CS281A/STAT241A - Homework I

August 28, 2014

This assignment is due at the beginning of class on September 4.

1. A random variable x has probability distribution function

$$
P_{x}(x)=[1-\exp (-x)] u(x)
$$

where $u(x)$ is the unit step function:

$$
u(x)=\left\{\begin{array}{ll}
1 & x \geq 0 \\
0 & x<0
\end{array} .\right.
$$

(a) Calculate $\operatorname{Pr}[x \leq 1], \operatorname{Pr}[x \leq 5]$, and $\operatorname{Pr}[x=2]$
(b) Compute the probability density function for x
(c) Let y be a random variable obtained from x as follows

$$
y=\left\{\begin{array}{ll}
0 & x<2 \\
1 & x \geq 2
\end{array} .\right.
$$

Find the probability density function for y.
2. Box 1 contains 1000 light bulbs of which 10% are defective. Box 2 contains 2000 light bulbs of which 5% are defective.
(a) Suppose a box is given to you at random and you randomly select a lightbulb from the box. If that lightbulb is defective, what is the probability that you chose from Box 1?
(b) Suppose now that a box is given to you at random and you randomly select two lightbulbs from the box. If both lightbulbs are defective, what is the probability that you chose from Box 1 ?
3. Jim and George are each setting up venture capital portfolios. Suppose that Jim picks $n+1$ startups to fund and George picks n startups to fund. Suppose that the probability of any startup succeeding is 50% and all of the startups succeed or fail independently. Show that the probability that Jim picks more winners than George is $1 / 2$.
4. A dart is thrown at a wall. Let (x, y) denote the Cartesian coordinates of the point in the wall pierced by the dart. Suppose x and y are independent Gaussian random variables, each with mean zero and variance σ^{2}.
(a) Find the probability that the dart will fall within the circle of radius R centered at the point $(0,0)$.
(b) Find the probability that the dart will hit the first quadrant where x and y are nonnegative.
(c) Find the conditional probability that the dart will fall within the circle of radius R centered at $(0,0)$ given that the dart hits the first quadrant.
5. Let A and B be positive semidefinite matrices.
(a) Define the matrix $C^{(1)}$ to have entries $C_{i j}^{(1)}=A_{i j} B_{i j}$. Is $C^{(1)}$ positive semidefinite? Prove or give a counterexample.
(b) Define the matrix $C^{(2)}$ to have entries $C_{i j}^{(2)}=\sum_{k=1}^{n} A_{i k} B_{j k}$. Is $C^{(2)}$ positive semidefinite? Prove or give a counterexample.
(c) Define the matrix $C^{(3)}$ to have entries $C_{i j}^{(3)}=A_{i i} B_{i j}^{2} A_{j j}$. Is $C^{(3)}$ positive semidefinite? Prove or give a counterexample.
6. Let x, y, and z be zero-mean, unit-variance random variables which satisfy

$$
\operatorname{var}(x+y+z)=0
$$

Compute the covariance matrix of the random vector $[x, y, z]$.
7. Let $\left\{x_{1}, x_{2}, \ldots, x_{n}, \ldots\right\}$ be a sequence of independent random variables with identical means $\mathbb{E}\left[x_{i}\right]=m$ and variances $\operatorname{var}\left(x_{i}\right)=\sigma^{2}$. Define the sample mean and sample mean-square of the first N of the x_{i} 's as

$$
\begin{aligned}
\text { sample mean: } & m_{N}
\end{aligned}=\frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

(a) Find the mean and variance of the sample mean. Show that

$$
\lim _{N \rightarrow \infty} \mathbb{E}\left[\left(m_{N}-m\right)^{2}\right]=0
$$

and use this result to deduce that

$$
\lim _{N \rightarrow \infty} \operatorname{Pr}\left[\left|m_{N}-m\right| \geq \epsilon\right]=0
$$

for any $\epsilon>0$.
(b) Suppose the x_{i} are zero-mean Gaussian random variables. Find the mean and variance of the sample mean-square. Show that

$$
\lim _{N \rightarrow \infty} \mathbb{E}\left[\left(s_{N}^{2}-\sigma^{2}\right)^{2}\right]=0
$$

(c) Suppose that the $x_{i} \mathrm{~s}$ are independent, zero-mean, Gaussian random variables. Are m_{N} and s_{N}^{2} Gaussian random variables? Explain your reasoning.
8. Let A denote the event that the A's win the world series, let B denote the event that the Golden Bears win the Rose Bowl, let R denote the event that the Raiders win the Super Bowl, and let W denote the event that the Warriors win the NBA Championship. For any subset $S \subset\{A, B, R, W\}$, let p_{S} denote the probability that the teams in the set S all win their respective championship. Show that the matrix

$$
\left[\begin{array}{cccc}
p_{\{A B\}} & p_{\{A B R\}} & p_{\{A B R W\}} & p_{\{A B W\}} \\
p_{\{A B R\}} & p_{\{B R\}} & p_{\{B R W\}} & p_{\{A B R W\}} \\
p_{\{A B R W\}} & p_{\{B R W\}} & p_{\{R W\}} & p_{\{A R W\}} \\
p_{\{A B W\}} & p_{\{A B R W\}} & p_{\{A R W\}} & p_{\{A W\}}
\end{array}\right]
$$

is positive semidefinite.

