounded and the
origin of error systems (13) and (14) are uniformly stable in the
large. Accordingly, is upper bounded and

. Therefore, , and also , . This
means , , which is derived from Barbalat’s
lemma [22].

For the representation (8), we have the following result.
Proposition 6: Given a dynamic system (1) provided with a

scalar signal , the response system

is tuned by update law

Then, will asymptotically converge to zero.

D. Persistent Excitation and Exponential Synchronization

To achieve in Propositions 5 (or
in Proposition 6), and (or

) is synchronized to is related to the sufficient
richness condition, or persistent excitation on [or ].
It can be shown that converges to zero exponentially if is
persistent exciting [19], i.e., there are positive constantsand

such that

(18)

Compared to the implicit condition (18) on, we can give ex-
plicit conditions on to guarantee the exponential synchroniza-
tion. From the definition of , we have

for an onto linear map . In the expression, denotes the ma-
trix representation of , which is full row-rank. Notice that
will be absent in if is strictly proper. Let denote
the dimensions of or if is strictly proper.
Then, is the dimension of . According
to the results in [19], [20], the PE condition onis equivalent
to the PE condition on , which can be verified via

C.1) has at least spectral lines;
C.2) at these spectral lines, are

linearly independent in .
The signal is said to have aspectral line

at frequency of amplitude if and only if
converges to uniformly in

as [20]. Since is a stable filter, it follows
that and have the same spectral lines [20]. Therefore, we
have the following result.

Theorem 1: The trajectory of , i.e., , is ex-
ponentially synchronized to if the following conditions are
satisfied:

1) are linearly independent;
2) For each there exist spectral lines, such that the total

spectral lines are mutually different.
Since is a chaotic signal, the broad spectrum implies that

C.1) is satisfied. The condition (C.2) is satisfied if the conditions
1) and 2) in Thm. 1 are satisfied. Similar results can be obtained
for the representation . In applying this scheme, the system
matrix must be exactly known (unknown parameters exist in

). This condition generally leads to requiring a larger dimen-
sion of to implement the response system.

By the stability analysis of the adaptive response system,
the convergence rate of the error signals, is determined by
the chosen parametersand in (13) and (14), respectively.
Note that when is given a larger value and are given with
larger eigenvalues, the error signalsand will converge faster
to zero. This, on the other hand, will slow down the updating
rate of estimated parameter. From the viewpoint of the broad
spectrum, noise-like and high sensitivity to parametric variation
characteristic of chaotic signals, the persistently exciting condi-
tion would be easily satisfied if Condition 1) in Theorem 1 is
satisfied. Then the adaptation gainmay be properly chosen
to simultaneously synchronize all states of the drive system by

. Accordingly, a trade-off condition exists between the
convergence rate of errors and parametric errors.
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Fig. 1. Structure of adaptive synchronization with drive and response system using a scalar coupling channel.

The proposed design methodology for is summarized in
the following adaptive synchronization algorithm.

Step 1) Determine the driving signal and the terms. Then
represent the chaotic system in the output injection
form (1).

Step 2) Check, if the system matrix pair is observ-
able and is controllable. When this is the
case, the individual proper transfer functions from

to can be found. The input–output description
of the overall system is the sum of the individual
transfer functions.

Step 3) Give and define and
, then the transfer function is represented

with a Hurwitz denominator. Express the filtered
nonlinearity as . The chaotic
system is equivalent to (2). Meanwhile, the transfor-
mation matrix is calculated.

Step 4) Reparameterize as linear
in terms of the unknown parametric set, i.e.,

. Then the response system is
designed with adaptation law (15). The states of the
drive system are constructed by .

This leads to the results in Theorem 1. The overall structure to
implement the response system is illustrated in Fig. 1.

III. A PPLICATIONS ONTYPICAL CHAOTIC SYSTEMS

To verify the validity of the adaptive synchronization method-
ology, two examples are considered with numerical simulations
carried out.

