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Adaptive Synchronization Design for Chaotic
Systems via a Scalar Driving Signal

Kuang-Yow Lian Member, IEEEPeter Liy Student Member, IEEHuUng-Sheng Chiang, and Chian-Song Chiu

Abstract—Using a scalar driving signal, synchronization for - synchronization [3]-[10] and 2) mutual synchronization [2].
a class of chaotic systems has been developed in this study. ForThe former has unidirectional coupling, while the latter is
chaotic systems characterized by nonlinearity, which depends \yii pigirectional coupling. Most theoretical frameworks and
only on the available output, a unified approach is developed by stability analysis for synchronization have stemmed from the
carefully extending the conventional adaptive observer design. y Yy 8 Yy ; X ) .
For exacﬂy known chaotic SystemS, an exponentia| Convergencemaster—slave Conflguratlon. Th|S maSter—Slave Conflguratlon
of synchronization is achieved in the large. When mismatched consists of the original chaotic system aslave systento
parameters are presented, this method performs the asymptotic provide acoupling signalto drive another system called the
synchronization of output state in the large. The convergence of response systerto synchrony. Several control approaches
the estimated parameter error is related to an implicit condition . ludi del ref trol and ob desi '
of persistent excitation (PE) on internal signals. From the broad |n_cu ing - modet ie erenc_e c_on rol and obsSenver aesign, are
spectrum characteristics of the chaotic driving signal, we reformu- Widely used for synchronization. For model reference control
late the implicit PE condition as an condition on injection inputs. approach (or state feedback control), the states of the response
If this condition is satisfied, the estimated parameters converge to system converge to the drive system by available inputs (driving
true values and expone_ntlal synchronlz_atlon _of all mt_ernal states signals) [12]-[14]. The drawback of this technique is that the
Is guaranteed. Two typical examples, including Duffing-Holmes full states of the drive system are usually required in imple-
system and Chua’s circuit, are considered as illustrations to ; Y y req p
demonstrate the effectiveness of the adaptive synchronizer. mentation. On the other hand, a response system plays the role
Furthermore, the robustness of adaptive synchronization in of a observer to reconstruct or to estimate the dynamics of the
presence of measurement noise is considered where the updateyiven chaotic drive system via an available output. The main
g(""e'f‘im“;%?g'gﬁ(')x'tﬂael'\Xéli”d“itm%??ﬁég;gi%gtggﬁvg{;gngsP'baSEd feature of observer-based concepts, employing linear-observer
P y ' or nonlinear-observer design, is that it is systematic. However,
_Index Terms—Adaptive observer, chaotic synchronization, per- most of these schemes, when concerned with the region of con-
sistent excitation. vergence, are at best arbitrarily large by using high gains from
assuming Lipschitz conditions of nonlinear terms [6]-[8], or
|. INTRODUCTION transmitting the nonlinear terms [9], [10]. For more advanced
, _works, adaptive synchronization [11]-[18] are introduced
‘ HAO-TC (sjystem_s hlal;/ehbee_zn ;tudlefﬁddknov(\;n to?ﬁh'_g present not only nonidentical initial conditions but also
compiex dynamical benavior In pastiwo decades. IN€ I .o meter mismatch between master and slave systems. A
terest in chaotic systems lies mostly upon their complex, unpie 7apunov based approach [15], [16], using the LMS adaptive
dictable behavior, and extreme sensitivity to initial condition, lgorithm, is proposed to solvé the ’adaptive synchronization
as well as parameter variation. These propertles n trn, are %eneral chaotic systems. Although adaptive synchronization
ones most commonly characterized as their prominent featurggn be developed for master—slave and mutual configurations,

'lcﬂ I'ght of 5]: bro?d-lspeé:trum ‘:]md r_10|?_e-I|I:]e chaE)onc s(ljgnall, Mmae adaptive mechanism is implemented by full-state feedback
eones of controfand synchronization have been developeg,. g parameter mismatch. To overcome this problem, the

hronization is where t haoti ¢ it suitabl W eed-gradient method [17] has been successfully applied
synchronization IS where two chaolic Systems with Sutable Cofy- synchronization by using an approximate mean-value

. : _spassification approach [18] is designed by utilizing output
[2]-{18], different theories have been proposed to aCh'e\{gedback. Several works ensure only semi-global convergence

synchronization W.ith exactly .known or ungertain conditionsdue to assuming Lipschitz conditions on the nonlinear terms.
From the observation of coupling configurations [2], the current Inspired by works [15]-[18], an adaptive observer-based

synchronization structures are classified into: 1) maSter_Slaé’ﬁproach is proposed for a class of chaotic systems in this

paper. The main results of this work are that synchronization
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since chaotic systems are broadband, noise-like and havéh@synchronizer design, a property of systgin is discussed
rich dynamical pattern. The proposed framework allows one &3 follows:

solve the problem for a class of chaotic systems characterizedProposition 1: System) _, is input—output equivalent to a
by the nonlinear terms of the drive system depending only ¢ + 1)(n — 1) 4+ 1] dimensional system

the available output. This is valid even after an appropriate o T T

change of coordinates. From the viewpoint that the nonlinear 21(t) =—rza(t) + 97 f(y, 1) + 0 w(?)

