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Based on Lyapunov stabilization theory, this paper proposes a new generic criterion of global
chaos synchronization between two coupled chaotic systems from a unidirectional linear error
feedback coupling approach. The criterion is successfully applied to some typical chaotic
systems with different types of nonlinearity, such as the classic Chua’s circuit, the modified
Chua’s circuit with a sine function, and the Rössler and Lorenz chaotic systems. The coupling
parameters are determined according to the new criterion so as to ensure the coupled systems’
global chaos synchronization.
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1. Introduction

This paper deals with the current popular prob-
lem of chaos synchronization, defined in the earlier
papers [Pecora & Carroll, 1990; Carroll & Pecora,
1991]. Chaos synchronization can mainly be clas-
sified into two types called mutual synchroniza-
tion and master–slave synchronization according to
the coupling configuration [Ogorzalek, 1993; Wu &
Chua, 1993; Wu & Chua, 1994; Chen, 1998; Chen
& Dong, 1998; Ushio, 1999]. The former is with
bidirectional coupling [Chua et al., 1993], while the
latter is with unidirectional coupling [Kapitaniak
et al., 1996; Suykens & Vandewalle, 1997; Grassi
& Mascolo 1997; Grassi & Mascolo, 1999]. Ac-
cording to the linearity of the coupling signal, they
can be classified into linear coupling and nonlinear
coupling.

Due to the simple configuration and easy im-
plementation, the unidirectional linear error feed-
back coupling scheme can be adopted in many real
systems. In order to design a response or slave
chaotic system by using the unidirectional linear
error feedback methodology, the choice of the feed-
back gain or coupling parameters is a problem to
be considered. Although some specific results have
been given to determine the feedback gain or cou-
pling parameters for particular systems such as
Lur’e systems [Suykens & Vandewalle, 1997; Curran
et al., 1997; Suykens et al., 1998] a generic condition
of global chaos synchronization has not been estab-
lished for general chaotic systems. This strongly
motivates the study on a new task of developing
a generic criterion of global chaos synchronization
for a general chaotic system, which, for a specific
chaotic system, should easily deduce a specific feed-
back gain.
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In this paper, based on Lyapunov stability
theory, we study the synchronization of two coupled
chaotic systems using the unidirectional linear error
feedback scheme. Our aim is to establish a generic
condition of global chaos synchronization for a gen-
eral chaotic system, and to apply the condition to
some typical chaotic systems, for example, the clas-
sic Chua’s circuit, the modified Chua’s circuit with
a sine function, Rössler and Lorenz chaotic systems
such that synchronization is achieved.

The layout of this paper is as follows. In Sec. 2,
based on Lyapunov stability theory, a generic con-
dition of global chaos synchronization concerns two
coupled systems using the unidirectional linear er-
ror feedback coupling scheme, and a novel global
chaos synchronization criterion are established in
the form of Lyapunov matrix inequality. Such con-
ditions are applied to some typical chaotic systems
with different types of nonlinear functions in Sec. 3,
such as the classic Chua’s circuit, the modified
Chua’s circuit with a sine function, the Rössler and
Lorenz chaotic systems. To that end, conditions for
choosing the feedback gain or coupling parameters
are devised to ensure global chaos synchronization
for these chaotic systems. Finally, conclusion re-
marks are then given in Sec. 4.

2. Global Chaos Synchronization
Criterion

Considering a chaotic system with state equation in
the form

ẋ = Ax+ g(x) + u (1)

where x ∈ Rn is the state vector, u ∈ Rn is the ex-
ternal input vector, A ∈ Rn×n is a constant matrix
and g(x) is a continuous nonlinear function.

Assuming that

g(x) − g(x̃) = Mx,x̃(x− x̃) (2)

for a bounded matrix Mx,x̃, in which the elements
are dependent on x and x̃. As illustrated in Sec. 3,
most of the chaotic systems can be described by
Eqs. (1) and (2).

Using the unidirectional linear error feedback
coupling approach, a slave system for Eq. (1) can
be constructed as follows:

˙̃x = Ax̃+ g(x̃) + u+K(x− x̃) (3)

where K is a diagonal matrix with diagonal ele-
ments d1, d2, . . . , dn being the coupling coefficients.

From Eqs. (1) and (3), the following error sys-
tem equation is formed:

ė = Ae+ g(x) − g(x̃)−Ke
= Ae+Mx,x̃e−Ke
= (A+Mx,x̃ −K)e (4)

where e = x− x̃.