Duffing–Holmes System: Consider the Duffing–Holmes
system given

(19)

The parameters , , and the amplitude of the os-
cillation force are chosen so that the system exhibits chaotic
behavior [23], [24]. Since the nonlinear termsand the forced
sinusoid signal are dependent on output and time,

respectively, the Duffing equation can be represented in the form
(1). If all parameters are exactly known, we can rewrite (19) as

where

and . Thus , ,
and is Hurwitz. According to Proposition 4, we can design
a second-order response system to achieve synchronization. Al-
ternatively, a higher order (i.e., third order) response system can
achieve synchronization if Proposition 3 is applied. To demon-
strate adaptive synchronization, we now assume parameters,

, and are unknown to the response system. In addition,
the synchronizing timemay be unknown initially such that the
oscillation force may not be obtained. Hence we assume there
is an unknown phase in the forced sinusoid signal. Note that
the forced oscillation frequency is provided.

Let , , and .
Then, the output injection form is obtained

where , . In light of this, the
input–output transfer function is therefore represented as

(20)
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As stated in Section II-A, it is given
with , and , .
Therefore, (20) is rewritten as

where , , , and
. The input–output equivalent

system is

where , ,
and . Let . Therefore,

with

The response system with known parameters can be obtained
from (8). Furthermore, can be reparameterized in
terms of an unknown parametric set as where

; and
. According to adaptive synchronization

for the general case addressed in (12), the response system is

(21)

where the update law for the estimated parameter is
. Also, the state can be recon-

structed by .
Consider system (19) synchronized by the adaptive response

system (21). Notice that in the adaptive response system,
are linearly independent whereas, have broad spectrum
and , have two spectrum lines, respectively. The PE condi-
tions in Thm. 1 is satisfied and hence exponential synchroniza-
tion is achievable. For simulations, the parametric values

, , , and . The oscillation force has
the given frequency rad/s and a phase . The
initial states , and . For the response
system (21), the parameters are chosen as . The ini-
tial values of the states and estimated parameters are both set
as zero, i.e., , and . The adaptation gain is
chosen as . Fig. 2(a) and (b) il-
lustrates the errors – and – , respectively. The errors
converge to zero as estimated parameters converge to the true
value. Fig. 3 shows the response of the estimated parameters

.

Fig. 2. (a) Synchronization errorx̂ –x of Duffing system; (b)
synchronization error̂x –x of Duffing system.

Fig. 3. Time response of estimated parametersp̂ �p̂ in adaptive response
system for Duffing system.

Chua’s Circuit:Consider the Chua’s circuit described by the
following equations:

(22)

where is the nonlinear term that represents the
voltage–current characteristics of the nonlinear resistor in the
circuit. With and as the different slopes associated with
the break-off points in the voltage–current plot for the nonlinear
resistor, is given by
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where parameters , and nonlinearity of the circuit
are known to exhibit many forms of chaotic behavior in [15],
[25].

If all the parameters are exactly known, we can rewrite (22)
as

with

and . For typical values of and , is
Hurwitz. Hence we can design a third-order response system
to achieve synchronization according to Proposition 4. For
unknown parameters, the scheme in Proposition 5 will be
applied. First, we rewrite Chua’s circuit as

(23)

where ; ;
; and . The

input–output transfer function of (23) is therefore

By and defining , an input–output
equivalent representation is

where , ,
, and with

According to and the original state equation (23),
the transformation matrix can be found in the form

where . Hence, the adaptive response system
is expressed as (12)

(24)

where ;
and with

The vector is tuned by (15) to estimate the actual parametric
set as

To this step, we observe that both and , which are driven
by and , respectively, appear in. Since and
are linear dependent whenevolves in the region , the
degree of PE will be weakened and hence degrade the con-
vergent rate of synchronization errors. To obtain a lower order
response system and rapid synchronization, we assumeis
known. Then, the adaptive response system has the same ex-
pression as (24) with the following definitions:

This yields an eighth-order response system. In addition, ap-
plying estimated parametersto replace the actual parameters
in matrix , is used to synchronize the state. Thus,
perfect synchronization is achieved once the PE condition is sat-
isfied.

