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Generation of Homoclinic Oscillation in Coupled Chua's Oscillators

Syamal Kumar Dana, Member, IEEE, Satyabrata Chakraborty, Prodyot Kumar Roy

Abstract-An experimental method of generating homeclinic oscillation
using two nonidentical Chua’s oscillators coupled in unidirectional
mode is described here. Homoclinic oscillation is obtained at the
response oscillator in the weak coupling limit of phase synchronization.
Different phase locking phenomena of homoclinic oscillation with
external periodic pulse have been observed when the frequency of the
pulse is close to the natural frequency of the homoclinic oscillation or
its sub-harmonics. :

Index rerms- Homoclinic orbit, coupled Chua's oscillator, limit cycle,

phase synchronization.

I INTRODUCTION

Generation of homoclinic chaos of Shil'nikov type [1] in laser
has been reported in [2] and its phase synchronization (PS) with
sinusoidal forcing has been confirmed in [3-4]. Its possible
application in information encoding in the interspike interval [5] of
homoclinic chaos has also been explored recently for the purpose
of secure communication. Encoding [5] uses PS [6] of message
signal in the time sequence of spiking homoclinic chaos. The shape
of spikes may be changed by channel noise but the time sequence
of spike trains is not disturbed. Complete synchronization (CS) in
master-slave coupled chaotic oscillators, as proposed [7] earlier for
secure communication, is susceptible to channel noise [8] that
causes loss of synchronization. Thus homoclinic chaocs has
advantage over other deterministic form of chaos in communication
applications, particularly, in the context of chaotic pulse position
modulation scheme (CPPM) [9]. Moreover, the dynamics of
interspike intervals of chaotic signal is a recent thrust area [10] in
chaotic dynamics. The question still remains unanswered how
sensory system of neuron assembly encodes external information in
the form of interspike intervals. The spiking train of homoclinic
chaos has similarity with the spiking neurons {11,12] in response to
external stimuli. Studies on PS of homoclinic chaos with external
stimulation may help understanding how neurons communicate
information with each other. In this context, we attempted an
experiment with two coupled Chua’s oscillators for the generation
of homeoclinic oscillation as reported in this paper. Homoclinic
orbit is a bounded dynamical trajectory asymptotic to equilibrium
point of a model flow in both forward and backward time. The
homoclinic oscillation is defined here as repeated cycles of
homoclinic trajectory, which tends to one of the mirror symmetric
equilibrium of Chua’s oscillater and moves spirally away from it,

Numerical methods {13] are available for locating homoclinic
orbit, which relied on either comtinuation of a limit cycle to large
period as it approaches homoclinic orbit or using numerical
integration of shooting orbits in the stable and unstable manifolds
of the equilibrium and then computing a distance between them.
Further improvements on these methods have been included in the
numerical tool HOMCONT [14], but it is quite involving in rigors
of numerical algorithm. Experimental studies on imperfect
homoclinic bifurcation using van der Pol oscillator has also been
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found in literature [15]. It is often found [16,17] in coupled neural
oscillators that two limit cycle oscillations lead to PS in the weaker
coupling limit when the limit cycles are close to the homoclinic
bifurcation. Homoclinic bifurcation has been established in [18] as
a mechanism of PS. Two coupled Chua’s oscillators in drive-
response mode can, indeed, generate homoclinic.oscillation in the
weaker coupling limit of PS as shown in our experiment. The
homoclinic orbit at the response repeats its trajectory with a time
period of the limit cycle oscillation of the driver. Experimental
evidence of phase locking on homoclinic oscillation to external
periodic pulses is also presented. In the next section, the
experimental setup of generating homoclinic oscillation is
elaborated. The mechanism of homoclinic oscillation in coupled
Chua's Oscillator is explained in section [1l. In section [V, phase
locking of homoclinic oscillation with external periodic pulse is
described with a cenclusion i section V.