terms are injection inputs in the dynamics of a drive system, the @i(t) = Aw;(t) + Bafi(y, t), i=1,...,p+1
input—output equivalent representation is easily obtained. Then y(t) =21 (1) @)
a unified framework is devoted to synchronization and adaptive

synchronization by carefully extending the adaptive obserwshere f = col[fi, f2, ..., fp+1]; w(t) = collwi, wa, ...,

scheme [19]. Furthermore, the robustness of the proposed.,]; A € R™~YU*(~1 andB, € R"~! are constant ma-
adaptive synchronization is established with the convertiees with appropriate dimensions. Furthermore, the original
Lyapunov method. To further show the validity of theoreticatates: can be expressed in terms of the new states(z, w)
derivations, numerical simulations and DSP-based experimeass: = F'» for a constant matriF’ € R™**[+0(n—1)+1]
are carried out on the Chua’s circuit. Proof: The termsf;(y(¢), t) arising from the output injec-
The paper is organized as follows. In Section II, a unifieion can be regarded as inputs to system. From this view-
design method for synchronization and adaptive synchronizaint, ", is described by the following strictly proper transfer
tion is presented. Two examples of typical chaotic systems, fisnctions:
cluding Duffing equations and Chua’s circuit, are illustrated in » v (5)
Section lll. Also, the effectiveness of the proposed adaptive Z C(sI — A7 B;[fi] = Z 7
scheme is demonstrated by numerical simulations. For the ro- i=1 - A8
bustness issue with respect to measurement noise, a modifigféred( s) represents a monic characteristic polynomial with
adaptive law is suggested in Section IV. Some oscilloscope ifegreesy, (s), fori = 1, ..., p, denote the numerator of the

ages of DSP-based egperiments are shown to.illustrate thg C@Ansfer function with appropriate degrees foandy. Letr(s)
sistency of the theoretical results with practicalimplementatiogg a monic Hurwitz polynomial, defined as

in Section V. Finally, some conclusions are made in Section VI.
r(s) = (s+71)A(s)

Il. SYNCHRONIZATION AND ADAPTIVE SYNCHRONIZATION  where > 0; A(s) = Alan_1(s) With an_1(s) =
1 C — —

®3)

A. Model Representation col[s®™1, 5" 72 ... 5, 1] and . = col[l, A2, ..., A1, Ao],
> 0, for j < n — 2. By adding and substracting

For a class of chaotic systems in which the nonlinearity d)‘" "
pends only on the available output, we introduce an approqzl"i (ni(s)/r(s))fi] to the right-hand side of (3), the fol-
owmg is obtained:

for chaotic synchronization using a scalar driving signal. The
general output injection form for these systems is described gy
: s+

S @) =Ax) +Z Bifi(y(t), t) {ZPI ((S)) i+ - <zp: s >} X
=1

=1 i=1

y =Cux(t) (1) Letnyi1(s) = r(s)—d(s) andfp+1(t) = y(t), then the transfer

wherez € R represents the state vector; the system outprPCtion (3) will have a Hurwitz denominator represented as
y € R denotes the driving signal; the injection inpytse R, pt+l ¢Ta 1

+ = 1, ..., p, may denote the driving signal, the nonlinearity = Z L [fi] (5)
in the system dynamics, the oscillated force, dc bias or a com- S+

bination of them, and‘l, B,, C are constant matrices with ap-Where¢i € R" isthe coefficient vector of the po|ynomiﬂ[l(3),

propriate dimensions. Some examples of this class of nonlinggf; — 1, ... p+ 1. To find a state-space representation of (5)
systems include the Duffing—Holmes equation, Van der Pol ogs (2), let us denote

cillator, Chua’s circuit and Rossler system, etc. Furthermore, _ ‘
we assume the matrix pajd, C) is observable andA, B;) N P I S
Yi¢ =1, ..., pare controllable. These properties are satisfied | ______________ .
when we rewrite the mentioned chaotic systems into the form A= }
(1). Inz 0
The synchronization for this category of chaotic systems is L |
based on the linear observer design derived using the output B
signaly to drive the response system. This technique, presented
in [7], [8], needs the Lipschitz condition on nonlinear terms 0
f:, which results in the convergence achieved by high observer~* =
gains. To overcome this problem, we introduce an observer-
based approach to chaotic synchronization. In preparation for 10

c R(n—l)x(n—l)
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We can see thdts] — A)~1 By = «,,_2(s)/A(s) and Proposition 4: Consider the drive systef’, in (1) with
¢ 1 () Hurwitz A, there exists a response system
T — 9+ 0 (sI — A)TIBy,

A(s) Zg: @i(t) = Ao (t) + Bofi(t), i=1,...,p+1
where 9J; is the first element okp; and 6, = ¢; — ¢; 1A R T
Now based on transfer function (5), the system (1) is 9(t) = ¢ (1) (8)
equivalently written as the state equation in (2) withyith a transformation matri¥” defined in Proposition 2 such
¥ = collty, ¥z, ..., Oppa], 0 = collby, b2, ..., Op1]l.  thats = Fo will exponentially approach ta.