Theorem 1. If there exists a positive definite sym-
metric constant matrix P such that

(A−K +Mx,x̃)
TP

+ P (A−K +Mx,x̃) ≤ µI < 0 (5)

uniformly for all x, x̃ in the phase space, where µ
denotes a negative constant, and I is the identity
matrix, then the error system (4) is globally expo-
nentially stable.

Proof. Choose the Lyapunov function

V = eTPe (6)

where P is a positive definite symmetric constant
matrix.

Then, its derivative is

V̇ = ėTPe+ eTP ė

= [(A−K +Mx,x̃)e]T Pe

+ eTP [(A−K +Mx,x̃)e]

= eT
[
(A−K +Mx,x̃)

TP + P (A−K +Mx,x̃)
]
e

≤ µ‖e‖2

< 0 (7)

where ‖ · ‖ denotes the Euclidean norm.
Based on the Lyapunov stability theory [Khalil,

1996; Martynyuk, 1998], it is known that, system
(4) is globally exponentially stable, and hence, the
two systems (1) and (3) are globally asymptotically
synchronized. �

3. Synchronization of Typical
Chaotic Systems

To demonstrate the use of chaos synchronization
criterion proposed herein, four examples of chaotic
systems are considered.
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3.1. Chua’s circuit

Chua’s circuit [Shil’nikov, 1994] can be described
by 

ẋ = α(y − x− f(x))

ẏ = x− y + z

ż = −βy
(8)

where α > 0, β > 0, a < b < 0, f(·) is a piecewise
linear function described by

f(x) = bx+
1

2
(a− b)(|x+ 1| − |x− 1|) . (9)

In Eq. (9), we have

f(x)− f(x̃) = kx,x̃(x− x̃) (10)

where kx,x̃ is dependant on x and x̃, and varies in
the interval [a, b] for t ≥ 0, that is, kx,x̃ is bounded
by the condition of a ≤ kx,x̃ ≤ b < 0 (see Fig. 1).

Referring to Eq. (3), the following slave system
is constructed for Eq. (8) with linear unidirectional
coupling:


˙̃x = α(ỹ − x̃− f(x̃)) + δx(x− x̃)

˙̃y = x̃− ỹ + z̃ + δy(y − ỹ)

˙̃z = −βỹ + δz(z − z̃) .

(11)

Subtracting Eq. (11) from Eq. (8), we obtain,


ėx = α(ey − ex − kx,x̃ex)− δxex
ėy = ex − ey + ez − δyey
ėz = −βey − δzez

(12)

where ex = x− x̃, ey = y − ỹ, and ez = z − z̃.
Equation (12) can be rewritten as

ė = Ae+ g(x) − g(x̃)−Ke (13)

where

A =


−α α 0

1 −1 1

0 −β 0

 , K =


δx 0 0

0 δy 0

0 0 δz

 ,

e =


x− x̃
y − ỹ
z − z̃



Fig. 1. Graphical representation of kx,x̃ and Eq. (10).

and

g(x) =


−αf(x)

0

0

 .
Consider

g(x) − g(x̃) =


−α(f(x)− f(x̃))

0

0



=


−αkx,x̃(x− x̃)

0

0



=


−αkx,x̃ 0 0

0 0 0

0 0 0



x− x̃
y − ỹ
z − z̃


= Mx,x̃e (14)

where

Mx,x̃ =


−αkx,x̃ 0 0

0 0 0

0 0 0

 .
From Eqs. (13) and (14), we get

A−K +Mx,x̃ =

−α− δx − αkx,x̃ α 0

1 −1− δy 1

0 −β −δz

 .
(15)



2242 G.-P. Jiang & W. K. S. Tang

Choosing

P =


p1 0 0

0 p2 0

0 0 p3

 (16)

where p1, p2 and p3 are positive constants, then

(A−K +Mx,x̃)
TP + P (A−K +Mx,x̃)− µI

=


−δx − αkx,x̃ − α α 0

1 −1− δy 1

0 −β −δz


T 

p1 0 0

0 p2 0

0 0 p3



+


p1 0 0

0 p2 0

0 0 p3



−δx − αkx,x̃ − α α 0

1 −1− δy 1

0 −β −δz

−

µ 0 0

0 µ 0

0 0 µ



=



−2p1

(
αkx,x̃ + δx + α+

µ

2p1

)
p1α+ p2 0

p1α+ p2 −2p2

(
1 + δy +

µ

2p2

)
p2 − p3β

0 p2 − p3β −2p3

(
δz +

µ

2p3

)


