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Using Characteristic Multiplier Loci to Predict
Bifurcation Phenomena and Chaos—A Tutorial

Laurent Duchesne

Abstract—This paper presents a tutorial on the interpretation
and applications of characteristic multipliers (CM’s). It gives a
definition of this concept and its applications using Chua’s circuit
as a vehicle of illustration, Two basic bifurcation routes to chaos
are studied: period doubling and transition to torus.

I. INTRODUCTION

HE PURPOSE of this paper is to explain the mean-

ing of the concept of characteristic multiplier (CM) for
dynamical systems and use it to predict various bifurcation
phenomena. We will use Chua’s circuit {1} to illustrate the
physical interpretation and applications of the CM loci for
predicting the onset of two standard routes to chaos: namely,
the period-doubling route and the quasi-periodic route, corre-
sponding to the birth of a rorus, and its eventual breakdown
to chaos.

1. DEFINITION OF THE CHARACTERISTIC MULTIPLIER

2.1. Autonomous Systems

For pedagogical reasons, we will consider only the class
of autonomous continuous-time dynamical systems defined by
the state equation:

z = f(x);

where & = dz/dt, z(t) is the state at time . To show explicitly
the dependence on the initial condition, the solution # = D(t)
of the state equation is often written in the form ®(zo) and
read as the flow from z( evaluated at time ¢.

As a vehicle of illustration, we will use throughout this paper
the autonomous system describing Chua’s circuit [1]-]3],
namely, the dimensionless Chua’s equation:

: aly —z — f(x))
y=x-y+z
z=—Py

z(to) = To

€T

where f(z) = bz + $(a — b)(Jz + 1| — & — 1]).

2.2. Poincaré Map

Consider an autonomous system with a limit cycle T'. Let
z* be a point on the limit cycle and let ¥ be a hyperplane
transversal (i.e., perpendicular) to [ at z*. The trajectory
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Fig. 1. A limit cycle obtained with v = 7.1, 3 = 100/7, @ = —8/7, and
b = —5/7 in the dimensionless Chua’s equation. Trajectories originating near
the fixed point x* will necessarily return to points near x*, thereby defining
a mapping P, valid in a small neighborhood of «*.

emanating from £* will hit £ at #* in 7" seconds, where T is
the minimum period of the limit cycle. Due to the continuity
of ®, with respect to the initial condition, trajectories starting
on ¥ in a sufficiently close neighborhood of z* will, in
approximately T seconds, intersect X in the vicinity of z*.
Hence, ®; and ¥ define a mapping P of some neighborhood
of z* onto a neighborhood of z*. The function P is called
a Poincaré map of the autonomous system. Since P(z*) =
z*, the point * is called a fixed point of P. See Fig.
1.

2.3. Characteristic Multiplier

Consider a system with a limit cycle and a Poincare map
P associated with this cycle at some convenient (arbitrarily
chosen) fixed point z* located on this cycle. The local behavior
of the map near z* is determined by linearising the map at .
In particular, the linear map

6xpy1 = DP(z") bz,

where DP(z*) denotes the Jacobian matrix of P evaluated
at z = z*, governs the evolution of the perturbation 6z
in a neighborhood of the fixed point £*. The eigenvalues of
DP(z*) are called CM’s of the periodic solution.

To illustrate the physical meaning of the CM’s associated
with a limit cycle, the three waveforms [x(t), y(t), 2(1)]
associated with three different limit cycles from Chua’s circuit
are shown in Figs. 2(a), 3(a), and 4(a), respectively. For each
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TABLE I