The constant matrix may be determined by differentiating the The proof follows from the fact thak, (t) = A¢@; and, thus,

output equations of (1) and (2). Notice that the matkixis &,; exponentially converges to zero.

dependent only on system parameters. ®  Remark 2: To reduce the dimensions of the response system,
Remark 1: For chaotic systems, the trajectory evolves elth% may denote a combination of nonlinear terms and ougput

in a strange attractor, or on a periodic orbit/equilibrium poinfye will emphasize this point in the examples in Section Il

bounded chaotic signals. This implies that its equivalent regfafined by a synchronizing manifol = {(z, #)|2 = Fz},
ization z is bounded also. with a constant matrid’ € R™*", andm > n. Since the inde-
Since @, C) is observable, system (1) can be rewritten gsendent variables are less than the constraints, it is shown that
follows: the generalized synchronization of chaos is achieved if and only
pt1 if m = n via linear transformations. For our design approach,
t=(A-LC)x+ Z B, fi the transformation matri¥' is existent based only on assuming
i=1 the linear part of the drive systey, is controllable and observ-

able. Therefore, the state of drive systeiran be reconstructed

where(A — LC) is Hurwitz; andB, 1 = L, = 4. Hence, ) ,
( ) i Jr+1 =Y By = F# using a scalar signaj.

we have an alternative representation for the dynamical syst

(1). From (3), it follows that C. Synchronization in Adaptive Case

+1 _ . . o
y= p}: Pl an_1(s) £ Using 4(¢) as the scalar driving signal for synchronization,
—~ d(s) ! a suitable response system with exactly known parameters was
developed in the above section. If there is uncertainty in system

which is thus implemented as the following state equation: parameters, the designed response sysémand 5", may

w;i(t) = Aow; + Bo fi(t), i=1,...,p+1 lead to degraded performance and even cause instability. Here
T assuming the parameters of the chaotic systems are fully or
y(t) =" w(t) (6) partially unknown, an adaptive mechanism is utilized in order

whereAo € R"*", By € R™ which have the same structure afor the response system to synchronize the states of the drive

A andB,, respectively; and satisfyl — Ag| = |s] — A+LC|, System. . . .

¢ = col[py, . ... ¢ppp1], andw = colfwr, ..., wpp1]- Since the drive-system (1) can be equivalently written as (2)
Proposition 2: The systen}”, is input—output equivalent to [or (B)], the system output are rearranged in a linear combination

a(p+ 1)n dimensional system (6). Furthermose= Fw for a of the injection inputsf; and their filtered signals. According
constant matrixs ¢ Rnx@+)n, whether the combinational parameters are known or not, we

have the following expression:

T T T—

According to Proposition 1 and 2, system (1) is input—output VI D+ 6wt = ool w) +9, @) ®)
equivalent to (2) and (6) in different state-space representatiowkierey is am-dimensional vector containing the unknown or
Thus, we have the following result of synchronization. uncertain parameters;is anm x 1 vector which is linear iry

Proposition 3: Consider the drive systel , in (1) provided or w; and the sum of the remaining term apgf, ), which is
with a scalar driving signa}, there exists a response system also linear inf or w. The properties fo and+ are

B. Synchronizer Design With Exactly Known Dynamics

Do, Aal)=—ra(t) +07f(y, £) +670() w(f, @) —w(f, w) =w(0, w) (10)
Si(t) = Adi(t) + Bxfi(y, 1), P(f, @) —¢(f, w) =9(0, w) 11)
i=1,...,p+1 §=4 @) whered = & — w. The adaptive synchronizer proposed here

_ _ _ S - is constructed by substituting an estimated parametric vector
with a transformation matrix defined in PI’OpOSItIOI’] 1, such th%r the unknown actual parametric Vect(prin (9) Then, the
= F/ZA“, wherez = COl[?:“l, (I)] is eXponentia”y Synchronized to adaptive Synchronizer is designed as

x(t), i.e., (& — z) converges to zero exponentially. i
The proofis a slight extension for the single input case in [20],2:4 D2 =—ra) + ¢ o(f, @)+ ¥(f, @)

[21]. In addition, it can be followed by the proof of Proposition AN A : L

5 and thus is omitted here. wit) =AGiD)+ Bafily. 1), =1 optl
Similarly, according to (6), we have the following result. y(t)

21(t). (12)
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The error dynamics are z = F(¢)®) is synchronized ta: is related to the sufficient
) . . ~ richness condition, or persistent excitationm(y, w) [or &].
é=-re+ ¢ w(f, &) +¢ w0, 0)+¢(0,©) (13) |t can be shown thap converges to zero exponentiallyzifis

&i = A&y, i=1, ..., p+1. (14) persistent exciting [19], i.e., there are positive constardad
k such that
wheree = §—y andg = ¢ —¢ denotes the estimated parameter t+e
error. / o(nwt(r)ydr >kl  Vt>0. (18)
t

