
Fast Minimum-Register Retiming via Binary Maximum-Flow

Aaron P. Hurst Alan Mishchenko Robert Brayton

Department of EECS, University of California, Berkeley

{ahurst, alanmi, brayton}@eecs.berkeley.edu

ABSTRACT
We present a formulation of retiming to minimize the
number of registers in a design by iterating a maximum
network flow problem. The retiming returned will be the
optimum one which involves the minimum amount of
register movement. Because all flows are unitary, the
problem can be simplified to binary marking. Existing
methods solve this problem as an instance of minimum
cost network flow, an algorithmically and practically more
difficult problem than maximum flow. Our algorithm has
a worst-case bound of O(R2E). We demonstrate on a set of
circuits that our formulation is 5x faster than minimum
cost-based methods. Delay constraints, which are
problematic in the existing methods, are actually a
simplifying assumption in our variant, albeit at the loss of
optimality in register count.

1. INTRODUCTION
Retiming [13] moves registers over combinational nodes in
a logic network, preserving functionality and logic
structure. Retiming can target a number of objectives: (i)
minimize the delay of the circuit (min-delay), (ii) minimize
the number of registers under a delay constraint
(constrained min-register), and (iii) minimize the number
of registers (unconstrained min-register). Numerous
approaches have been proposed to achieve these goals
[13]-[18], with most of the emphasis on the first two
objectives.

In this paper, we first focus on unconstrained min-register
retiming, which has several applications in logic synthesis
and verification. In synthesis, minimizing the number of
registers can save area and power. Even if the delay
constraints are ignored, any timing violations can be
corrected with logic sizing, resynthesis, or intentional
clock skewing [8]. In verification, min-register retiming
minimizes the number of state variables [12], which
reduces the size of the sequential verification problem and
may be critical for successful completion.

Although retiming problems are traditionally expressed as
general linear programs, they can be solved efficiently as
minimum cost network circulation problems using suitable
algorithms. Instead, we propose a retiming method that is
based on iterated binary maximum network flow. This
approach can be solved more efficiently than the minimum
cost network formulation, because the number of iterations
required appears to be quite small. Because the result of

each iteration is strictly better than the previous one, the
computation can be bounded and still result in an
improvement. It was found experimentally that the first
iteration of max-flow often accounts for 2/3 of the total
gain in the number of registers. This can be used to trade
the quality for runtime when a problem is large or fast
computation is critical.

To support these claims, we provide experimental results
on moderately-sized industrial benchmarks and a few very
large artificial ones. They demonstrate the efficiency of the
new algorithm: the optimum result can be generated for
circuits with more than million gates in less than a minute
and much faster than using existing methods. On the
benchmark circuits, the reduction in the number of
registers ranges from 0% to 60%, averaging about 11%.

An important feature of our algorithm is that it always
returns the minimum-register retiming that is closest to the
current position of the registers. If a register in the input
circuit cannot be retimed to minimize the total register
count, it is not touched. This simplifies the computation of
the initial states and minimizes the total perturbation.

Delay constraints can be incorporated easily into the new
algorithm. Instead of increasing the complexity of the
problem, they actually result in a simplification, albeit at
the loss of optimality in register count. Even so, the result
is still guaranteed to be strictly better than the original.

The paper is organized as follows. Section 2 describes the
background information and the existing approaches to
minimum-area retiming. Section 3 describes the new
algorithm. Section 4 describes how to incorporate delay
constraints. Section 5 reports experimental results.

2. BACKGROUND
A circuit is a directed acyclic graph (DAG) G =<V,E>
whose vertices V correspond to logic gates and directed
edges E correspond to wires connecting the gates. The
terms network, graph, and circuit are used interchangeably
in this paper.

A node has zero or more fan-ins, i.e. nodes that are driving
this node, and zero or more fan-outs, i.e. nodes driven by
this node. The transitive fan-out cone of a vertex v is a
subset of all nodes of the network reachable through the
fan-out edges from v, captured by the function TFO(v):
V→2V.