For Chua’s circuit (22), we set the unknown parameters as
, , and , and the initial states

are chosen as . The known parameter is
set as 14.87. For the response system, the parameters are set as

, and the initial conditions are set as .
The initial values of the estimated parameters can be given arbi-
trarily. Here, we set them as zero except for the estimated

. The adaptation gain is chosen as .
The synchronization error are shown in Fig. 4, which show
that trajectories of the drive and response systems achieve syn-
chronization. The estimated parameters of, , shown in
Fig. 5 converges close to true values, which are 10, 3.2, and 2.95,
respectively.

IV. DISTURBANCE AND ROBUSTNESS

The robustness issue of the proposed scheme due to bounded
disturbance is discussed in this section. In other words, we con-
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Fig. 4. Synchronization error̂x –x of Chua’s circuit.

Fig. 5. Time response of estimated parametersâ , â , â in adaptive response
system for Chua’s circuit.

sider the response system is under influence of external dis-
turbances. The synchronization error and updating parameters
would not converge to zero in this case. In the worst case sce-
nario, these performance objectives may grow to be unbounded.
The disturbance may arise from the following two cases.

Case i): —The adaptive response system given in (12) is
driven by a scalar output signalfrom the drive system. The
measurement of output is easily corrupted with noise ,
i.e., the noisy output . This noisy output will
drive the adaptive response system (12). Therefore, we arrive at
the following error dynamics:

(25)

where , ,
and are the additional terms due to the noise.

Case ii): —The adaptive synchronization scheme has a po-
tential application on transmitting messages via unknown pa-
rameters (see comments addressed in Section V). In this case,
the unknown parameters varies slowly with respect to time such
that can be considered as a bounded disturbance. Then the
error dynamics have the same form as (25) with
and .

As stated above, Case ii) can be regarded as a special case for
Case i). Hence we take (25) as a general error dynamics for the
adaptive synchronization subject to bounded disturbance. Let

. The error dynamics (25) can be written as

(26)

with

where and
. We notice that (26) is exactly same as the error

dynamics considered in Thm. 1 if the disturbanceequals zero.
Suppose the PE condition holds, then the trajectories of
converge to zero exponentially. From the converse Lyapunov
theorem [22], there exists a function that satisfies the
inequalities

for some positive constants, , , and . The disturbance
satisfies the inequality

where the magnitudes of and are proportional to . The
derivative of along the trajectories of (26) satisfies

Let and therefore , we have

If is small enough such that is dominated by
, then we obtain, after the transient time, bounded

above by for some constant .
Theorem 2: If the (PE) conditions in Theorem 1 are satisfied,

the synchronization error remains bounded if the noise is small
enough. Furthermore, the ultimate bound is proportional to the
magnitude of noise.
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Fig. 6. (a) Synchronization error̂x –x of Duffing system with noisy coupling
signal using robust adaptive law. (b) Synchronization errorx̂ –x of Duffing
system with noisy coupling signal using robust adaptive law.

Note that for signals having a higher degree of PE, the faster
the convergence for . In this case, the tolerance of amount
of disturbance is also larger. An alternative method to enlarge
the tolerance of disturbance is to modify the update law for the
unknown parameters in the following form:

(27)

where and . Due to the
additional last term on the right hand side of (27), the resulting
error dynamics (26) will have a negative number at the (3, 3)
entry of . This makes the adaptive synchronizer robust while
under influence from external disturbances. The drawback of
(27) is that even without disturbance and PE holds, synchroniza-
tion errors do not converge to zero. To cope with this problem,
the gain in (27) can be replaced by a term proportional to the
error between and the only measurable signal, i.e.,

(28)

In applying the update law (28), the estimated parameters will
converge to their true values when the driving signal is free of
noise and the excitation is persistent.