DATA FOR PLOTTING THE CM Locrt IN FIG. 5

CM

normalized

N D S s G s

a . remarks
1 2 period
1 6.79766 0.996932 0.250806E-2 1 real
7.07 0.018047 0.5132 1
7.2 0.343147 0.030439 1
2 7.3419 0.103884 i double ;"1‘1'1;:;‘)“‘”‘1 0
7.4 0.0725047 + j 0.0796783 1 complex-conjugate
3 7.5196 0 =+ j 0.110039 1 pure imaginary
7.6 —0.0513406 =+ j 0.0987473 l
4 7.69118 —0.112058 1 complex to real
7.8 —0.342601 —0.0376925 1
8 —0.677317 —0.0195673 1
5 8.1752 —1.00008 —0.0134305 1 period 1 unstable
8.2 0.803608 0.00217002 2
6 8.29172 0.0123856 + j 0.205512E-3 2 real to complex
7 8.29449 0 + j 0.0123010 2 pure imaginary
8 8.2973 —0.000965628 —0.0157617 2 complex to real
8.35 —0.515111 —(.00273908 2
9 8.3993 —1.00103 —0.131247E-3 2 period 2 unstable
10 8.422870 0.751798E-4 0.250407E-3 4 real to complex
1 8.422876 0 + j 0.136543E-3 4 pure imaginary
12 8.422883 —0.115728E-3 —0.168410E-3 4 complex to real
13 8.44457 —0.999672 —0.120952E-5 4 period 4 unstable
14 8.45419 —0.999279 0.666406E-4 8 period 8§ unstable
of these limit cycles, we have calculated the CM’s using the 2317
program INSITE [4]. 1 108 T \.;V"VAVAVA}/AMA "VAV[‘VA\;"VAUAVAUAVAUU\F
The CM’s associated with Fig. 2(a) are real and positive xm_(;wjll Ll
(A1 = 0.021437, A2 = 0.49638) and both lie inside the unit | { {
circle. The two associated eigenvectors are shown in Fig. 2(b) 0896 g I~ i A A
. . . - -0.008 AAAAAAA A AN ﬂ/\nn M/\M ﬂ
along with several points corresponding to successive iterates 2] EVYVVUTUTYY T \}VVVV
of the Poincare map. Observe that these iterates lie near the 0401 b L “ t :
upper eigenvector since the first eigenvalue A\; = 0.021437 0.468 | {

is much smaller than the second eigenvalue Ay = 0.49638.
The exponential convergence of the iterates to the fixed
point (labelled as O) in Fig. 2(b) can be correlated with
the exponential envelope in the transient waveforms which
converges to a periodic waveform corresponding to the fixed
point z*, which we labeled in Fig. 2(b) as O for simplicity.

The CM’s associated with Fig. 3(a) are real and neg-
ative (A = —0.017352, Ao = —0.79418) and both lie
inside the unit circle. The two associated eigenvectors are
shown in Fig. 3(b) along with several points corresponding
to successive iterates of the Poincaré map. Observe that
these iterates lie near the upper eigenvector for the same
reason as in Fig. 2(b) (|A\1] < |Az|). However, because the
signs of A; and A, are both negative, the iterates in fig.
3b oscillate alternately about 0 while converging exponen-
tially to the fixed point O. This convergence phenomena
can again be correlated with the transient waveforms in Fig.
3(a).

The CM’s associated with Fig. 4(a) are complex-conjugate
numbers lying inside the unit circle (A\; = 0.766259 +
70.584179, A2 = 0.766259 — 70.584179). Observe that the
corresponding iterates of the Poincaré map shown in Fig.
4(b) now “spirals” into the fixed point O. The corresponding
interpretation in the transient waveforms is clearly depicted in
Fig. 4(a).
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Fig. 2. (a) Waveforms associated with a stable limit cycle from Chua’s
circuit obtained with o = 7.1, 4 = 100/7, @« = —8/7, and b = —5.7.

(b) Eigenvectors associated with twa positive eigenvalues of the Poincaré
map of the stable limit cycle of Fig. 2(a). The first three iterates are indicated
by points 1, 2 and 3, respectively.
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Fig. 3. (a) Waveforms associated with a stable limit cycle from Chua’s
circuit obtained with o = 8.1, 3 = 100/7. « = —8/7, and b = —5/7.
(b) Eigenvectors assoualed with two negative eigenvalues of the Poincaré
map of the stable limit cycle of Fig. 3(a). The first four iterates are indicated
by points 1, 2, 3 and 4, respectively.