For the purposes of easily illustrating the concepts in this
paper, we employ the register-boundary view of the circuit.
An example of this is illustrated in Figure 1. The
combinational logic in the circuit is grouped together into
a single directed acyclic graph. The inputs to this graph
(on the left in Figure 1) consist of the registers and primary
inputs. The outputs of the graph (on the right in Figure 1)
are the register inputs and primary outputs. The registers
are duplicated at the outputs for the ease of illustration,
and the wires to the register inputs that form the loops in
the sequential circuit are not shown. All references to the
combinational network in this paper presume this view.

2.1 Retiming
The problem of retiming is to a find a retiming lag
function r(v):V → Z that optimizes some objective while

meeting a set of constraints. There are several such
formulations, but for the purposes of this paper, we
concentrate on the constrained min-register problem from
[13] described by the linear program in Equations 1-3.
wi(e) is the initial number of registers present on edge e,
W(u,v) is the minimum number of registers along a path

vu → , and D(u,v) is the maximum delay along any path
vu → with W(u,v) registers. T is the delay constraint.

 s.t.urvr
v)(u,e

∑
=∀

−)()(min (1)

)()()(ewvrur i≤−),(vue=∀ (2)

 1),()()(−≤− vuWvrur , (,)u v if D u v T∀ > (3)

The dual of this linear program is a minimum cost network
circulation problem and can be solved efficiently using
algorithms specific to this class of problems. Using the
method described by Goldberg [9], the minimum cost flow

can be computed in

)log()2(log VCEVVEO worst-case

time, where C is the maximum cost on any edge.

The primary source of complexity in this approach lies in
the generation and representation of the W(u,v) and D(u,v)
values and associated constraints. However, in the
unconstrained version of minimum register retiming, there
are no constraints of the type of Equation 3, and the
problem is greatly simplified. The number of vertices and
edges in the corresponding network problem is
proportional to the size of the combinational circuit.

3. MIN-REG RETIMING ALGORITHM
We introduce an algorithm for optimum unconstrained
minimum-register retiming that is based on an iterative
maximum network flow problem. This is motivated by the

observation that computing the maximum flow through a
network is an algorithmically and practically easier
problem than determining the minimum cost circulation.
Our algorithm requires repeated iteration, but for practical
circuits, the number of iterations is typically quite small.

3.1 Single Iteration
A single iteration of the retiming algorithm involves
computing the maximum flow through the combinational
network, identifying the unique topologically earliest
minimum cut, and moving the register boundary to the new
location.

Let us consider only the paths through the combinational
logic that lie between two registers (thus temporarily
ignoring the primary inputs and outputs). In the register-
boundary view of this circuit, the registers form a complete
cut through the combinational network. Before any
retiming is performed, this cut lies at its inputs. The width
of the cut is the number of constituent registers.

If the registers are retimed forward over any of the
combinational nodes, the corresponding cut moves forward
through the network and may grow or shrink in width as
registers are replicated and/or shared as needed by the
graph structure. In the initial circuit, it is evident that any
path in the combined graph passes through exactly one
register. Any retiming must preserve this property. If this
were not the case, the latency of that path would be altered
and the sequential behavior of the circuit changed.

The problem of minimizing the number of registers by
retiming them to new positions within the scope of the
combinational network is equivalent to finding a minimum
width cut. This problem is the dual of the maximum
network flow problem, for which efficient solutions exist.

Figure 1. An example of a network where the minimum-
cut in the directed graph is not a valid retiming. The
combinational network is light grey; the initial positions of
the registers lie to the left, and their inputs are replicated
on the right. The graph can be completely cut with exactly
two registers (at the outputs of c1 and c4), but this results
in a path (R3→R1’) with altered sequential latency.

Solving the general maximum flow problem using the
push-relabel implementation proposed by Cherkassky and

Goldberg [2] is

)2log(EVVEO in the worst case.

Another class of max-flow methods relies upon iteratively
searching for augmenting flow paths (e.g. [4]). The
runtime of these algorithms is bounded by the maximum
length of an augmenting path times the maximum value of
the flow, O(|E|*maxflow). Because the flow constraints in
our problem are of unit width, the width of the input to the
graph establishes a worst-case bound of O(ER), where |R|
is the initial number of registers. This is an asymptotically
easier problem than computing minimum cost flow on an
identical graph structure.

