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This paper presents a novel and simple design of conditionally reset linear systems which
exhibit chaotic behavior. The proposed systems are constructed from building blocks
(e.g. reset integrator, nonlinear controller, summer and gain amplifiers) which can be
either designed or found in the off-shelf electronics library. Throughout the paper, com-
puter simulation results are used to show the stretching and folding mechanism for chaos
generation in these systems.

1. Introduction

For the last few decades, significant progress has been made to define and explain
what we observe as chaos in systems. Yet, the theory of chaos is still not able to
answer the basic questions often posed by engineers, e.g. whether chaos is present in
or absent from a specific circuit.! Among many existing complex chaotic systems,
the Lorenz and Rossler dynamical systems have fascinated scientists for many years.
However, understanding how chaos exists in such systems has been a challenging
problem. Thus, the design of simple chaotic circuits is very important not only to
understand the nature of chaos but also to develop sophisticated applications which
actually use this behavior.?

The Chua’s circuit (a third-order autonomous, dissipative electrical circuit)
brought hope that simple chaotic systems can actually be designed. Several re-
searchers have investigated and analyzed the Chua circuit family in depth.3* For
instance, the Chua’s double scroll attractor, double hook, torus and other interesting
attractors have been observed from several members of this family.>¢ The colpitts
oscillator” and the hysteresis chaos generator®? are also among circuits in which
a variety of dynamical behaviors including chaos have been reported. Brown!?
proposed a theoretical approach on how to decompose a highly complex chaotic

*This letter was recommended by Associate Editor M. Simaan.
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system into a interconnected subsystem of lower order which can be easily studied.
However, no implementation of such systems was given.

In this paper a novel and simple design of conditionally reset linear systems
which exhibit chaos is presented. These systems are constructed from building
blocks (e.g. reset integrator, nonlinear controllers, summers and gain amplifiers),
which can be either designed or found in the off-shelf electronics library. Throughout
the paper, computer simulation results obtained with the aid of SIMULINK,!! are
used to show the existence of the desired attractors. It is noteworthy to mention
that the generalization of the Chua equations by Brown!® has provided the basis of
the implementation of these chaotic systems presented here.

Section 2 of this paper discusses the general procedure of designing a two-
dimensional single scroll system using a reset integrator and a nonlinear controller.
The problem of unstable attractors is also discussed. In Sec. 3, the order of the dy-
namical system is augmented to obtain a three-dimensional single scroll system. In
Sec. 4, the building block approach is expanded to design chaotic systems that ex-
hibit attractors similar to those observed experimentally in Chua’s circuit. Different
controller nonlinearities are used to obtain similar types of attractors.

2. Two-Dimensional Single Scroll System

QOur aim in this section is to describe the implementation of a system that exhibits
a two-dimensional single scroll. We will show later how this simple system evolves
through some nonlinear blocks into a system exhibiting the Chua’s double scroll
attractor. The system specifications are such that the trajectory must scroll away
from the equilibrium point and then resets itself to repeat the process.

We start by considering the following two-dimensional autonomous dynamical
system which is described by

J!(t) _|an G2 .’L'(t) -b
<y(t)) B [agl (1,22] (y(t) - b2) : (1)
A more compact form is given by
X@t)=AX(t)-b, X(0)=Xo 2)

where

e e (b [ =z®)
A_lam a2z]’ b_<b2> and X(t)_<y(t))'

X (0) is the initial condition. X (¢) is the trajectory. X (t) denotes the derivative
of X(¢). The equilibrium point Xé“ of (1) is defined as the state at which X(t) is
Zero.