. (17)

In Eq. (17), we have

∆1 = −2p1

(
αkx,x̃ + δx + α+

µ

2p1

)
(18)

∆2 = det


−2p1

(
αkx,x̃ + δx + α+

µ

2p1

)
p1α+ p2

p1α+ p2 −2p2

(
1 + δy +

µ

2p2

)


= 4p1p2

(
αkx,x̃ + δx + α+

µ

2p1

)(
1 + δy +

µ

2p2

)
− (p1α+ p2)2 (19)

∆3 = det



−2p1

(
αkx,x̃ + δx + α+

µ

2p1

)
p1α+ p2 0

p1α+ p2 −2p2

(
1 + δy +

µ

2p2

)
p2 − p3β

0 p2 − p3β −2p3

(
δz +

µ

2p3

)


= 2p1(p2 − p3β)2

(
δx + αkx,x̃ + α+

µ

2p1

)

− 2p3

(
δz +

µ

2p3

)(
4p1p2

(
δx + αkx,x̃ + α+

µ

2p1

)(
1 + δy +

µ

2p2

)
− (p1α+ p2)2

)
. (20)
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Assuming that ∆1 < 0, ∆2 > 0 and ∆3 < 0, we obtain

δx > −α− αkx,x̃ −
µ

2p1

δy >
(p1α+ p2)2

4p1p2

(
δx + αkx,x̃ + α+ µ

2p1

) − 1− µ

2p2

δz >

p1(p2 − p3β)2

(
δx + αkx,x̃ + α+

µ

2p1

)
p3

(
4p1p2

(
δx + αkx,x̃ + α+

µ

2p1

)(
1 + δy +

µ

2p2

)
− (p1α+ p2)2

) − µ

2p3
.

(21)

Letting p2 = βp3 for simplicity, Eq. (21) becomes

δx > −α− αkx,x̃ −
µ

2p1

δy >
(p1α+ p2)2

4p1p2

(
δx + αkx,x̃ + α+

µ

2p1

) − 1− µ

2p2

δz > −
µ

2p3
.

(22)

Since α > 0, β > 0 and a ≤ kx,x̃ ≤ b < 0, we know
that, if we choose suitable δx, δy and δz such that

δx>−α(a+ 1)− µ

2p1

δy>
(p1α+ p2)2

4p1p2

(
δx + aα+ α+

µ

2p1

) − 1− µ

2p2

δz>−
µ

2p3

(23)

then (A−K+Mx,x̃)
TP+P (A−K+Mx,x̃)−µI < 0.

According to Theorem 1, the two unidirectional
coupled Chua’s systems (8) and (11) are globally
asymptotically synchronized.

Theorem 2. For two coupled Chua’s systems (8)
and (11), if δx, δy and δz are chosen such that in-
equality (23) holds, then the two Chua’s systems are
globally asymptotically synchronized.

Assuming that α = 9.78, β = 14.97, a = −1.31
and b = −0.75, the system (8) exhibits a chaotic
behavior (see Fig. 2). By selecting µ = −0.2,

P =

[
2 0 0
0 14.97 0
0 0 1

]
and the coupling parameters as

δx = 4.0, δy = 10.0 and δz = 1.0, the inequality
(23) holds. Based on Theorem 2, the two coupled
Chua’s circuits (8) and (11) with the above param-
eters are globally asymptotically synchronized, as
shown in Fig. 3.

Considering the special case with δy = δz = 0,
the two x-coupled Chua’s circuits become:

ẋ = α(y − x− f(x))

ẏ = x− y + z

ż = −βy

and 
˙̃x = α(ỹ − x̃− f(x̃)) + δx(x− x̃)

˙̃y = x̃− ỹ + z̃

˙̃z = −βỹ .
(24)

The error system of two x-coupled Chua’s circuits
(24) is 

ėx = α(ey − ex − kx,x̃ex)− δxex
ėy = ex − ey + ez

ėz = −βey .
(25)

If δx ≥ −λaα with (λ > 1), and P =

[
β 0 0
0 αβ 0
0 0 α

]
, from

Eqs. (7), (15) and (16), we get

V̇ = −2(αkx,x̃ + δx)βe2
x − 2αβ(ex − ey)2

≤ −2(aα + δx)βe2
x − 2αβ(ex − ey)2

≤ −2(1− λ)aαβe2
x − 2αβ(ex − ey)2

= −2|(−a)(λ − 1)|αβe2
x − 2αβ(ex − ey)2

≤ 0 .