After the maximum flow has been established, the residual
graph is used to generate a corresponding minimum cut.
Via duality, the width of this minimum cut is exactly the
volume of the maximum flow. To determine its location,
the vertices in the network are partitioned by their
reachability from the flow source in the residual flow
graph. Generating this partition is O(V) in the worst case.
The partition is a complete cut, because there is no
additional flow path from the source to the sink if the
maximum has already been reached. The registers are
removed from their current locations and placed on the
graphs edges that cross the minimum cut.

There may exist multiple cuts of minimum width, but this
method always generates the one that is unambiguously
closest to the source node. This results in the minimal
movement of the registers, simplifying the initial state
computation and minimizing the design perturbation.

However, as stated, this procedure may generate an illegal
retiming. A minimum cut in a directed graph only
guarantees that all paths in the graph are crossed at least
once. This is a necessary but not sufficient condition for
the cut to be a valid retiming. We seek the minimum cut in
the graph such that all paths are crossed exactly once.
Figure 1 illustrates an example of this problem. The
network flow problem must be altered to eliminate the
possibility that a path is crossed more than once.

Reverse edges with unbounded capacity are added in the
direction opposite to the constrained edges in the original
network. These additional paths may increase the
maximum flow (and therefore the size of the minimum cut)
but guarantee that the resulting minimum cut will
correspond to a legal retiming. The unlimited reverse flow
prevents paths from crossing the resulting cut more than
once by disallowing the flow to be constrained by original
edges in the reverse direction; no path can cross the cut
more than once unless there is some edge that crosses it in
the reverse direction, and the cut will not contain such
edges unless they constrain the flow.

It is also needed to account for sharing registers along
hyper-graph fan-out edges. This requires another simple
modification to the network flow problem. Each circuit
node is decomposed into two vertices, a receiver of all of
the former fan-in arcs and an emitter of all of the former
fan-out arcs. The flow constraints are removed from these
edges; instead, a single edge with a unit flow constraint is
inserted from the receiver to the emitter. In this scheme,
cutting a node will only contribute to the width of the cut
once, regardless of its fan-out degree. Note that the
reverse edges terminate the receiver.

The final network for computing the maximum flow
computation is depicted in Figure 2.

The unitary flow constraints can also be used to simplify
the implementation of path-based methods, so that the flow
network of Figure 2 need not be explicitly built. Instead,
algorithms such as Edmunds-Karp [4] can be implemented
entirely with binary marking on the original circuit
structure. Because the flows on the reverse edges are
unconstrained, they need only be implicitly maintained
with a set of flow predecessor pointers.

3.2 Primary Inputs and Outputs
The primary inputs and outputs (PIOs) can be treated in
different ways, depending on the application.

In synthesis, the latency at all of the PIOs is assumed to be
invariant. This restriction can be enforced in one of two
ways: by creating a host node that fixes the retiming lags
of all PIOs to be identical; or by excluding portions of the
combinational DAG from the minimum cut computation.
The first method is straightforward; we describe the
second in more detail.

In forward retiming, it is the primary inputs (PIs) that
constrain the movement of registers and the location of the

Figure 2. The network in (a) is expanded to form a
network flow problem (b) resulting in a valid forward
retiming with maximal fan-out sharing. All edges are
illustrated for the central node. Each of the light nodes in
(a) is replaced with a pair of dark grey nodes in (b) and
the flow paths as illustrated. The solid edges are flow
paths with unit capacity and the dashed edges are paths
with infinite capacity.

minimum cut. All paths through the combinational network
that originate from a PI have a sequential latency that must
remain at zero. Inserting a register anywhere in the
TFO({PIs}) will alter this. Therefore, to find the minimum
cut in the presence of PIs, one of two methods can be used:
(i) temporarily redirecting to the sink all edges e=(u,v)
where v∈TFO({PIs}), or (ii) replacing the constrained
flow arc with an unconstrained one, thus preventing that
node from restricting the maximum flow and therefore
participating in the minimum cut. Both methods exclude
the invalid portion from participating in the retiming
solution. Primary outputs are handled similarly during
backward retiming.

In verification applications, it is not necessary to preserve
the synchronization of the inputs and outputs. It may be
desirable to borrow or loan registers to the environment
individually for each PIO if the result is a net decrease in
the total register count. In this case, the external
connections should be left dangling. Registers will be
donated to the environment if the minimum cut extends
past the dangling terminals; conversely, registers will be
borrowed if the minimum cut appears in the transitive fan-
in/fan-out region that was excluded above. The inclusion
of this region introduces additional flow paths and
introduces additional possibilities for minimizing the total
register count.

