CS281A/STAT241A - Homework II September 11, 2014

This assignment is due at the beginning of class on September 18.

1. Suppose x and y are scalar random variables. Their joint density, depicted below in Figure 2-1, is constant in the shaded region and 0 elsewhere.

Figure 1: Figure 2-1

We want to decide if x is less than or equal to zero after observing y.

- (a) Determine the probabilities $Pr[H_0] := Pr[x \le 0]$ and $Pr[H_1] := Pr[x > 0]$.
- (b) Make fully labelled sketches of $p(y|H_0)$ and $p(y|H_1)$.
- (c) Construct a rule $H(y)$ deciding between H_0 and H_1 given an observation y that minimizes the probability of error. Specify for which values of y your rule chooses H_1 and for which it chooses H_0 .
- (d) What is the resulting probability of error?
- (e) In the (P_D, P_F) plane, sketch the operating characteristic of the likelihood ratio test for this problem.
- (f) Is the point $(\frac{2}{3})$ $\frac{2}{3}, \frac{5}{6}$ $\frac{5}{6}$) achievable by *some* decision rule? If so, describe a test that achieves this value. If not, explain.

2. Suppose we are trying to determine if a professional athlete is using a performance enhancing drug. Assume that the maximum allowable concentration is L parts per million in a blood sample, and the true concentration over all professional athletes is a uniform random number in the interval $[0, C]$ (in parts per million). Moreover, assume that our lab test is noisy, returning the true concentration plus a uniform error $\delta \in [-\Delta, \Delta]$. That is, when we perform a drug test, we measure

$$
y = c + \delta
$$

where $c \sim \text{unif}([0, C])$ and $\delta \sim \text{unif}([-\Delta, \Delta])$. We want to decide if c is larger than L.

- (a) Find the minimum probability of error detector and compute the associated probability of error.
- (b) Suppose that we don't know the *a priori* distribution of c and choose to use a maximum likelihood detector. Find the ML detector and the associated probability of error.
- (c) Suppose we take two samples from the same player. That is we observe $y_1 = c +$ δ_1 and $y_2 = c + \delta_2$ and δ_1 and δ_2 are independent random variables distributed as unif($[-\Delta, \Delta]$). How do your answers to (a) and (b) change?
- 3. In a binary hypothesis testing problem, let p_j denote that the probability that hypothesis H_j is true. Recall that the minimax detection problem consists of solving the optimization problem

$$
\text{minimize}_{f} \max_{p_0, p_1} \mathbb{E}[\ell(f(y), H)].
$$

That is, we seek to find the best decision rule for the least favorable prior probabilities (p_0, p_1) . Let C_{ij} denote the loss $\ell(i, j)$.

(a) Show that the minimax detection problem is equivalent to the optimization problem

$$
\begin{array}{ll}\text{minimize}_{f,t} & t\\ \text{subject to} & C_{00}(1 - P_F) + C_{10}P_F \le t\\ & C_{01}(1 - P_D) + C_{11}P_D \le t \end{array}.
$$

(b) Using a Lagrange multiplier argument, show that we can lower bound the minimax risk by

$$
\max_{\lambda,\mu\geq 0} \min_{f,t} t + \lambda (C_{00}(1 - P_F) + C_{10}P_F - t) + \mu (C_{01}(1 - P_D) + C_{11}P_D - t).
$$

- (c) For fixed λ and μ , show that the optimum assignment f is given by a Likelihood Ratio Test. What is the threshold for choosing between H_0 and H_1 ?
- (d) Show that we can choose λ and μ so that the lower bound is matched by a feasible upper bound. That is, find an assignment of f and t such that they are feasible for the original problem and achieve the minimum in the lower bound.

4. Let $g : \mathbb{R}^n \to \mathbb{R}$ be a differentiable function. Prove that g is convex if and only if

$$
g(z) \ge g(x) + \nabla g(x)^{T} (z - x).
$$

for all x an z .

- 5. A density $p(x)$ is said to be *log-concave* if $\log p(x)$ is a concave function. Show the following popular probability distributions are log concave.
	- (a) The *multivariate Gaussian distribution*, $\mathcal{N}(\mu,\Lambda)$, for any mean parameter μ and covariance Λ.
	- (b) The *gamma density*, defined by

$$
p(x) = \frac{\alpha^{\lambda}}{\Gamma(\lambda)} x^{\lambda - 1} e^{-\alpha x}.
$$

where Γ is the ordinary Gamma function, $\lambda \geq 1$, and $\alpha > 0$.

(c) The *Dirichlet density* on the unit simplex:

$$
p(x) = \frac{\Gamma\left(\sum_{i=1}^{n+1} \lambda_i\right)}{\Gamma(\lambda_1) \cdots \Gamma(\lambda_{n+1})} x_1^{\lambda_1 - 1} \cdots x_n^{\lambda_{n-1}} \left(1 - \sum_{i=1}^n x_i\right)^{\lambda_{n+1} - 1}
$$

.

where x is restricted to be nonnegative and have sum less than 1. Here, the parameter λ has all components greater than or equal to 1.

It may be useful to consult Section 3.5 in Boyd and Vandenberghe for ideas on how to solve this problem.

6. Suppose x and y are scalar random variables. Their joint density, depicted below in Figure 2-2, is constant in the shaded region and 0 elsewhere.

Figure 2: Figure 2-2

- (a) Determine $\hat{x}_{\text{BLS}}(y)$, the Bayes least-squares estimate of x given the observation y.
- (b) Are x and y uncorrelated? Are x and y statistically independent? Explain your reasoning.
- 7. The number of times you check your Facebook page in a particular hour in the day is a Poisson random variable with mean αb where $\alpha > 0$ is a universal constant and b quantifies how bored you are. Let y_k denote the number of times you check Facebook between k and $k + 1$ o'clock. Conditioned on your boredom variable b, the y_k are statistically independent random variables. For each $9 \le i \le 17$,

$$
Pr[y_i = k|b] = \frac{(\alpha b)^k e^{-\alpha b}}{k!} \qquad i = 9, 10, 11, \dots
$$

(a) Suppose $p(b) = B^{-1}e^{-b/B}$ for $b \ge 0$ and $p(b) = 0$ for $b < 0$. Determine \hat{b}_{BLS} , the Bayes least-squares estimate of b, and the resulting mean-square estimation error. You may find the following identity useful:

$$
\int_0^\infty x^k e^{-ax} dx = \frac{k!}{a^{k+1}}.
$$

(b) As a check on your answer to part (a), verify that when B tends to infinity, the estimate in part (a) reduces to

$$
\hat{b}_{\text{BLS}} \rightarrow \frac{1}{9\alpha} \left(1 + \sum_{i=9}^{17} y_i \right).
$$