Xé’ =b

To meet the above specifications, we explore what is needed to generate a
bounded two-dimensional single scroll. First, for the trajectory to scroll away from
the equilibrium point, ng' must be unstable. That is the eigenvalues of A, (the
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roots A of the characteristic equation, det(\ — A) = 0, is the identity matrix)
must be complex with a positive real part. Thus,

A=oc+jw, where o>0. (3)

With these eigenvalues, the trajectories are pushed away from the equilibrium
point while scrolling. This mechanism is called “stretching’. The second item we
need is a “folding” mechanism i.e. if the state trajectory satisfies a certain specified
condition then the system resets itself. Thus, a reset function will be integrated as
part of the complete system. Finally, the initial condition X (0) must be selected so
that the resultant trajectory is bounded. It should be pointed out that the above
ingredients are necessary but may not be sufficient due to the selection of other

parameters.
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Fig. 1. Block diagram of a single scroll system.

The proposed system architecture which meets the above specifications is shown
in Fig. 1. The system consists of three main blocks. The first and most important
block is the “Reset Integrator” (RI) block. It has three inputs: the signal input
X(t), the control input C and the reset signal R(¢). It operates as follows: Given
an initial state X (0), the function of the RI block is to integrate X (t) while C = 0.
If C = 1, then the RI block resets itself to the current state specified by R(t) and
continues to integrate. The second block is the “Reset function” whose output R(t)
is fed to the RI block. For the system to reset itself every time at a different initial
state, it is logical to select R(t) to be a function of X (t). The third block is the
controller which consists of two cascaded blocks: a computational and a nonlinear
one. The computational block receives an input X (¢) and transmits an output
F(X(t)). Without loss of generality the function F'(X (¢)) is selected as follows:

F(X(t) = kia(t) + kay(t) + ks (4)
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where ki, ko, k3 are constant. The nonlinear block whose input is F(X(t)), gen-
erates an output C as follows. If F(X(¢)) < O is satisfied then C' = 1, otherwise
C = 0. Thus, the controller function is to monitor when the reset process will
occur. The proposed design and implementation approach is best illustrated by
giving an example of the two-dimensional single scroll. The reader is referred to
Ref. 10 for more details on how the systems parameters are selected in all examples
presented here.

Example 1: Consider the following dynamical system described by
&)\ |00 —9.876| (=z(t)—0.4455 5)
g(t) ]~ |10 0334 | \ y(t) +0.0540 |
The full implementation of this system is shown in Fig. 2(a). This system is
characterized by the location of the equilibrium point X * = (0.4455, —0.0540),
two complex eigenvalues A = 0.167 % j3.138 and two complex eigenvectors which
form an eigenplane E}. Without loss of generality, the reset function is selected to
be R(t) = — X (t) whose implementation is achieved by the inverting amplifiers with

unity gain. Finally the controller implementation, shown in Fig. 2(a) as a block,
is fully detailed in Fig. 2(b). The controller consists of two cascaded blocks. The
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Fig. 2(a). Two-dimensional single scroll system.
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Fig. 2(b). Controller for the two-dimensional single scroll.
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Fig. 2(c). A bounded two-dimensional single scroll.

computational block whose inputs are z(t) and y(t) and a constant generates an
output F(X(t)) selected to be

F(X(t)) = z(t) — 1.287y(t) + 0.984. (6)

Geometrically, equation F(X (t)) = 0 defines a line which separates two regions
D+ where F(X(t)) > 0, and D~ where F(X(t)) < 0. The computer simulation of
the above system, shown in Fig. 2(c) reveals a bounded two-dimensional single scroll
for the initial state X (0) = (—0.015, —0.25). The global behavior of this system can
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be analyzed as follows. The trajectory starting at X (0) in the region D* is repelled
by the unstable equilibrium point X, ('5 until it crosses into the region D~. Once it
is in the D~ region it is folded back to the D region using the reset function. This
process repeats itself and will lead to an attractor.

If we change the initial state to X (0) = (1.5, 0.75), we obtain an unbounded
trajectory. This simple example shows how the system is sensitive to the initial
state. In the next section, using the same design approach, we augment the order
of the two-dimensional single scroll to build a three-dimensional single scroll.