Because register borrowing requires the initial values of
the new registers to be constrained to those reachable in
the original circuit, it is necessary to construct additional
combinational logic for computing the initial state. If the
size of this logic grows undesirably large, register
borrowing can be turned off.

3.3 Multiple Iterations
This section shows how to compute the globally optimum
min-register retiming by iteratively applying the
maximum-flow algorithm of Section 3.2.

Thus far, we have only considered forward retiming of
registers in the circuit. It is sufficient to consider only one
direction if the circuit is entirely cyclic (i.e. if a host node
is used to create a loop from the primary outputs to the
inputs). However, in general, the optimum minimum-
register retiming requires both forward and backward
moves. The procedure for a single iteration of backward
retiming is nearly identical, except that it computes the
maximum flow from the register inputs (sources) to the
primary inputs and register outputs (sinks).

The overall algorithm consists of two iterative phases:
forward and backward. In each phase, the single frame of
iteration is repeated until the number of registers reaches a
fix-point. The procedure is outlined in Algorithm 1.

At no point during retiming is it necessary to unroll the
circuit or alter the combinational logic; only the register
boundary is moved by extracting registers from their initial
position and inserting them in the their final position.
Therefore, each iteration is fast. In each iteration, every
node’s lag is either changed by one or unchanged.

The ordering of the two phases (forward and backward)
doesn’t affect the number of register in the result, but we
chose to perform forward retiming first because in general
min-register retiming is not unique. This approach reduces
the amount of logic that has to be retimed backward, This
may lead to a simpler SAT problem when computing a
new initial state after retiming. We do not further discuss
the details of the initial state computation in this paper.

3.4 Proof of Correctness
Given a retiming lag function r(v): V → Z , consider

unrolling the sequential circuit by n cycles, where
max () min ()

VV
n r v r v

∀∀
> − . In the latch-boundary view of the

circuit, this corresponds to stacking identical copies of the
original network, as illustrated in Figure 3.

The positions of the registers of the reference cycle after
any retiming r(v) can be expressed as a cut C in the edges
of this unrolled circuit. The elements of C are the register
positions. The unretimed cut, Cinit, (such that r(v)=0) lies
at the base of the unrolled circuit. The size of this cut, |C|,
is the number registers post-retiming, or equivalently, the
number of combinational nodes whose fan-outs
hyper-edges cross the cut.

Algorithm 1: Unconstrained Min-Register Retiming

 1 while(improvement) { // forward
 2 set up forward retiming flow network
 3 mark restricted locations
 4 compute maximum flow
 5 convert to nearest minimum cut
 6 move registers to cut
 7 }
 8 while(improvement) { // backward
 9 set up backward retiming flow network
10 mark restricted locations
11 compute maximum flow
12 convert to nearest minimum cut
13 move registers to cut
14 }
15 compute initial states

A cut C is a valid retiming if every path through the
combinational network passes through it exactly once.
This implies that for any two registers R1, R2∈C,
R1∩TFO(R2)=∅ and vice versa. If this were not the case,
additional latency would be introduced and functionality of
the circuit would be altered.

A combinational frame of the cut C with retiming function
r(v) is the region in the unrolled circuit between C and C’,
where C’ is generated by r’ (v)=r(v)+1. If the circuit were
retimed to C, this corresponds exactly to the register-free
combinational network structure that would lie on the
outputs of the register boundary.

Consider an optimal minimum register retiming and its
corresponding cut Cmin. While there exist many such cuts,
assume Cmin to be the one that lies strictly forward of the
initial register positions is topologically closest to Cinit. It
can be shown with Lemma 1 that there is one
unambiguously closest cut.

Theorem 1: Upon termination of our algorithm, the
resulting cut is exactly Cmin.

Proof: Our algorithm iteratively computes the nearest
cut of minimum width reachable within one combinational
frame and terminates when there is no change in the result.
Let the resulting cut after iteration i be Ci. The cut Ci at
termination will be identical to Cmin if the following two
conditions are met.

Condition 1. No register in Ci lies topologically
forward of any register in Cmin.