Thus we have V̇ = 0 if ex = 0, ey = 0 and for any
value of ez. However, from Eq. (25), we have, if
ex ≡ 0 and ey ≡ 0 then ez ≡ 0. Therefore, by us-
ing LaSalle invariance principle [LaSalle, 1976], we
know that the error system (25) is asymptotically
stable, and hence the two x-coupled Chua’s circuits
(24) with the above parameters are also globally
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Fig. 2. The double scroll attractors of Chua’s circuit.

Fig. 3. The difference signals ex, ey, ez in two coupled Chua’s circuits with the coupling coefficients δx = 4.0, δy = 10.0 and
δz = 1.0.
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Fig. 4. The difference signals ex, ey, ez in two x-coupled Chua’s circuits with the coupling coefficient δx = 16.0.

asymptotically synchronized. The simulation result
with δx = 16, δy = 0, δz = 0 is shown in Fig. 4.

3.2. Modified Chua’s circuit with a
sine function

Unlike the classic Chua’s circuit, the nonlinear func-
tion of this modified Chua’s circuit is governed by
a trigonometric function [Tang et al., 2001b], which
is a continuous function. It is reported that n-scroll
attractors can be obtained, as shown in Fig. 5. The
dimensionless state equation is given by

ẋ = α(y − f(x))

ẏ = x− y + z

ż = −βy
(26)

where

f(x) =



bπ

2a
(x− 2ac) if x ≥ 2ac

−b sin

(
πx

2a
+ d

)
if − 2ac < x < 2ac

bπ

2a
(x+ 2ac) if x ≤ −2ac .

(27)

Here, in Eqs. (26) and (27), α, β, a, b, c, d are
suitable constants, and α > 0, β > 0, a > 0, b > 0.

An n-scroll attractor is generated with the fol-
lowing relationship:

n = c+ 1 (28)

and

d =

{
π if n is odd

0 if n is even .
(29)

In Eq. (27), we have

f(x)− f(x̃) = kx,x̃(x− x̃) (30)

where kx,x̃ is dependent on x and x̃, and satisfies
the condition of −πb/2a ≤ kx,x̃ ≤ πb/2a (similar to
Fig. 1).

The slave system for system (26) by linear uni-
directional coupling is

˙̃x = α(ỹ − f(x̃)) + δx(x− x̃)

˙̃y = x̃− ỹ + z̃ + δy(y − ỹ)

˙̃z = −βỹ + δz(z − z̃) .
(31)
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Fig. 5. Four-scroll attractors of the modified Chua’s circuit with a sine function.

Subtracting Eq. (31) from Eq. (26), the following
error system equation is obtained,

ėx = α(ey − kx,x̃ex)− δxex
ėy = ex − ey + ez − δyey
ėz = −βey − δzez

(32)

where ex = x− x̃, ey = y − ỹ, and ez = z − z̃.
Equation (32) can be rewritten as

ė = Ae+ g(x) − g(x̃)−Ke (33)

where

A =


0 α 0

1 −1 1

0 −β 0

, K =


δx 0 0

0 δy 0

0 0 δz

 ,

e =


x− x̃
y − ỹ
z − z̃



and

g(x) =


−αf(x)

0

0

 .
Hence, g(x) − g(x̃) = Mx,x̃e and

Mx,x̃ =


−αkx,x̃ 0 0

0 0 0

0 0 0

 .
From Eqs. (32) and (33), we get

A−K +Mx,x̃ =


−δx − αkx,x̃ α 0

1 −1− δy 1

0 −β −δz

 .
(34)

Using a similar positive definite symmetric matrix
P as in Eq. (16) and following the same procedures,
the below conditions are obtained
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δx > −αkx,x̃ −
µ

2p1

δy >
(p1α+ p2)2

4p1p2

(
δx + αkx,x̃ +

µ

2p1

) − 1− µ

2p2

δz >

p1(p2 − p3β)2

(
δx + αkx,x̃ +

µ

2p1

)
p3

(
4p1p2

(
δx + αkx,x̃ +

µ

2p1

)(
1 + δy +

µ

2p2

)
− (p1α+ p2)2

) − µ

2p3
.