11. EXPERIMENTAL SET UP

Existence of homoclinic orbits has been proved [i9]
numerically in Chua's circuit as a rigorous proof of chaos in such
system. Homoclinic orbit has also been identified numerically as
biasymptotic to a saddle focus in 3-D space of Chua's circuit [1]
and in Colpitts oscillator [20], but they are found to exist for a
moderate amount of time only before the trajectory veers away
from the homoclinic orbit. The experimental circuit with two
unidirectionally coupled nonidentical Chua’s oscillators, as shown
in Fig.1, can generate homoclinic oscillation, which repeats its
homoclinic cycles for long period of time. The parameters of the
driver oscillator are selected for single scroll oscillations in the
period-adding bifurcation regime [21]. In this regime, the driver has
pertodic windows of single scroll limit cycles (period-3, period-4,
period-5 even higher period) of large amplitude that crosses from
either {(depending upon the initial point) of the mirror symmetric
outer regions to the inner region near origin [19,22] as shown in
Figs.2-3. This large amplitude of limit cycle is found as an
important criterion for generation of homoclinic oscillation in the
response. The amplitude of the limit cycle oscillation of the driver
is not large enough, in the period-doubling bifurcation regime, to
¢ross to the inner region. Before coupling, the response oscillator is
kept in non-oscillating state {stable focus) with appropriate choices
of circuit parameters. For strong coupling, the response oscillator as
forced by the limit cycle oscillation of the driver, produces limit
cycle oscillation in complete synchrony [23] with the driver. The
amplitudes and phases of coupled oscillators are correlated in this
CS regime. As the coupling strength is made weaker and weaker,
successive synchronization regimes of lag synchronization (LS},
intermittent lag synchronization (ILS) and PS have been observed
[23,24]. The amplitudes of the coupled oscillators are uncorrelated
in PS regime but the phases still remain correlated. In this PS
regime, for a critical coupling strength, the response trajectory
spirals away from the equilibrium as driven out by the limit cycle
oscillation of the driver. But it tends to equilibrium at the instant
the trajectory of the limit cycle oscillation of the driver crosses
from mirror symmetric outer region to the inner region as deep into
the negative region near origin. It is possible only when the driver
oscillation is large enough. The mechanism of homoclinic
oscillation is given in detail in the next section. The homoclinic
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orbits in 3-D space as shown in Fig.4 are reconstructed using
embedding technique. Finally, a phase velocity measure is used to
confirm that the response trajectory reaches the equilibrium. The
phase velocity ¥ is calculated from measured time series using
embedding technique as given by

Vo = \/":—12 Vet Vi a I
where v, =—-———dVC3(”
dt

Vesft) is the node voltage measured at capacitor G in response
oscillator, 7 is an appropriately chosen delay time. The phase
velocity of a trajectory is zero at equilibrium. This is taken as a
basis whether a trajectory tends to equilibrium or is close to it. The
response trajectory is a limit cycle close to equilibrium for coupling
strength both higher and lower than a critical coupling as shown in
Fig.5. The coupling strength acts as control parameter once the
driver parameters are fixed in the period-adding bifurcation regime.
The homoclinic oscillation shows intermittent instabilities because
of instabilities in the driver due to unavoidable noise or parameter
fluctuations, which can be stabilized by small periodic pulse
forcing. A digital oscilloscope (TEK, TDS220) is used for
measurements with its software (WaveStar) for data acquisition.

I MECHANISM OF HOMOCLINIC OSCILLATION

The uncoupled response oscillator at rest has three equilibria
{19, 24), one unstable focus at origin (in the inner region Dy) and
two mirror symmetric stable foci (in the outer regions Dy and D).
The unstable focus has one real positive eigen value and two
complex conjugate eigen values with real negative parts. The eigen
values of the coupled oscillator (period-4) are given in Table 1.

Table I. Eigen values [Rg=1516L}, R,=1750802 and R =10.96kQ]
Circuit Inner region Cuter region

Driver 4.483, -1.291 £ 3.0981 |-4.348, 0.045 £ 2.921i
Response 14.424, -1.234+ 35481 1-4.324, -0.094 £3.4061

The stable focus of the response has one real negative eigen value
and two complex conjugate eigen values with negative real parts. If
an external periodic pulse is forced, a spiking trajectory moves
away from one of the mirror symmetric stable focus (depending
upon the initial point) at the start of the pulse. At the end of the
pulse, the spiking trajectory spirally tends to the equilibrium due to
the real negative part of the complex eigen value of the stable focus
until the pulse is repeated again. Instead of forcing a periodic pulse,
another self oscillating Chua’s osciilator as driver is coupled in

unidirectional mode to the response oscillator for the generation of
homoclinic oscillation as discussed in section II. The driver
parameters are selected for single scroll oscillation near period-4,
period-5 limit cycles, when each of the mirror symmetric equilibria

is a saddle focus with one real negative and two complex conjugate
eigen values with positive parts (Table 1). The limit cycle trajectory
(period-4, period-5 or higher orbits) of the driver spirals away
around the equilibrium (say, in D, region) and moves to the inner
region Dy. In this inner region, the trajectory is folded back by the
real unstable eigenvector of inner region Dyand ultimately comes

backalong the real eigenvector of D, region as shown in Fig.2.
Alternatively, for period-4 and higher periodic orbits, the driver
trajectory may (depending upon the initial point) expands spirally

from the other outer region (D) to the Dg region and even crosses

to the negative region near origin (Fig.3). Subsequently, the

trajectory of the driver twisted around the unstable real eigenvector

of D, region and comes back to its original outer region (D).
Forced by the period-4 or period-5 oscillation of the driver, the
response oscillator follows the driver with a time lag for weaker
coupling [23,24] until the driver trajectory reaches zero. At this
instant, the response trajectory folded back fast to the equilibrium
in outer region along its real eigenvector with negative eigenvalue
as shown in Fig.6a. When the driver grows spirally again to repeat
its periodic cycle, the response trajectory is forced spirally away
from the equilibrium and repeats its homoclinic cycle. Thus the
coupled circuit generates a homocilinic oscillation at the response
when the driver and response are phase locked. The phase
difference between the driver and response remains bounded in
time as shown in the phase difference plot in Fig.6b.