Condition 2. After each iteration, |Ci+1|<|Ci| unless
Ci=Cmin.

Lemma 1. Let Ci and Cj be two valid retiming cuts,
and {si, ti} be {sj, tj} be a partitioning of each such that

()i js TFO s⊆ and ()j it TFO t⊆ . The cuts {si, tj} and {sj,

ti} are also valid retimings.

First, we should point out that this partitioning is valid
and that every element must fall into either s or t as
defined. Because Ci and Cj are valid retiming cuts, every
path must intersect them both. Given the points of
intersection Ri∈Ci and Rj∈Cj, their membership in either s
or t is implied by their topological order.

Now, consider some path p from the source to the sink
of the network. Because Ci and is a complete cut and a
valid retiming, the path must pass through exactly one of
either si or ti. Similarly for Cj. If p passes through si, it can
not pass through tj, because tj lies in strictly within TFO(ti),
and p would have had to intersect tj. Also, if p does not
pass through si, it can not intersect sj because sj lies strictly
within TFO(si) and so must pass through tj. Therefore, it
must pass through exactly one of si and tj, and {si, tj} is a
valid retiming cut. Similarly for {sj, ti}.

Proof of Condition 1. Consider a cut Ci that violates
Condition 1. Let {si, ti} be a partition of Ci and {smin, tmin}
be a partition of Cmin such that si is the subset of registers
in Ci that lie topologically forward of the subset smin of the
registers in Cmin. This is illustrated in Figure 4. By Lemma
1, we know that both {si, tmin} and {smin, ti} are valid cuts.

Because a single iteration returns the nearest cut of
minimum width within a frame, this Ci={si, ti} must be
strictly smaller than the closer {smin,ti}. This implies that
|si|<|smin| and that |{si, tmin}|<|{ smin,tmin}|=Cmin. This is
impossible by definition. Therefore, Condition 1 must be
true.

Observation 1. Retiming by an entire combinational
frame does not change any of the register positions in the
resulting circuit and also represents a valid retiming cut.
Because a register is moved over every combinational
node, the retiming lag function is universally incremented.
The number of registers on a particular edge is a relative
quantity, the result is structurally identical to the original.

Proof of Condition 2. We can use the minimum cut to
generate a cut that is strictly smaller than Ci and reachable
within a combinational frame. Consider the cut Cmin’ that is
generated from Cmin via Observation 1 such that its deepest
point is reachable within the combinational frame of Ci.
Some of the retiming lags may be temporarily negative.
Let {si, ti} be a partition of Ci and {smin, tmin} be a partition
of Cmin’ such that smin are the deepest registers in Cmin’ that
lie topologically orward of the subset si of the registers in
Ci. smin≠∅ if Ci ≠Cmin. Using the reasoning from condition
1, both {si, tmin} and {smin, ti} are valid cuts.

We know that |smin|<|si|, otherwise there would be implied
the existence of a topologically nearer cut |{si, tmin}|≤Cmin.

Figure 3. Unrolled Circuit with global minimum-
register retiming Cmin. Cinit represents the initial
position of the registers of the reference frame, and the
dashed lines are their equivalent positions at the
boundary of each unrolled frame.

Figure 4. Definitions of cut partitions for Section 3.4.

Therefore, the cut {smin, ti} is strictly smaller than Ci and is
reachable within one combinational frame and would be
returned by a single iteration of the algorithm. Note that
this doesn’t imply that there aren’t other smaller cuts, only
that there must exist at least one that is strictly smaller.
Therefore, Condition 2 must also be true.

3.5 Complexity Analysis
As described in Section 3.1, the complexity of computing
the minimum cut in each iteration of our algorithm is
O(RE). The maximum number of iterations can also be
bounded by |R| via Condition 2 in the above proof. The

total worst-case runtime is therefore O(R2E). While this is
neither strictly less nor greater than the best known bound
for the equivalent minimum-cost network flow problem
[9], the results in Section 5 indicate that the average
runtimes are smaller for the considered circuits.