Proposition 5: Given a dynamic system (1) provided with a
scalar driving signa, the response system (12) is tuned by theompared to the implicit condition (18) an we can give ex-
update law plicit conditions onf; to guarantee the exponential synchroniza-
) tion. From the definition of5, we have
@(t) = —elw (f, @) (15) _ X X
W IH(fl, Wiy - v ey fp-l—la wp+1)
with adaptation gai® = I'"" > 0. Then, error signals, @; in =Two
(13), (14) will asymptotically converge to zero.
Proof: Consider a Lyapunov function candidate as for an onto linear mag . In the expressiori’ denotes the ma-
L trix representation off, which is full row-rank. Notice thaf;
et P will be absentinwg if n;(s)/A(s) is strictly proper. Let; denote
Vo =3 <62 AR DY szPwi) (16)  the dimensions offf;, w(i])o/r ugz ?f n;(s)/A(s) is strictly proper.
Then,g = g1 + -+ - + gp4+1 IS the dimension ofve. According
Where&’ > 0is a scalar to be chosehi,= T > 0is an adap- to the results in [19], [20], the PE condition anis equivalent
tation gain, and® = PT > 0 satisfies the Lyapunov equationto the PE condition om,, which can be verified via
PA + ATP = —1I. The time derivative of (16) is C.1) wg has at leasy spectral lines;
C.2) at these; spectral lines{Wo(11), ..., Wo(r,)} are
linearly independent i?.
The signakwy(t): R — R™ is said to have apectral line

) _ ) at frequency of amplitude Wy (v)(£0) € C if and only if
where the update law for tuning estimated parametens(15) (1/T) j'S+T wo(t)s—I7* dt converges t(ﬁfo(u) uniformly in s

is applied. From the properties o -) andy(-), it follows that - 577 5% [20]. Since(sI — A) ! B, is a stable filter, it follows
[0(0, @) < pul|@]| and[1(0, @)| < po|@]| for some con-

X thatw,; and f; have the same spectral lines [20]. Therefore, we
stantsps, p2 > 0. Hence,V; yields have the following result.
Theorem 1:The trajectory ofy_,, i.e.,& = F(¢)z, is ex-

—2
i=1

. 6/ p+1
Vo = —ré® + e"w(0, &) + eyp(0, &) — 5 z_:l oF o,

Vo< —L[ el lI@ll ] 2r _,p <] (17) Ponentially synchronized t", if the following conditions are
) ||| satisfied:
1) {f1, ..., fp+1} are linearly independent;
wherep = [[¢||p1 + p2. If & is chosen to be greater thaty 2r, 2) For eachy; there existy; spectral lines, such that the total
thenV, < 0, which implies thafi; is upper bounded and the g1 + - - - + gp+1 Spectral lines are mutually different.

origin of error systems (13) and (14) are uniformly stable in the Sincey is a chaotic signal, the broad spectrum implies that

large. Accordingly,V» is upper bounded anﬂoc><> Va(r)dr < C.1)is satisfied. The condition (C.2) is satisfied if the conditions

oo. Thereforee, v € Ly N Lo, and alsoé, w € Lo,. This 1)and?2)in Thm. 1 are satisfied. Similar results can be obtained

meanslim,_., ¢, @ = 0, which is derived from Barbalat's for the representatiop_. . In applying this scheme, the system

lemma [22]. matrix A must be exactly known (unknown parameters exist in
For the representation (8), we have the following result.  B;). This condition generally leads to requiring a larger dimen-
Proposition 6: Given a dynamic system (1) provided with asion of z to implement the response system.

scalar signaj;, the response system By the stability analysis of the adaptive response systém
. the convergence rate of the error signgls is determined by
Z:): ©i(t) = Aowi(t) + Bo fi(t) the chosen parametersand ); in (13) and (14), respectively.
Sy — T Note that wherr is given a larger value and are given with
i) =" (). . . -~
larger eigenvalues, the error signasnda will converge faster
is tuned by update law to zero. This, on the other hand, will slow down the updating
. rate of estimated parametér From the viewpoint of the broad
b= —ci. spectrum, noise-like and high sensitivity to parametric variation
_ _ characteristic of chaotic signals, the persistently exciting condi-
Then,w; will asymptotically converge to zero. tion would be easily satisfied if Condition 1) in Theorem 1 is

satisfied. Then the adaptation gdinmay be properly chosen

to simultaneously synchronize all states of the drive system by
To achievelim; ... ¢ =  in Propositions 5 (or F(¢)z. Accordingly, a trade-off condition exists between the

limt_m& = ¢ in Proposition 6), andc = F(g)z (or convergence rate of erroes w and parametric errorgs.

D. Persistent Excitation and Exponential Synchronization
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Fig. 1. Structure of adaptive synchronization with drive and response system using a scalar coupling channel.