Remark 4: In adaptive control literature [19], [20], the up-
date laws (27) and (28) are called the-modification scheme
and the -modification scheme, respectively.

A simulation example is performed to show the effect of the
modified adaptation laws. Consider the adaptive synchroniza-
tion of Duffing–Holmes system same as Example 1, we then
assume a noisy driving signal [where
is a white noise with zero mean and uniformly distribution and
magnitude of 0.1]. Select the parameters in the ro-
bust update law, then the response of synchronization errors are
shown in Fig. 6.

Fig. 7. Oscilloscope of DSP-based experiments of synchronization error
x̂ –x of Chua’s circuit.

V. DSP-BASED EXPERIMENTS

To demonstrate the validity of the above-mentioned theo-
retical derivations, we carry out DSP-based experiments. The
adaptive synchronization scheme is implemented on a dSPACE
System DS1102 which has a digital signal processor (DSP)
TMS320C31 on board. This system has four pairs of AD/DA
channels with a 12-bit data sampling rate. Using one channel of
AD/DA as the scalar coupling signal, the remaining channels
are used to output the states and/or the parameters. This
setup realizes the synchronization concepts by block-diagram
modeling environment. Therefore, we are able to preview the
system performance prior to actual implementation. After
achieving the desired results in simulated environment, the
object code is generated by Real-Time Workshop and then
directly downloaded into the DSP board. This process reduces
the algorithm coding to a more straightforward and systematic
approach, which includes coding, compiling, linking, and
downloading to the target software.

The Cockpit-DSPACE software is a graphical user interface
for the real-time control and fine tuning control gains online.
The example used for practical implementation is the Chua cir-
cuit given in Section IV. In Figs. 7–9, the oscilloscope images
of synchronization errors – and parameter estimation er-
rors , are shown, respectively. The results of the practical
implementations are consistent to that of numerical simulations.

Potential applications can be extended from the synchroniza-
tion design. For example, simple signal masking based chaotic
communications; parameter division multiple access (PDMA);
or synchronization based chaotic cryptosystems. The signal
masking based communications, where a message is added to
the output of the transmitter and then recovered at the receiver’s
end, provide minimal security. In PDMA, parameters of the
system are modulated by binary messages [11]. The setback
arises from the slow convergence of the receiver’s parameters
to that of the true values. To upgrade the security, standard
cryptosystem theory using parameters as keys provides a more
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Fig. 8. Oscilloscope of DSP-based experiments of parameter errorâ –a of
Chua’s circuit.

Fig. 9. Oscilloscope of DSP-based experiments of parameter errorâ –a of
Chua’s circuit.

secure application for chaotic synchronization based commu-
nications. Take Chua’s circuit as an example, some parameters
in the transmitter can be used as the key in a coding function.
Then, the coding function transforms the plaintext (message)
into a cyphertext. This cyphertext is then transmitted to the
receiver side. Since the receiver has the same key (parameter)
as the transmitter due to adaptive synchronization, we are able
to decode the cyphertext. This methodology greatly enhance
the security.

VI. CONCLUSIONS

In this paper, a unified approach for synchronization and
adaptive synchronization have been developed for chaotic
systems of the output injection form. This approach utilizes
an adaptive observer design to derive the response system for
synchronization where there is parameter mismatch. Compared
with other adaptive methods, this approach eliminates calcu-
lating the Lipschitz constant for nonlinearity of chaotic systems

and only uses a scalar transmitted signal to drive the response
system. Although the synchronization of complete states is
achieved based on the convergence of estimated parameters,
the condition that the injection functions must be persistent
excitation can be satisfied easier for a chaotic driving signal
which has a rich dynamical pattern systems. Furthermore,
this method is widely applied to synchronization problems of
chaotic and hyperchaotic systems after representing them in
the output injection form. In presence of measurement noise,
a robust adaptive response system is discussed based on the
Lyapunov method. Oscilloscope images further show that
for practical implementations the results are consistent with
theoretical derivations.