4. DELAY-CONSTRAINED MIN-REG
In the formulation of [13], enumerating and incorporating
the delay constraints into the minimum cost flow problem
dominates the complexity. In the worst case, the number
of delay constraints is O(V2), requiring O(V3) time to
enumerate them via all-pairs shortest paths. This has

Table 1: Minimum Register Retiming Results on Real Benchmarks

 Original Circuit Min-Delay Retiming Min-Register Retiming
Name |AIG | A D A D T F-iter B-iter A D T
barrel16a 397 37 11 124 4 0.02 1 0 32 11 0.00
barrel16 357 37 10 85 4 0.01 1 0 32 11 0.00
barrel32 902 70 12 166 5 0.03 1 0 64 13 0.00
barrel64 2333 135 14 422 5 0.06 1 0 128 14 0.00
mux32_16bit 1851 533 9 873 4 0.05 1 1 505 11 0.01
mux64_16bit 3743 1046 13 1460 5 0.12 1 0 991 13 0.01
mux8_128bit 3717 1155 7 2297 3 0.18 1 1 1029 8 0.00
mux8_64bit 1861 579 7 1145 3 0.07 1 1 517 8 0.00
nut_000 1262 326 58 393 27 0.05 1 2 312 60 0.00
nut_001 3179 484 93 558 57 0.08 2 2 435 109 0.03
nut_002 873 212 24 232 10 0.02 2 2 158 25 0.00
nut_003 1861 265 37 304 24 0.04 3 1 228 46 0.01
nut_004 713 185 13 213 6 0.02 2 2 164 15 0.00
oc_aes_core_inv 11177 669 25 669 25 0.25 1 1 658 25 0.04
oc_aes_core 8732 402 24 402 24 0.14 1 1 394 24 0.00
oc_aquarius 23109 1477 207 1575 200 0.81 1 0 1473 206 0.08
oc_ata_ocidec1 1601 269 14 275 11 0.02 1 0 268 14 0.00
oc_ata_ocidec2 1813 303 14 310 11 0.02 1 1 293 14 0.00
oc_ata_ocidec3 3957 594 14 599 13 0.06 1 1 562 19 0.00
oc_ata_vhd_3 3933 594 14 599 13 0.06 1 1 568 14 0.00
oc_ata_v 838 157 14 169 10 0.02 1 0 156 14 0.00
oc_cfft_1024x12 9498 1051 61 1672 26 0.91 12 1 704 346 0.70
oc_cordic_p2r 8430 719 55 975 45 0.26 1 0 718 55 0.01
oc_dct_slow 879 178 32 207 14 0.03 0 1 176 32 0.00
oc_des_perf_opt 21281 1976 15 4656 14 1.27 15 0 1015 233 1.18
oc_fpu 16115 659 2661 1578 543 30.65 2 0 247 2712 0.12
oc_hdlc 2221 426 14 426 13 0.03 1 3 375 17 0.00
oc_minirisc 1918 289 36 290 33 0.03 2 1 253 39 0.01
oc_oc8051 10315 754 92 757 87 0.19 1 1 743 92 0.01
oc_pci 10426 1354 46 1405 26 0.39 1 1 1308 46 0.02
oc_rtc 1093 114 41 114 29 0.02 1 0 86 41 0.00
oc_sdram 860 112 13 109 12 0.02 1 0 109 12 0.00
oc_simple_fm_rec 2300 226 66 276 40 0.05 0 1 223 75 0.00
oc_vga_lcd 9086 1108 35 1126 25 0.24 2 1 1078 35 0.02
oc_video_dct 36465 3549 60 8525 16 12.84 1 1 2305 73 0.30
oc_video_huff_dec 1591 61 21 65 18 0.02 0 1 60 22 0.00
oc_video_huff_enc 1720 59 19 90 13 0.02 1 0 47 32 0.00
oc_wb_dma 15026 1775 19 1794 17 0.45 1 1 1751 34 0.08
os_blowfish 9806 891 79 906 61 0.30 1 0 827 78 0.00
os_sdram16 1156 147 23 162 17 0.02 1 0 144 23 0.00
radar12 38058 3875 110 3991 56 3.71 2 3 3754 110 0.21
radar20 75149 6001 110 6363 56 6.92 2 1 5364 110 1.34
uoft_raytracer 145960 13079 237 16974 208 23.70 3 2 11610 537 3.76
AVERAGE 1.0 1.0 1.41 0.66 0.89 1.56

encouraged attempts to reduce the problem size by
eliminating unnecessary delay constraints [14][17], as well
as alternative approaches that do not use minimum cost
flow [15][16].