III. CHARACTERISTIC MULTIPLIER
LOCI FOR PERIOD-DOUBLING SEQUENCE

Now that we know a little more about the CM, let us modify
a parameter of the system and watch how the CM changes.
Throughout this section, the following parameters for Chua’s
circuit are used: 3 = 100/7; a = —8/7; b = —5/7 (Fig. 5).
We will vary only the parameter v and plot the corresponding
CM (Table 1) in the complex plane shown in Fig. 5.

When o is smaller than 6.8, the point (1.5, 0, —1.5) of
the state space is a stable equilibrium point (a sink). As we
increase c, this equilibrium point becomes unstable and a
period-1 limit cycle is born. One of the CM’s is very close to
I and the other is close to 0. As we increase the parameter
further, the larger CM decreases while the other increases.
After they meet, they bifurcate into two complex conjugate
values in the right-half plane, and migrate continuously into
the left-half plane. Then they become both negative and real,
one increases to 0 and the other decreases to —1. The most
interesting phenomenon occurs when a CM of this limit cycle
passes through —1. At this moment, the original (period-1)
limit cycle becomes unstable, while simultaneously a stable
period-2 cycle is born with a CM equal to +1, and remains
stable as o increases. As we increase « further, we observe
the same basic qualitative behavior occurs but with an ever
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Fig. 4. (a) Waveforms associated with a stable limit cycle from Chua’s circuit
obtained with o = 1500, 3 = 10000, @ = —1.026, and b = —0.982. (b)
Poincaré map of the stable limit cycle of Fig. 4(a), which has two complex

-conjugate eigenvalues. The first four iterates are indicated by points 1, 2, 3

and 4, respectively.
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Fig. 5. (a) CM loci obtained with 3 = 100/7, @ = —8/7,and b = —5/7
for Chua’s equation corresponding to a period-1 limit cycle (o = 6.8), which
bifurcates by period doubling as v increases to a = 8.2 (period 2), o = 8.422
(period 4), and o = 8.45419 (period 8). (b) Schematic CM loci redrawn (not
according to scale) for the clarity of the figure.

smaller increase of «. The CM loci for four such period-
doubling bifurcations for Chua’s circuit (using the above
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Fig. 6. Bifurcation map obtained with 3 = 100/7, « = —8/7, and
b = —5/7 for Chua’s dimensionless equation where o increases from 8§
to 8.5.

Fig. 7. Torus drawn in 3-D space obtained with a = 2000, ;3 = 10000,

[EEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 40, NO. 10, OCTOBER 1993

a=—1.026,and b = —0.982,
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Fig. 8. CM loci obtained with ;3 = 10000, « = —1.026, and b = —0.982
for Chua’s circuit corresponding to a period-1 limit cycle (¢ = 725) which

bifurcates to a torus as « increases to o = 1767.

fixed parameters) is plotted in Fig. 5(a). This bifurcation loci
confirms the scenario described by Arnold in [8]. The relevant
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Fig. 9. Poincaré map, waveform, and frequency spectrum of x(¢) obtained
with o = 2200, 3 = 10000, a = —1.04, and b = —0.982. The attractor
is still a torus. (b) Poincaré map, waveform, and frequency spectrum of x(t)
obtained with o = 2200, 3 = 10000, @« = —1.045, and b = —0.982. The
attractor is almost chaotic.

parameters and CM corresponding to the points indicated in
Fig. 5(a) are given in Table I. Since the CM loci shrinks as
we go from right to left in Fig. 5(a), we show a schematic
of Fig. 5(a) (not drawn according to scale) in Fig. 5(b) where
the corresponding entries in Table I are identified with their
corresponding numbers.