IV. PHASE LOCKING WITH EXTERNAL PULSE

Forcing a periodic pulse at the driver capacitor C; (Fig.1), the
instabilities in homiclinic oscillation due to parameter fluctuations
have been stabilized in the response oscillator. The homoclinic
oscillation readjusts its period to different stable homoclinic
oscillations as forced by the periodic pulse. The amplitude of
external forcing pulse is selected small enough while the pulse
period is chosen as close to the time period of homoclinic
oscillation. The external pulse is phase locked to the homoclinic
oscillations with different locking ratios. For the selected
parameters, the natural period of the Chua's oscillator (driver) is
T,=1/£=39%0us, f, 5 the natural frequency of homoclinic
oscillation. When the pulse petiod is T =T & T, (close to T , within a
small bound of period. Tg14us), 1:1 phase locking has been
observed (Fig.7a). Homoclinic oscillation is a peried-5 oscillation,
hence the period of a homoclinic cycle is T =5T ,=1950us while the
forcing pulse has an amplitude of 248mV and time period
Tp=1936ps (T =14ps). For pulse period T,=1152ps and amplitude
336mV, the homeclinic oscillation is a stable period-6 orbit
{Fig.7b), whose time pericd is given by T =6T ;= 2340us. The pulse
is 1:2 phase locked to the period-6 homockinic orbit; T,=2T +T;
=2340ps (T =36us). For pulse amplitude of 420mV and T,=762us,
the homoclinic oscillation is stable at perioid-6 orbit (Fig.7¢c),

" whose time period is given by T;=6T,=2340us. The pulse is 1:3

phase locked to the period-6 homoclinic orbit; Ty=3T +T, =2340us
(T =54ps). If the difference in time period between forced pulse
and homoclinic oscillation is larger beyond a bounded limit (say,
~54us or more), phase slips occur and finally loses phase locking.
Details are not shown here due space limitations. The pulse
amplitude is measured using the digital oscilloscope at source.
Actual amplitude of the pulse at the capacitor C, is much less since
the pulse source V is connected to the capacitor with a series
resistance R;=25kQ.

V. CONCLUSION

An experiment using two Chua’s oscillators coupled in the PS
regime is described, which can generate homoclinic oscillation for
a long time. A phase velocity measure is used to confirm that the 3-
D homoclinic trajectory reaches equilibrium for a critical coupling.
Phase locking of homeclinic oscillation with external periodic
pulse is possible and the locking ratio depends upon the frequencies
ofthe driver and the forcing pulse. An aperiodic pulse train can be
phase locked to the homoclinic oscillation if the variation in pulse
intervals remain within a smaller bound. Message can be encoded
in the varying time intervals of the aperiodic pulse, which problem
is undertaken for our future work,
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Fig.2. Three eigen planes of Chua's oscillator, two in
mirror symmetric outer regions D, Dy and one in the
inner region Dy. E(P ) is the eigenvector and E°P ) is
eigenplane corresponding to real and complex eigen
values ateuilibrium P. in outer region Dy [reproduced
from Ref.22].
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Fig.1. Two Chua’s oscillators coupled in drive-response mode: Ry and R,
are the control parameters for different regites of oscillation in the driver
and response respectively. R, decides the coupling strength, which is strong
for lower value and vice versa. V;is the external pulse source.
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Fig.3. Phase portrait of period-4 orbit of the driver for
Rg=1516£2, oscilloscope display of capacitor voltages Ve2
(CHI1:170mV/div) and Ve, (CH2:690mV) with DC coupling to
capacitor nodes.
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Fig.4. Homoclinic trajectory in 3-D space reconstructed using embedding
technique: {a} period4 homoclinic orbit, Ry~151602, R=17508,
R.=1096k2, (b} pericd-5 homoclinic orbit, Rs=1499Q, R~=1879Q,
R=18.36k0).
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Fig.5, Phase velocity Vi (in cluster of dots) varies periodically with minima
[period-5 homoclinic cycle, R=1499Q, R=18790]. For coupling stronger
than critical coupling (a) R=12.14kQQ, phase velocity minima are close to
zero indicating the trajectory is a limit cycle close to equilibrium. The
minima (at 5.13ms and 7ms) are exactly zero for critical coupling (b)
R.=18.36k (2, when homoclinic trajectory reaches equilibrium. Measured
voltages Ves (bold trace} and Vi (dotted trace) reach zero simultaneously
when phase velocity is zero as indicated by arrows. Voltages are measured
wit AC coupling of oscilloscope when the equilibrium is set at origin.
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Fig.6. Phase synchronization of driver (bold line) and response (dotted line)
signals for period-4 limit cycle: R=15160, R=1750Q, R.~1096kQ. (a)
response is phase locked at the instant the driver crosses zere, (b) phase
difference of driver and response as calculated by using Hilbert transform
on scalar signal [23] is bounded in time. Few errors in phase estimation as
+m jumps are seen as the driver signal changes in sign of the slope while
crossing from positive to negative region near origin.
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Fig,7Phase locking with external pulse {(a} 1.1 locking, pulse
amplitude=248mV, T=1936us (b} 1:2 locking, pulse amplitude=336mV,
Tp=1152us (c) 1:3 locking, pulse amplitude=420mV, T=762us
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