The proposed design methodology o}, is summarized in respectively, the Duffing equation can be represented in the form
the following adaptive synchronization algorithm. (2). If all parameters are exactly known, we can rewrite (19) as
Step 1) Determine the driving signal and the terfnsThen .
represent the chaotic system in the output injection @ =Av+Bf(y, 1)
form (1). y=Cxz
Step 2) Check, if the system matrix paid, C) is observ-
able and(A, B;) is controllable. When this is the where
case, the individual proper transfer functions from 0 1 0
fi to y can be found. The input—output description A= [ } B = [ } C=[1 0]
of the overall system is the sum of the individual —P1 D2 1
transfer functions. o
Step 3) Giver(s) and definef,11 = y andn,+1(s) = = [ }
r(s) — d(s), then the transfer function is represented
with a Hurwitz denominator. Express the filterechng f(y, ) = —ps23 + ¢sin ((wt + o). Thusn = 2,p = 1,
nonlinearity asi™ f(y, #) + 6%w(t). The chaotic and'4 is Hurwitz. According to Proposition 4, we can design
system is equivalent to (2). Meanwhile, the transfog; second-order response system to achieve synchronization. Al-
mation matrix/” is calculated. . ternatively, a higher order (i.e., third order) response system can
Step 4) Reparameterizd™ f(y, t) + 6"w(t) as linear achieve synchronization if Proposition 3 is applied. To demon-
in terms of the unknown parametric set, i.€srate adaptive synchronization, we now assume parameters
©'@ + 1(f, w). Then the response systef, iS4, 1. andq are unknown to the response system. In addition,
designed with adaptation law (15). The states of thge synchronizing timemay be unknown initially such that the

2

drive system are constructed by= (). oscillation force may not be obtained. Hence we assume there
This leads to the results in Theorem 1. The overall structurejtpan unknown pha% in the forced sinusoid SignaL Note that
implement the response system is illustrated in Fig. 1. the forced oscillation frequency is provided.
Let fi(z1) = —x}, fo(t) = sinwt, and f3(t) = coswt.
[ll. APPLICATIONS ONTYPICAL CHAOTIC SYSTEMS Then, the output injection form is obtained

To verify the validity of the adaptive synchronization method- 0 1
ology, two examples are considered with numerical simulations z = [

Jes 2]+ o

carried out. P TP
Duffing—Holmes System: Consider the Duffing—Holmes 0
system given + [pl f3(t)
=2 y=[1 0]z

- 3 -
=— - - t+6 . .
2 P11 = P22 — pavy + qsin(wt + o) wherepy, = qcos(fy), p; = gsin(fp). In light of this, the

Y =1. (19) input—output transfer function is therefore represented as
The parameterg, p2, ps > 0 and the amplitude of the os- _ D3 P4
e S y(s)= 5———— fils) + 5———— fa(s)
cillation forceq are chosen so that the system exhibits chaotic $°+p2s+p1 $°+pas+p1
behavior [23], [24]. Since the nonlinear term&and the forced D5

sinusoid signatin(wt + 6y) are dependent on output and time, +32 + pas + p1 fa(s). (20)
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As stated in Section II-A, it is given(s) = (s +7)(s + A)
with 7, A > 0, and fy = y, na(s) = 7(s) — (5% + pas + p1).
Therefore, (20) is rewritten as

_ 1 dia
ys_s+7z s—l—)\ fz ()

-0.2 - ; * - -
0 10 20 30 40 50 60
(a) time (sec)

Where(/)l = COl[O, pg], (/)2 = COl[O, p4], (/)3 = COl[O, p;)], and
¢4 = col[A + r — pa2, Ar — p1]. The input—output equivalent
system is

4
2.51 = =Tz + Z Q?y + QT(A}

=1

0 10 20 30 40 50 60

Gi=—dwi+fi,  i=1,234, (b) time (sec)
y=z Fig. 2. (a) Synchronization errori;—r; of Duffing system; (b)

synchronization errat;—» of Duffing system.

whered = X +r — pa, 6 = collps, pa, ps, Ap2 — p1 — A?],
andw = colfw, wa, ws, wy]. Let 2 = col[z1, w]. Therefore, 2

x = Fz with
e |: 1 01><4:|' 15T
/\—pg 9T

The response system with known parameters can be obtained
from (8). Furthermoreyy + 8w can be reparameterized in 051
terms of an unknown parametric set@8w + 1 wheregp =

col[p1, p2, ..., ps]; @ = col[—wa4, lws — ¥y, wi, we, ws] and 0
1 = (A 4+ 1)y — A2w4. According to adaptive synchronization

for the general case addressed in (12), the response systemis _g5

;12—771 + @ D(f(y), @) +B(f (), @) -1
——)\(f)i—i-fi(y,t), 1=1,2,...,4

>

N 0 20 40 60 80
9= (21) .
time (sec)

V.Vhere the update law for the estimated parameter #@. 3. Time response of estimated paramefgrsps in adaptive response
¢ = —el@(f(y), ®). Also, the statexs can be recon- system for Duffing system.

structed byz = F(¢)z.