3. Three-Dimensional Single Scroll System

As mentioned in the previous section, our ultimate goal is to show the steps that
will lead to the implementation of a system whose trajectory is similar to the Chua’s
double scroll attractor. To achieve this objective, an intermediate step which con-
sists of designing a three-dimensional single scroll system is needed. In this case,
the order of the two-dimensional single scroll system of equations (1) is increased.
This will lead to the following dynamical system.

() air a2 0 z(t) — by
g(t) | = e ax O y(t) —be | . (7
Z(t) 0 0 ass Z(t) - b3

Note that the additional block is completely decoupled from the two-dimensional
single scroll block described in this previous section. The equilibrium point X, 5 will
have two complex eigenvalues A = ¢ * jw with a positive real part ¢ and one
real eigenvalue 7. The eigenspace is characterized by a complex eigenplane Ef
corresponding to the complex eigenvalues and one eigenvector E;f corresponding
to the real eigenvalue . In the E} eigenplane, the trajectory is in the stretching
mode, i.e. if we start from an initial state X (0) € E}, then the trajectories are
pushed away from the equilibrium point Xg . If we start from some initial state
X (0) ¢ EF, then for the trajectory to reach the EJ eigenplane, the eigenvalue -y
must be negative. If v > 0, then the trajectory is going to be pushed away from the
equilibrium point along the eigenvector E} and may not reach at all the eigenplane
EF. This will lead to an unstable system with no attractor.

The controller block is similar to the one used for the two-dimensional single
scroll except that in the computational block, the constant ks is now replaced by
z(t).

F(X(t) = krz(t) + kay(t) + 2(8) = KTX(2) (8)

where
z(t)
KT =(kike 1), X(t)=]y@®
2(t)
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The implementation of the three-dimensional single scroll is illustrated in the
following example.

Example 2: Consider the following dynamical system which is an expansion of the
previous example.

(t) 0.0 -9.876 0 2(t) — 0.4455
g@t) | = |10 0334 0 y(t) + 0.0540 (9)
A(t) 0 0 ~3.9005 | \ z(t) —0.983

The equilibrium point is X5 = (0.4455, —0.0540, 0.983). The eigenvalues are
A = 0.167 £ j3.138 and v = —3.9055. The full implementation of this system is
shown in Fig. 3(a). The reset function is selected to be R(t) = —X (t). The detailed
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Fig. 3(a). Three-dimensional single scroll system.
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Fig. 3(b). Controller for the three-dimensional single scroll.

Fig. 3(c). A bounded three-dimensional single scroll.

implementation of the controller block is shown in Fig. 3(b). The computational
block computes the function F(X(t)) described by

F(X () = z(t) — 1.287y(t) + 2(¢) . (10)

Figure 3(c) shows a bounded three-dimensional single scroll for the initial state
X(0) = (-0.015, —0.25, 0.5).

In the next section we expand this building approach to design a three-dimen-
sional double scroll system with attractors similar to those observed experimentally
in Chua’s circuit.



Chaos in Conditionally Reset Linear Systems 185

4. Three-Dimensional Double Scroll System

The proposed architecture for a three-dimensional scroll system is shown in Fig. 4. It
consists of three main blocks. It is constructed from a regular integrator (no reset
function), a multiplier and a controller. In this system, the controller nonlinear
block implements the sign function to create two symmetrical scrolls. The system
is described by the following dynamical equations:

Il'(t) ail ai2 0 .’E(t) - bl -C
y(t) = | a21 as2 0 y(t) - b2 -C . (11)
2(t) 0 0 ass z(t) —bs - C

The signal C is generated by the controller which is built with the same com-
putational block as in the three-dimensional single scroll system. However, the
nonlinear block implements a “sign” function, i.e.

C = sign[F(X(2))]
F(X(t) = kiz(t) + kay(t) + 2(t) = KT X(2).