IV. BIFURCATION TREE FOR CHUA’S CIRCUIT

The period-doubling bifurcation phenomenon can be sum-
marized in a graph obtained by identifying the controlling
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Fig. 9. (c) Poincaré map, waveform, and frequency spectrum of x(¢)
obtained with & = 2200, 3 = 10000, « = —1.03, and b = —0.982.
The attractor is chaotic.

TABLE I
DATA FOR PLOTTING THE CM Loc! iN FiG. 8
CM
[} 1 2 Remarks
| 725 0995584  0.436853 limit cycle becomes uns}abl.e as a
real CM leaves the unit circle
800 0.906000  0.691892
2 833 0.810811 % j0.0150749 CM becoming complex
1000 0.83885 =+ j 0.232464
1200 0.835905 £ j0.371101
1400 0.799179 =+ j 0.510877
1500 0.766259 =+ j 0.584179
1600  0.721792 £ j 0.659501
31767 0.616806 =+ j 0.787262 limit cycle becomes unslab.le as a
complex CM leaves the unit circle
1800 0.550785 = j 0.812288
2000 0.387371 + j 0.954079

(variable) parameter (« in our case) as the horizontal axis
and plotting all the local maxima of the steady state periodic
waveform of one of the state coordinates along the vertical
axis as shown in Fig. 6. The resulting diagram is called
a bifurcation tree. Observe that the bifurcation (branching)
points of the bifurcation tree correspond to the points on the
CM loci of Fig. 5 where the CM is equal to —1.

V. TRANSITION TO TORUS

Let us now investigate what happens when the CM moves
out of the complex portion of the unit circle. In this case,
we will see that the limit cycle becomes unstable while at the
same time giving birth to a forus, whose associated waveforms
are no longer periodic, but are quasi-periodic. The frequency
spectrum of a torus is also very specific because it shows a

finite number of sinusoidal components w1, - - - ,wxn Which are
incommensurable in the sense that there is no set of integers
ki, ko,---,kn (not all equal to 0) satisfying >, k;w; = 0. For
Chua’s circuit, this occurs when the parameters are chosen as
follows: o = 2000; 3 = 10000; o = —1.026; b = —0.982
(Fig. 7).

If we keep the above parameters except « which we
vary, we will obtain the CM loci shown in Fig. 8. The
relevant parameters are summarized in Table H. As the CM
approaches the unit circle (point 3) in Fig. 8, the transients
which eventually converge to a period-1 limit cycle becomes
increasingly long until it almost resembles a torus. As the CM
leaves the unit circle, the steady state become a rorus.

V1. TORUS BREAKDOWN

Finally, we will focus our attention on the torus break-
down. This phenomenon occurs in Chua’s equation with the
following parameters: o = 2200, § = 10000, and b =
—0.982. The parameter a varies from —1.04 to —1.05. The
frequency spectrum of the trajectory will be our main object
of discussion. When a is equal to —1.04, the steady-state
trajectory is a torus, and we can observe two incommensurate
frequencies in the spectrum. While decreasing the parameter
(@ = —1.045), the two smallest frequencies split each of
them into three. Although the trajectory is still a torus we
are right at the boundary of chaos. While decreasing a further
(a = —1.05), the frequency spectrum becomes a continuous
curve, a phenomenon generally called chaos.

The waveforms of these systems are also shown in Fig. 9.
It is much harder to see the difference between a torus and a
chaotic attractor in this kind of diagram but still we can notice
a slight change: the amplitude of the high frequency oscillation
is not constant in the chaotic attractor while it is in the torus.

Observe now how the Poincaré map changes as we decrease
the parameter “a”. When “a” is equal to —1.04, the Poincaré
map in Fig. 9(a) is almost an ellipse and all points lic on a [-D
curve. When “a” is equal to —1.045, the Poincaré map in Fig.
9(b) looks like that of Fig. 9(a)) in a first approximation, but
some small ears can be seen emerging in Fig. 9(b), showing
that the bifurcation to chaos is very close. Finally, when “a”
is equal to —1.05, the Poincaré map in Fig. 9(c) is no longer
a curve, and the points seem to wander randomly although the
system is deterministic.
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