REFERENCES

[1] L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,”
Phys. Rev. Lett., vol. 64, no. 8, pp. 821–824, 1990.

[2] T. Ushio, “Synthesis of synchronized chaotic systems based on
observers,”Int. J. Bifurcation Chaos, vol. 9, no. 3, pp. 541–546, 1999.

[3] K.-Y. Lian, T.-S. Chiang, and P. Liu, “Discrete-time chaotic systems:
Applications in secure communications,”Int. J. Bifurcation Chaos, vol.
10, no. 9, pp. 2193–2206, 2000.

[4] K.-Y. Lian, T.-S. Chiang, P. Liu, and C.-S. Chiu, “LMI-based fuzzy
chaotic synchronization and communication,”IEEE Trans. Fuzzy Syst.,
vol. 9, pp. 539–553, Aug. 2001.

[5] J. Schweizer, M. P. Kennedy, M. Hasler, and H. Dedieu, “Synchroniza-
tion theorem for a chaotic system,”Int. J. Bifurcation Chaos, vol. 5, no.
1, pp. 297–302, 1995.

[6] H. Nijmeijer and I. M. Y. Mareels, “An observer look at synchroniza-
tion,” IEEE Trans. Circuits Syst. I, vol. 44, pp. 882–890, Oct. 1997.

[7] O. Morgül and E. Solak, “Observer based synchronization of chaotic
systems,”Phys. Rev. E, vol. 54, no. 5, pp. 4803–4811, 1996.

[8] T.-L. Liao and N.-S. Huang, “An observer-based approach for chaotic
synchronization with applications to secure communications,”IEEE
Trans. Circuits Syst. I, vol. 46, pp. 1144–1150, Sept. 1999.

[9] G. Grassi and S. Mascolo, “Nonlinear observer design to synchronize
hyperchaotic systems via a scalar signal,”IEEE Trans. Circuits Syst. I,
vol. 44, pp. 1011–1014, Oct. 1997.

[10] , “Synchronizing hyperchaotic systems by observer design,”IEEE
Trans. Circuits Syst. II, vol. 46, pp. 478–483, Apr. 1999.

[11] A. Rulkov, H. Nijmeijer, and A. Markov, “Adaptive observer-based syn-
chronization for communication,”Int. J. Bifurcation Chaos, vol. 10, no.
12, pp. 2807–2813, 2000.

[12] M. D. Bernardo, “An adaptive approach to the control and synchroniza-
tion of continuous-time chaotic systems,”Int. J. Bifurcation Chaos, vol.
6, no. 3, pp. 557–568, 1996.

[13] J. K. John and R. E. Amritkar, “Synchronization by feedback and adap-
tive control,” Int. J. Bifurcation Chaos, vol. 4, no. 6, pp. 1687–1695,
1994.

[14] J. Wang and X. Wang, “Parametric adaptive control in nonlinear dynam-
ical systems,”Int. J. Bifurcation Chaos, vol. 8, no. 11, pp. 2215–2223,
1998.

[15] A. K. Kozlov, V. D. Shalfeev, and L. O. Chua, “Exact synchronization
of mismatched chaotic systems,”Int. J. Bifurcation Chaos, vol. 6, no. 3,
pp. 569–580, 1996.

[16] C. W. Wu, Y. Tao, and L. O. Chua, “On adaptive synchronization and
control of nonlinear dynamical systems,”Int. J. Bifurcation Chaos, vol.
6, no. 3, pp. 455–471, 1996.

[17] A. L. Fradkov and A. Y. Markov, “Adaptive synchronization of chaotic
systems based on speed gradient method and passification,”IEEE Trans.
Circuits Syst. I, vol. 44, pp. 905–912, Oct. 1997.