To generate a Chua’s double scroll attractor, we expanded the three-dimensional
single scroll by introducing a second equilibrium point X, which is symmetrical to
X (‘5 with respect to the origin. Xg is located in the region DT while X4 is located
in the region D~. The two regions D and D~ are separated by a plane defined
by the equation F(X(¢)) = 0. The equilibrium point Xg will have two complex
eigenvalues A = ¢ + jw with a positive real part o and a negative real eigenvalue
~. TIts eigenspace is characterized by a complex eigenplane E} and eigenvector
E;t corresponding to the real eigenvalue. Similarly the equilibrium point Xg will
have the same complex eigenvalues A\ = ¢ £ jw with a positive real part o and
the same negative real eigenvalue v. However, its eigenspace is characterized by a
different complex eigenplane E_ and an eigenvector E. corresponding to the real
eigenvalue.

X(t)

Ab Integrator

Controller

Computational
...... ‘—-
- block

Fig. 4. Block diagram of a double scroll system.
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A trajectory starting from some initial condition state X (0) in the region D%
will evolve along E;f until it reaches the eigenplane E} where it spirals away from
the equilibrium point X 5 . It is important to notice that a trajectory that originates
from an initial state in DT will remain in D% until the sign of the controller output
C changes, then it jumps to the region D~. Once the trajectory crosses to D, it
then evolves along E; until it reaches the eigenplane E; where it spirals away from
the equilibrium point X Q- Once the sign of the controller output changes, then it
jumps back to D*. The process repeats itself and will lead to the Chua’s double
scroll attractor.

The proposed implementation of the three-dimensional double scroll system is
illustrated by the following example.

Example 3: Consider the following dynamical system which is an ezpansion of the
previous example.

&(t) 0.0 -9.876 0 2(t) — 0.4455 - C
gt) | = 1.0 0334 0 y(t) + 0.0540 - C (12)
3(t) 0 0 —3.9005 | \ z(t) —0.9830-C

The equilibrium points are Xzz' = (0.4455, —0.0540,0.9830) and X, =(—0.4455,
0.0540, —0.9830). The eigenvalues are the same as in example 2, A = 0.167 +
§3.138 and v = —3.9055. The full implementation of this system is shown in
Fig. 5(a). The controller implementation, shown in Fig. 5(b), consists of two main
blocks. The computational block computes first the function F/(X(t)) and then the
nonlinear block generates a signal C = 1 when F(X(t)) > 0 and C = —1 when
F(X(¢)) <0.

F(X(t) = z(t) — 1.287y(t) + 2(2) (13)

The computer simulation shown in Fig. 5(c), reveals a bounded three-dimen-
sional Chua’s double scroll attractor for the initial state X (0) =(—0.015, —0.25,0.5).
A similar double scroll attractor can also be obtained by using another nonlinear
block as shown by the following example.

Example 4: Consider the previous dynamical system with a different controller
nonlinear block described by the following sigmoid function:

edF(X® 1.0
C= @Frxo 110

Where F(X(t)) is the same as in the previous example, and a = 30.0. Fig-
ure 6 shows the Chua’s double scroll attractor with initial conditions X(0) =
(-0.015,—0.25, 0.50).
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Fig. 5(a). Three-dimensional double scroll system.
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Fig. 5(b). Controller for the three-dimensional double scroll.
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h
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Fig. 5(c). A bounded three-dimensional Chua’s double scroll attractor using a sign nonlinear
controller block.

Fig. 6. A bounded three-dimensional Chua’s double scroll attractor using a sigmoid nonlinear
controller block.

5. Conclusions

In this paper we have proposed a new and simple implementation of conditionally
reset linear systems which exhibit chaotic behavior. These systems are constructed
from building blocks (e.g. reset integrator, nonlinear controllers, summers and gain
amplifiers), which can be either designed or found in the off-shelf electronics library.
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The design approach presented here will enable us to implement complex chaotic
systems which can be used in many applications.? We investigated the use of differ-
ent controller nonlinearities and have shown by computer simulation the existence
of attractors. We are currently trying to overcome the following problems: (1) exis-
tence of an analytic condition which guarantees the presence of strange attractors,
and (2) theoretical generalization of the design procedure.
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