Consider system (19) synchronized by the adaptive respons
system (21). Notice that in the adaptive response systemyy
are linearly independent wheregs, f4 have broad spectrum
and fs, f3 have two spectrum lines, respectively. The PE condi- . -
tionsin Thm. 1is satliasfied and hence (gxponeriltial synchroniza- L= (_xl tre f(xl))
tion is achievable. For simulations, the parametric vahies To =21 — T2+ X3
—1.1, po = 0.4, p3 = 1, andg = 1.8. The oscillation force has
the given frequency = 1.8 rad/s and a phas = /3. The
initial statesz;(0) = 0.2, andx2(0) = 0.1. For the response Y= (22)
system (21), the parameters are chosen as\ = 3. The ini-
tial values of the states and estimated parameters are bothvgeére f(x;) is the nonlinear term that represents the
as zero, i.e.z(0) = 0, and$(0) = 0. The adaptation gain is voltage—current characteristics of the nonlinear resistor in the
chosen a$’ = diag{20, 45, 13, 55, 35}. Fig. 2(a) and (b) il- circuit. With g, and g, as the different slopes associated with
lustrates the error$;—z; and&.—z2, respectively. The errors the break-off points in the voltage—current plot for the nonlinear
converge to zero as estimated parameters converge to the tasistor,f(x;) is given by
value. Fig. 3 shows the response of the estimated parameters

P1~Ds- f(@1) = gz1 + 2(90 — go) (|21 + 1] — |21 — 1))

Thua’s Circuit: Consider the Chua's circuit described by the
following equations:

jﬁg = —a92T2
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where parameters;, a; and nonlinearityf(x;) of the circuit whereA = diag{A, A}. Hence, the adaptive response system
are known to exhibit many forms of chaotic behavior in [15]is expressed as (12)

[25]. .
If all the parameters are exactly known, we can rewrite (22) 21 = —r21 + ¢ @(f(y), @) + ¥ (f(y), &)
as . —20 —X\27 1 1y
.’L’IA.T+Bf(y) Wi = 1 0 w; + 0 fi7 t=1,
with 2 ~ 3 2\~ .
0 Wherez/; = (7‘ +2X — 1)y — (3)\ — 2)\)(4)21 — (2)\ - A )CUQQ,
4 o1 andw = col[w;, W»] with
0 —as 0 0 w1 =col [fl (y) + (1 — 2)\)&)11 — )\2(:)12, (:)12]
C=[1 0 0] oln @ wol. T =col[(2A~ Dom + Vo~ G, ],
and f(y) = Jf(z1). For typical values ofa; anday, A is  The vectors is tuned by (15) to estimate the actual parametric

Hurwitz. Hence we can design a third-order response systegt as
to achieve synchronization according to Proposition 4. For
unknown parameters, the scheme in Proposition 5 will be ¢ =col[ay, asas, a3, (a1 —a2), azas,].
applied. First, we rewrite Chua’s circuit as
To this step, we observe that bath, andwss, which are driven

—az3 a0 aq by fi(y) andy, respectively, appear i@. Since f1(y) andy
&= 1 -1 1|lz+| 0| fily) are linear dependent wherevolves in the regio—1, 1), the
0 —ap 0 0 degree of PE will be weakened and hence degrade the con-
vergent rate of synchronization errors. To obtain a lower order
y=[1 0 0]z (23) response system and rapid synchronization, we assune
known. Then, the adaptive response system has the same ex-
where z = collz1, 22, z3]; a3 = ai(1 + @); as = pression as (24) with the following definitions:
—(a1/2)(g. — g); and fi(x1) = |z1 + 1| — |x1 — 1|. The
input—output transfer function of (23) is therefore P =(r+2\—1)y— (3)\2 S (2)\3 — )\2)@22
CL4(82 + s+ CLQ) Gl = fl(y) + (1 - 2)\)(:)11 + (CLQ - )\2)(:)12
y(s) = 1(s).

3 2 _
3+ (as + 1)s% + (a3 — a1 + a2)s + azas Dy = col [ (22 — D)dor + (A2 — as)os — y, @1 ]

By r(s) = (s+7)(s+))* and definingfy = y, aninput-output ¢ =col[ay, as, a1].
equivalent representation is
This yields an eighth-order response system. In addition, ap-

#=—rz + 9" fy) + 0w plying estimated parametegsto replace the actual parameters
—9\ )2 1 in matrix F', F(¢)z is used to synchronize the state Thus,
w; = [ } w; + [ } Ffilw), i=1,2 perfect synchronization is achieved once the PE condition is sat-
L0 0 isfied.
=Aw; + Brfi(y) For Chua’s circuit (22), we set the unknown parameters as
a; = 10, g, = —1.27, andg, = —0.68, and the initial states
¥ =721 are chosen as(0) = col[-1, 0, 0]. The known parametes, is

set as 14.87. For the response system, the parameters are set as

r = 100, A = 5 and the initial conditions are set 480) = 0.