Our method lends itself to the incorporation of delay
constraints in such a way as to reduce the complexity of
the network flow problem, albeit at the cost of losing
optimality in the number of registers. However, the
number of registers in the result is guaranteed to be at least
as small as the initial circuit.

The delay constraints must be met by the initial circuit; this
can be accomplished by a min-delay retiming. Subsequent
violations are prevented by restricting the set of
permissible register locations after retiming. By retiming a
register forward, the setup condition at its input and/or the
hold condition at a register in its transitive fan-out may be
violated; retiming a register backward may lead to hold
violations at its input or setup violations in its transitive
fan-out. The set of potential positions for a register that
result in such violations can be pre-computed by assuming
that the register or input at the other end of the timing path
remains fixed.

So far, the restriction on the possible destinations for a
register has only considered the movement of one end of
the timing path. In general, the registers at both ends of
the path will be relocated, but it can be shown that the
above constraints are conservative. The movement of the
other timing endpoint (if there is any) will always reduce
the criticality of the aforementioned timing constraints.
Some of this conservatism can be reduced by ignoring
timing paths that end at a register which is also present in
the transitive fan-in of a register; these registers were
exactly the ones that were retimed forward to the new
location, resulting in no net change in the length of these
timing paths.

The network structure need not be modified to incorporate
the delay constraints. Similar to the technique described in
Section 3.3, removing the unit flow constraint from the
vertex (and replacing it with an unconstrained edge) will
prevent that node from restricting the maximum flow,
participating in the minimum cut, and having a register
retimed to its output.

5. EXPERIMENTAL RESULTS
We applied the proposed algorithm to a suite of gate-level
circuits derived from public-domain hardware designs
[11]. Altera tools were used to extract and optimize the
logic networks. This optimization may have included
retiming. These were then minimally preprocessed by the
ABC logic synthesis package [1] as follows: the original
hierarchical designs were (a) flattened, (b) structurally
hashed and (c) algebraically balanced. From the set of 63
benchmarks, we removed one combinational circuit and 19
circuits whose initial register count was already minimum,
leaving 43 circuits shown in Table 1.

Our algorithm was implemented in C++. The maximum
network flow problem was internally solved using the
HIPR package available at [10] and described in [2].

Table 1 is divided into three groups of columns, each
describing the characteristics of a particular retiming. The
first section of Table 1 shows the statistics about the circuit
with the registers in their initial positions. The second
section describes the results of an incremental heuristic
min-delay retiming algorithm [18] implemented in ABC to
provide perspective on the area/delay tradeoffs. The third
set of columns shows the results produced by the proposed
min-register retiming algorithm.

The following notation is used in the table. Columns
labeled “A” refer to the number of registers in the network
(area). Columns labeled “D” refer to the number of nodes
on the longest combinational path. Columns labeled “T”
refer to the cumulative runtime of the flow computations in
seconds measured on a 64-bit 2.0Mhz Pentium Xeon. For
the minimum register retiming algorithms, the number of
forward and backward iterations that are required before
the fix-point is reached are also listed (“F-iter” and “B-
iter”, respectively).

Because these benchmarks are only of moderate size, a set
of larger artificial circuits was created by combining the
benchmarks in Table 1. These are described in Table 2.
As the number of retiming iterations required appears to be
independent of the circuit size—likely as a result of the
independence of the size to the maximum latency around
any loop or input to output—the circuits “large1” and
“large2” were constructed so that latencies were the
maximum of any constituent component. The 2 and 4

Table 2: Maximum Flow vs. Minimum-Cost Flow on Large Benchmarks

Min-Delay Retiming Benchmark
 Min Cost Flow Iterative Maximum Flow

Name |Gates|| |Regs| |Regs| Runtime F. Iter. B. Iter. Runtime Speedup
large1 1 006 k 72.9 k 66.9 k 147.9s 3 3 33.0s 4.48
large2 1 005 k 82.7 k 76.9 k 131.3s 3 3 24.5s 5.36
deep3 1 010 k 74.7 k 67.6 k 182.0s 3 21 34.2s 5.32
deep4 1 074 k 86.4 k 82.0 k 130.3s 3 3 17.9s 7.27
larger5 2 003 k 151.1 k 139.5 k 410.6s 3 3 67.2s 6.11
largest6 4 008 k 300.1 k 279.0 k 818.3s 3 3 139.9s 5.85

million gate circuits, “larger5” and “larger6”, were
constructed similarly. In contrast, the two circuits “deep3”
and “deep4” were built by concatenating the components
to increase the maximum latencies.