[18] A. Y. Pogromsky, “Passivity based design of synchronizing systems,”
Int. J. Bifurcation Chaos, vol. 8, no. 2, pp. 295–319, 1998.

[19] S. Sastry and M. Bodson,Adaptive Control: Stability, Convergence, and
Robustness. Englewood Cliffs, NJ: Prentice-Hall, 1989.

[20] K. S. Narendra and A. M. Annaswamy,Stable Adaptive Sys-
tems. Englewood Cliffs, NJ: Prentice-Hall, 1989.

[21] T. Yang and L. O. Chua, “Generalized synchronization of chaos via
linear transformations,”Int. J. Bifurcation Chaos, vol. 9, no. 1, pp.
215–219, 1999.

[22] H. K. Khalil, Nonlinear Systems, 2nd ed. Englewood Cliffs, NJ: Pren-
tice-Hall, 1995.



LIAN et al.: ADAPTIVE SYNCHRONIZATION DESIGN FOR CHAOTIC SYSTEMS VIA A SCALAR DRIVING SIGNAL 27

[23] J. M. T. Thompson and H. B. Stewart,Nonlinear Dynamics and
Chaos. Singapore: Wiley, 1988.

[24] C. Chen and X. Dong,From Chaos to Order Methodologies, Perspec-
tives and Applications. Singapore: World Scientific, 1998.

[25] L. O. Chua, M. Komuro, and T. Matsumoto, “The double scroll family,
Part I: Rigorous proof of chaos,”IEEE Trans. on Circuits. Syst., vol. 33,
pp. 1072–1096, Nov. 1986.

[26] K. S. Narendra and A. M. Annaswamy, “A new adaptive law for robust
adaptive without persistent excitation,”IEEE Trans. Automat. Contr.,
vol. 32, pp. 134–145, Feb. 1987.

Kuang-Yow Lian (S’91–M’94) was born in Taiwan,
R.O.C., in 1961. He received the B.S. degree in engi-
neering science from National Cheng-Kung Univer-
sity, Taiwan, R.O.C., in 1984 , and the Ph.D. degree
in electrical engineering from National Taiwan Uni-
versity, Taiwan, R.O.C., in 1993.

From 1986 to 1988, he served as a Control En-
gineer at Industrial Technology Research Institute,
Taiwan. Currently, he is an Associate Professor in the
Department of Electrical Engineering, Chung-Yuan
Christian University, Chung-Li, Taiwan, R.O.C. His

research interests include nonlinear control systems, fuzzy systems, robotics,
chaotic systems, and nonholonomic control.

Peter Liu (S’98) received the B.S. degree in elec-
trical engineering from Chung-Yuan Christian Uni-
versity, Chung-Li, Taiwan, R.O.C., in 1998, and is
pursuing the Ph.D. degree in electrical engineering at
the same university since 1999. His research interests
include chaotic systems, nonlinear control and fuzzy
systems.

Tung-Sheng Chiang received the B.S. degree
in electrical engineering and the M.S. degree in
automatic control engineering, both from Feng-Chia
University, Taichung, Taiwan, R.O.C., in 1984, and
1989, respectively, and the Ph.D. degree in elec-
tronic engineering, from the Chung-Yuan Christian
University, Chung-Li, Taiwan, R.O.C., in 2001.

Since 1990, he has been a faculty member in the
Department of Electrical Engineering, Ching-Yun In-
stitute of Technology, Chung-Li, Taiwan, R.O.C. His
research interests include nonlinear control, chaotic

systems, robotics and fuzzy systems.

Chian-Song Chiu received the B.S. degree in
electrical engineering in 1997, and the Ph.D.
degree in electronic engineering in 2001, both
from Chung-Yuan Christian University, Chung-Li,
Taiwan, R.O.C. His research interests include
robotics, fuzzy systems, and nonlinear control.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