(35)

For simplicity, let p2 = βp3, then from Eq. (35)

δx > −αkx,x̃ −
µ

2p1

δy >
(p1α+ p2)2

4p1p2

(
δx + αkx,x̃ +

µ

2p1

) − 1− µ

2p2

δz > −
µ

2p3
.

(36)

Since α > 0, β > 0 and −πb/2a ≤ kx,x̃ ≤ πb/2a, δx,
δy and δz are chosen such that

δx >
πbα

2a
− µ

2p1

δy >
(p1α+ p2)2

4p1p2

(
δx −

πbα

2a
+

µ

2p1

) − 1− µ

2p2

δz > −
µ

2p3

(37)

then (A−K +Mx,x̃)
TP + P (A−K +Mx,x̃) < µI.

Theorem 3. For the two coupled modified Chua’s
systems (26) and (31), if δx, δy and δz are chosen
such that the inequality (37) holds, then the coupled
modified Chua’s systems are globally asymptotically
synchronized.

Let α = 10.814, β = 14.0, a = 1.3, b = 0.11,
c = 3 and d = 0, the system (26) exhibits a chaotic

behavior (see Fig. 5). Selecting P =

[
2 0 0
0 14 0
0 0 1

]
,

µ = −0.8, and the coupling parameters as δx = 2.8,
δy = 9.0 and δz = 1.0, then the inequality (37)
holds. Hence using Theorem 3, the two coupled
modified Chua’s circuits (26) and (31) with the
above parameters are globally asymptotically syn-
chronized, as shown in Fig. 6.

Similar to the case in Chua’s circuit, the two
x-coupled modified Chua’s circuits with the above
parameters are also globally asymptotically syn-
chronized with δx > λα(1 + πb/2a) for λ > 1,

δy = δz = 0 and P =

[
β 0 0
0 αβ 0
0 0 α

]
. The simulation

result, with δx = 20 and δy = δz = 0, is shown in
Fig. 7.

3.3. Rössler system

Rössler system [Rössler, 1976] is described by the
following equation

ẋ = −(y + z)

ẏ = x+ αy

ż = b+ z(x− c)
(38)

where a, b and c denote positive parameters.
Using the unidirectional linear error feedback

coupling approach, the slave system of (38) is con-
structed as follows:

˙̃x = −(ỹ + z̃) + δx(x− x̃)

˙̃y = x̃+ aỹ + δy(y − ỹ)

˙̃z = b+ z̃(x̃− c) + δz(z − z̃) .
(39)

In Eqs. (38) and (39), we assume

ė = Ae+ g(x) − g(x̃)−Ke (40)

where

A =


0 −1 −1

1 a 0

0 0 −c

 , K =


δx 0 0

0 δy 0

0 0 δz

 ,

e =


x− x̃
y − ỹ
z − z̃


and

g(x) =


0

0

xz

 .
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Fig. 6. The difference signals ex, ey, ez in two coupled modified Chua’s circuits with the coupling coefficients δx = 2.8,
δy = 9.0 and δz = 1.0.

Fig. 7. The difference signals ex, ey, ez in two x-coupled modified Chua’s circuits with the coupling coefficient δx = 20.
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Hence, g(x) − g(x̃) = Mx,x̃e and

Mx,x̃ =


0 0 0

0 0 0

z̃ 0 x

 .
We have

A−K +Mx,x̃ =


−δx −1 −1

1 a− δy 0

z̃ 0 x− c− δz

 . (41)

Using the same positive definite, symmetric matrix P as in Eq. (16) and using the same procedures, the
conditions of choosing suitable δx, δy and δz such that (A−K +Mx,x̃)

TP + P (A−K +Mx,x̃) < µI are:

δx > −
µ

2p1

δy > a+
(p2 − p1)2

4p1p2

(
δx +

µ

2p1

) − µ

2p2

δz > x− c+

p2(p3z̃ − p1)2

(
δy +

µ

2p2
− a

)
p3

(
4p1p2

(
δx +

µ

2p1

)(
δy − a+

µ

2p2

)
− (p2 − p1)2

) − µ

2p3
.

(42)

Fig. 8. The attractors of Rössler chaotic system.
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Fig. 9. The difference signals ex, ey , ez in two coupled Rössler chaotic systems with the coupling coefficients δx = 1.0,
δy = 0.3 and δz = 13.