In Table 2, the results of our iterative maximum flow-
based algorithm are compared against a single minimum
cost flow-based implementation as described by [8]. The
latest CS2 package from [9] was used as the solver. In
every case, the iterative maximum flow-based
implementation required less time to complete.

6. CONCLUSIONS
This paper presented an application of a simplified
maximum flow computation to the problem of minimizing
the number of registers after retiming. The presented
method is very simple, straight-forward to implement, fast,
memory efficient, and scalable for large industrial circuits.
Potential applications of the method include sequential
synthesis and verification.

REFERENCES
[1] Berkeley Logic Synthesis and Verification Group, ABC: A

System for Sequential Synthesis and Verification, Release
61104. http://www.eecs.berkeley.edu/~alanmi/abc/

[2] B. V. Cherkassky and A. Goldberg, "On Implementing
Push-Relabel Method for the Maximum Flow Problem,"
Algorithmica 19, 1997, pp. 390-410.

[3] J. Cong and C. Wu, “Optimal FPGA mapping and retiming
with efficient initial state computation”, IEEE Trans. CAD,
vol. 18(11), Nov. 1999, pp. 1595-1607.

[4] J. Edmonds and R. Karp, "Theoretical improvements in
algorithmic efficiency for network flow problems",
Journal of the ACM 19 (2), 1972, pp. 248-264.

[5] N. Een and N. Sörensson, “An extensible SAT-solver”.
Proc. SAT ‘03. http://www.cs.chalmers.se/~een/Satzoo/

[6] C. A. J. van Eijk. “Sequential equivalence checking based
on structural similarities”, IEEE Trans. CAD, vol. 19(7),
July 2000, pp. 814-819.

[7] G. Even, I. Y. Spillinger, and L. Stok, “Retiming revisited
and reversed”, IEEE Trans. CAD, vol. 15(3), March 1996,
pp. 348-357.

[8] J. P. Fishburn, “Clock skew optimization”, IEEE Trans.
Comp., vol. 39(7), July 1990, pp. 945-951.

[9] A. Goldberg, “An efficient implementation of a scaling
minimum-cost flow algorithm”, J. Algorithms 22, 1997,
pp. 1-29.

[10] A. Goldberg, Network optimization library. (Software
tools) http://www.avglab.com/andrew/soft.html

[11] M. Hutton and J. Pistorius, Altera QUIP benchmarks.
http://www.altera.com/education/univ/research/unv-
quip.html

[12] A. Kuehlmann and J. Baumgartner, "Transformation-based
verification using generalized retiming”, Proc. CAV’01.

[13] C. E. Leiserson and J. B. Saxe. “Retiming synchronous
circuitry“, Algorithmica, 1991, vol. 6, pp. 5-35.

[14] N. Maheshwari and S. Sapatnekar, “Efficient retiming of
large circuits”, IEEE Trans VLSI, 6(1), March 1998, pp.
74-83.

[15] P. Pan, “Continuous retiming: Algorithms and
applications”. Proc. ICCD ‘97, pp. 116-121.

[16] S. S. Sapatnekar and R. B. Deokar, “Utilizing the retiming-
skew equivalence in a practical algorithms for retiming
large circuits”, IEEE Trans. CAD, vol. 15(10), Oct.1996,
pp. 1237-1248.

[17] N. Shenoy and R. Rudell, “Efficient implementation of
retiming”, Proc. ICCAD ’94, pp. 226-233.

[18] D.R. Singh, V. Manohararajah, and S.D. Brown,
“Incremental retiming for FPGA physical synthesis”, Proc.
DAC ’05, pp. 433-438.

[19] H. J. Touati and R. K. Brayton, “Computing the initial
states of retimed circuits“, IEEE Trans. CAD, vol. 12(1),
Jan 1993, pp. 157-162.