The initial values of the estimated parameters can be given arbi-

trarily. Here, we set them as zero except for the estimated

15. The adaptation gain is chosenlas= diag{40.5, 3, 39}.

6> =col [2A(as + 1) — 3X* 4+ a1 — a2 — as, The synchronization errdr, (¢) are shown in Fig. 4, which show
A2az+1) — 203 — a2a3] ) that tr_aje<_:tor|es of thg drive and response syst?ms achleye syn-

chronization. The estimated parameters.gfas, a4 shown in

According toz = col[z1, w] and the original state equation (23) Fig. 5 converges close to true values, which are 10, 3.2, and 2.95,

whered = col[aa, 7 + 2A—az — 1], f(y) = col[f1, fo], w =
collwy, ws], andf = col[fy, #2] with

61 =col [as(1—2X), as(az — A?)]

the transformation matrix can be found in the form respectively.
1 ay O1x4 IV. DISTURBANCE AND ROBUSTNESS
F=—"1]2x-1 6T

The robustness issue of the proposed scheme due to bounded
disturbance is discussed in this section. In other words, we con-

a1 _
A2 —ay AT+ 0T A

3x5
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1.5 ' ; ' ' ; Case ii): —The adaptive synchronization scheme has a po-
tential application on transmitting messages via unknown pa-
rameters (see comments addressed in Section V). In this case,

T ] the unknown parameters varies slowly with respect to time such
that » can be considered as a bounded disturbance. Then the
error dynamics have the same form as (25) wjth= w,,; =0

0.5 andg, = 4.

As stated above, Case ii) can be regarded as a special case for
X =X Case i). Hence we take (25) as a general error dynamics for the
0 adaptive synchronization subject to bounded disturbance. Let
é = [e, @, ¢|. The error dynamics (25) can be written as
~05 - e=A-e+d(t c) (26)
with
-1 . . L : _
0 10 20 30 40 50 60 -r A, W en
time (sec) A= 0 A 0 d= | wn
Fig. 4. Synchronization errar;—r; of Chua’s circuit. I 0 0 on
20 " " y " " wherew,, = collwnp1, ..., wpp] @Nd A12 = (w(0, ©) +

] (0, @))/@. We notice that (26) is exactly same as the error
n dynamics considered in Thm. 1 if the disturbadexjuals zero.
Suppose the PE condition holds, then the trajectoriés-ofde
converge to zero exponentially. From the converse Lyapunov
theorem [22], there exists a functidn(¢, ¢) that satisfies the
inequalities

15

10

cille? V(¢ ) < ealle|?

1 1
@ S & o «
|
S w
ol
9|2
+
Q| @
—
ol
&’H S
_ o
IN N
2 |
e o
5 =
_ o
e

-20
-25 . . . . for some positive constants, ¢z, ¢z, andey. The disturbance
0 10 20 30 40 ,50 60 d satisfies the inequality
time (sec)
Fig.5. Time response of estimated parameigrs s, a4 in adaptive response ||d(t e)” < (t)||e|| +6 (t)

system for Chua’s circuit.

where the magnitudes of, andé,, are proportional te.(t). The

sider the response system is under influence of external digrivative ofV (¢, ¢) along the trajectories of (26) satisfies
turbances. The synchronization error and updating parameters

would not converge to zero in this case. In the worst case sce- av oV av
nario, these performance objectives may grow to be unbounded. o '
The disturbance may arise from the following two cases.

Case i): —The adaptive response system given in (12) is <_ [0_3 _“ rn(t)} V ot csbn(t) v
driven by a scalar output signglfrom the drive system. The
measurement of outpyt¢) is easily corrupted with noise(t),

i.e., the noisy outpug(t) = y(t) + n(t). This noisy output will Let W (t) = V'V and thereford¥ (1) = V/2V'V, we have

drive the adaptive response system (12). Therefore, we arrive at . 1[es e Ca
the following error dynamics: W < —5 [g "o m(t)} W+ NG 8 (1).
e(t) =—re+ow(f, ©) +9w(0, 0) + (0, @) + 5 If n(t) is small enough such thét,/c; )7 () is dominated by

cs/c2, then we obtain, after the transient tinfie(t)|| bounded
above bya sup,s.q 6,(t) for some constant.
¢ =—cl@(f, &)+ ¢n (25) Theorem 2: Ifthe (PE) conditions in Theorem 1 are satisfied,
the synchronization error remains bounded if the noise is small
wheree,, = ¢w(n, 0)+1(n, 0),w,; = Ba(fi(y+n)—fi(y)), enough. Furthermore, the ultimate bound is proportional to the
andy,, = nl'w are the additional terms due to the noise. magnitude of noise. O

O=Ai+wy Yi=1 ...,p
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Fig.6. (a) Synchronization erré —, of Duffing system with noisy coupling Fig- 7. Oscilloscope of DSP-based experiments of synchronization error
signal using robust adaptive law. (b) Synchronization efrprr. of Duffing  £:—z1 of Chua’s circuit.
system with noisy coupling signal using robust adaptive law.