Since the motion trajectory of chaotic system is
bounded, the third inequality in Eq. (42) holds for
a large enough δz.

Theorem 4. For the two coupled Rössler systems
(38) and (39), if δx, δy and δz are chosen such that
the inequality (42) holds, then these two systems
(38) and (39) are globally asymptotically synchro-
nized.

Selecting a = 0.2, b = 0.2, c = 5.7, the system
exhibits a chaotic behavior as depicted in Fig. 8,
from which, −10 < x < 13, −12 < y < 8, and
0 < z < 24. Choosing µ = −0.2, p1 = p2 = 2,
p3 = 0.1, and the coupling parameters as δx = 1.0,
δy = 0.3, δz = 13, obviously, the inequality (42)
holds with these parameters, and hence, by using
Theorem 4, we know that the two coupled Rössler
systems (38) and (39) are globally asymptotically
synchronized, as shown in Fig. 9.

3.4. Lorenz system

The Lorenz system [Lorenz, 1963; Cuomo et al.,
1993] is given by

ẋ = σ(y − x)

ẏ = ρx− y − xz
ż = xy − βz

(43)

where σ, ρ and β are positive.
Using the unidirectional linear error feedback

coupling approach, the slave system of Eq. (43) can
be constructed as follows:

˙̃x = σ(ỹ − x̃) + δx(x− x̃)

˙̃y = ρx̃− ỹ − x̃z̃ + δy(y − ỹ)

˙̃z = x̃ỹ − βz̃ + δz(z − z̃) .
(44)

In Eqs. (43) and (44), we assume

ė = Ae+ g(x) − g(x̃)−Ke (45)

where

A =


−σ σ 0

ρ −1 0

0 0 −β

 , K =


δx 0 0

0 δy 0

0 0 δz

 ,

e =


x− x̃
y − ỹ
z − z̃


and

g(x) =


0

−xz
xy

 .
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Hence, g(x) − g(x̃) = Mx,x̃e and

Mx,x̃ =


0 0 0

−z 0 −x̃
y x̃ 0

 .
We have

A−K +Mx,x̃ =


−σ − δx σ 0

ρ− z −1− δy −x̃
y x̃ −β − δz

 . (46)

Using a similar positive definite, symmetric matrix P as in Eq. (16) and letting p2 = p3, the conditions of
choosing suitable δx, δy and δz such that (A−K +Mx,x̃)

TP + P (A−K +Mx,x̃) < µI are:

δx > −σ −
µ

2p1

δy >
(p1σ + p2(ρ− z))2

4p1p2

(
δx + σ +

µ

2p1

) − 1− µ

2p2

δz >

(
1 + δy +

µ

2p2

)
(p2y)2

4p1p2

(
σ + δx + µ

2p1

)(
1 + δy +

µ

2p2

)
− (p1σ + p2(ρ− z))2

− β − µ

2p3
.

(47)

Fig. 10. The attractors of Lorenz chaotic system.
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Fig. 11. The difference signals ex, ey, ez in two coupled Lorenz chaotic systems with the coupling coefficients δx = 45.6,
δy = 16.0 and δz = 110.0.

Due to the fact that the motion trajectory of chaotic
system is bounded, the second and third inequali-
ties in Eq. (47) hold for sufficiently large δy and δz .

Theorem 5. For the two coupled Lorenz sys-
tems (43) and (44), if δx, δy and δz are chosen
such that the inequality (47) holds, then these two
systems (43) and (44) are globally asymptotically
synchronized.

For σ = 16, ρ = 45.6 and β = 4, the Lorenz
system (43) exhibits a chaotic behavior, as shown
in Fig. 10. From Fig. 10, −30 < x < 35, −40 <
y < 50, 0 < z < 90. Hence, choosing µ = −0.1,
p1 = p2 = p3 = 1, and the coupling parameters as
δx = 45.6, δy = 16.0 and δz = 110.0, the inequality
(47) holds. By using Theorem 5, the two coupled
Lorenz systems (43) and (44) are globally asymp-
totically synchronized. The simulation results are
given in Fig. 11.

4. Conclusions

In this paper, based on the unidirectional linear er-
ror feedback scheme for chaos synchronization, a
new criterion is devised for choosing the suitable
coupling parameters to ensure global chaos synchro-
nization. It is also demonstrated that it can be
applied to chaotic systems with different types of
nonlinearity.