V. DSP-BASED EXPERIMENTS

Note that for signals having a higher degree of PE, the faster . )
the convergence fdfe(t)| . In this case, the tolerance of amount 10 demonstrate the validity of the above-mentioned theo-
of disturbance is also larger. An alternative method to enlargical derivations, we carry out DSP-based experiments. The
the tolerance of disturbance is to modify the update law for tiélaptive synchronization scheme is implemented on a dSPACE
unknown parameters in the following form: System DS1102 which has a digital signal processor (DSP)

TMS320C31 on board. This system has four pairs of AD/DA
) channels with a 12-bit data sampling rate. Using one channel of
¢ =—colW(f(@), ») —ol'¢ (27)  ADIDA as the scalar coupling signal, the remaining channels
are used to output the states and/or the parameters. This
wheres > 0 andeg(t) = §(t) — 7(t) = e(t) +n(t). Due to the Setup realizes the synchronization concepts by block-diagram
additional last term on the right hand side of (27), the resultingodeling environment. Therefore, we are able to preview the
error dynamics (26) will have a negative number at the (3, 8ystem performance prior to actual implementation. After
entry of A. This makes the adaptive synchronizer robust whirchieving the desired results in simulated environment, the
under influence from external disturbances. The drawback @ject code is generated by Real-Time Workshop and then
(27) is that even without disturbance and PE holds, synchronigirectly downloaded into the DSP board. This process reduces
tion errors do not converge to zero. To cope with this problerile algorithm coding to a more straightforward and systematic
the gaino in (27) can be replaced by a term proportional to th@pproach, which includes coding, compiling, linking, and
error betweery and the only measurable signali.e., downloading to the target software.

The Cockpit-DSPACE software is a graphical user interface
for the real-time control and fine tuning control gains online.
The example used for practical implementation is the Chua cir-
cuit given in Section IV. In Figs. 7-9, the oscilloscope images
In applying the update law (28), the estimated parameters will synchronization error$;—c; and parameter estimation er-
converge to their true values when the driving signal is free adrsas, a4 are shown, respectively. The results of the practical
noise and the excitation is persistent. implementations are consistent to that of numerical simulations.

Remark 4: In adaptive control literature [19], [20], the up- Potential applications can be extended from the synchroniza-
date laws (27) and (28) are called themodification scheme tion design. For example, simple signal masking based chaotic
and thee; -modification scheme, respectively. communications; parameter division multiple access (PDMA);

A simulation example is performed to show the effect of ther synchronization based chaotic cryptosystems. The signal
modified adaptation laws. Consider the adaptive synchronizaasking based communications, where a message is added to
tion of Duffing—Holmes system same as Example 1, we théime output of the transmitter and then recovered at the receiver’s
assume a noisy driving signalt) = y(t) + n(¢) [wheren(¢) end, provide minimal security. In PDMA, parameters of the
is a white noise with zero mean and uniformly distribution anslystem are modulated by binary messages [11]. The setback
magnitude of 0.1]. Select the parameters: 0.0005 in the ro- arises from the slow convergence of the receiver's parameters
bust update law, then the response of synchronization errorstarghat of the true values. To upgrade the security, standard
shown in Fig. 6. cryptosystem theory using parameters as keys provides a more

¢ = —eolw (f(7), &) — Kleo|Tp. (28)
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and only uses a scalar transmitted signal to drive the response
system. Although the synchronization of complete states is
achieved based on the convergence of estimated parameters,
the condition that the injection functions must be persistent
excitation can be satisfied easier for a chaotic driving signal
which has a rich dynamical pattern systems. Furthermore,
this method is widely applied to synchronization problems of
chaotic and hyperchaotic systems after representing them in
the output injection form. In presence of measurement noise,
a robust adaptive response system is discussed based on the
Lyapunov method. Oscilloscope images further show that
for practical implementations the results are consistent with

T . : : . [1]

time (sec)
Fig. 8. Oscilloscope of DSP-based experiments of parameter@yrar of
Chua'’s circuit.

(3]

Stopped
: 2s fdiv
(2s/div)
MORM500S /s

[4]

(6]
(71

9]

(20]

(11]

time (sec)
Fig. 9. Oscilloscope of DSP-based experiments of parameter&srar, of
Chua’s circuit.

[12]

[13]
secure application for chaotic synchronization based commu-
nications. Take Chua’s circuit as an example, some parametens]
in the transmitter can be used as the key in a coding function.
Then, the coding function transforms the plaintext (messageg)s;
into a cyphertext. This cyphertext is then transmitted to the
receiver side. Since the receiver has the same key (paramet 1rg
as the transmitter due to adaptive synchronization, we are able
to decode the cyphertext. This methodology greatly enhance
the security. (17]

VI. CONCLUSIONS [18]

In this paper, a unified approach for synchronization andi9]
adaptive synchronization have been developed for chaotic
systems of the output injection form. This approach utilizeézo]
an adaptive observer design to derive the response system for]
synchronization where there is parameter mismatch. Compared
with other adaptive methods, this approach eliminates Ca|CL{22]
lating the Lipschitz constant for nonlinearity of chaotic systems

theoretical derivations.
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