In general, the criterion proposed can be ap-
plied for all chaotic systems described by Eqs. (1)
and (2). Hence, similar proof can be obtained for
Murali–Lakshmanan–Chua (MLC) circuit [Murali
et al., 1994; Murali & Lakshmanan, 1997], the mod-
ified Chua’s circuit with nonlinear quadratic func-
tion [Tang & Man, 1998; Tang et al., 2001a], and
so on. One can utilize the criterion to ensure the
chaos synchronization, and easily obtain the meth-
ods for choosing feedback gain or coupling parame-
ters for the synchronization of these coupled chaotic
systems.

Acknowledgments

The authors are grateful to Prof. Guanrong Chen
for the helpful discussions with him. This work
is supported in part by University Key Teacher
Foundation of Ministry of Education (MOE), P. R.
China [Project No. NJUPT 2000-MOE-02] and a
grant from the Research Grants Council of the Hong
Kong Special Administrative Region, P. R. China
[Project No. CityU 9040565].

References
Carroll, T. L. & Pecora L. M. [1991] “Synchronization

chaotic circuits,” IEEE Trans. Circuits Syst. 38(4),
453–456.

Chen, G. [1998] Control and Synchronization of Chaotic



Global Synchronization Criterion for Coupled Chaotic Systems 2253

Systems, A Bibliography, Department of Electri-
cal Engineering, University of Houston, TX, USA,
available via ftp:ftp.egr.uh.edu/pub/TeX/chaos.tex.

Chen, G. & Dong, X. [1998] From Chaos to Order —
Methodologies, Perspectives and Applications (World
Scientific, Singapore).

Chua, L. O., Itoh, M., Kocarev, L. & Eckert, K. [1993]
“Chaos synchronization in Chua’s circuit,” J. Circuits
Syst. Comput. 3(1), 93–108.

Cuomo, K. M., Oppenheim, A. V. & Strogatz, S. H.
[1993] “Synchronization of Lorenz-based chaotic
circuits with applications to communications,” IEEE
Trans. Circuits Syst. II 40(10), 626–633.

Curran, P. F., Suykens, J. A. K. & Chua, L. O.
[1997] “Absolute stability theory and master–slave
synchronization,” Int. J. Bifurcation and Chaos 7(12),
2891–2896.

Grassi, G. & Mascolo, S. [1997] “Nonlinear observer
design to synchronize hyperchaotic systems via a
scalar signal,” IEEE Trans. Circuits Syst. I 44(10),
1011–1014.

Grassi, G. & Mascolo, S. [1999] “Synchronizing high di-
mensional chaotic systems via eigenvalue placement
with application to cellular neural networks,” Int. J.
Bifurcation and Chaos 9(4), 705–711.

Kapitaniak, T., Sekieta, M. & Ogorzalek, M. [1996]
“Monotone synchronization of chaos,” Int. J. Bifur-
cation and Chaos 6(1), 211–217.

Khalil, H. K. [1996] Nonlinear Systems, 2nd edition,
(Prentice Hall, NJ).

LaSalle, J. P. [1976] The Stability of Dynamical Systems
(SIAM, Philadelphia, PA).

Lorenz, E. N. [1963] “Deterministic nonperiodic flow,” J.
Atmos. Sci. 20, 130–141.

Martynyuk, A. A. [1998] Stability by Liapunov’s Matrix
Function Method with Applications (Marcel Dekker,
NY).

Murali, K., Lakshmanan, M. & Chua, L. O. [1994] “The
simplest dissipative non-autonomous chaotic circuit,”
IEEE Trans. Circuits Syst. I 41(6), 462–463.

Murali, K. & Lakshmanan, M. [1997] “Synchronization
through compound chaotic signal in Chua’s circuit and

Murali–Lakshmanan–Chua circuit,” Int. J. Bifurca-
tion and Chaos 7(2), 415–421.

Nijmeijer, H. & Mareels, I. M. Y. [1997] “An observer
looks at synchronization,” IEEE Trans. Circuits Syst.
I 44(10), 882–890.

Ogorzalek, M. J. [1993] “Taming chaos — Part I: Syn-
chronization,” IEEE Trans. Circuits Syst. I 40(10),
693–699.

Pecora, L. M. & Carroll, T. L. [1990] “Synchronization
in chaotic systems,” Phys. Rev. Lett. 64(8), 821–824.
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