
Chapter 2

Electronic Circuits [cir]

In this chapter we introduce the schematic diagrams as a powerful “language” to represent
electronic circuits. We also discuss

2.1 Circuit Analysis

Electronic circuit design relies on the ability to analyze and predict circuit behavior. In
general this requires the calculation of electromagnetic fields, a complex task even for very
simple circuits. Fortunately in many cases we can rely on the following approximations to
greatly simplify circuit analysis:

1. Electrical interactions happen instantaneously.

2. Electrical components interact solely through wires.

3. The net charge on electrical components is always zero.

Let’s check the validity of each of these approximations. Electrical fields propagate at or
near the speed of light, 300,000 km/ sec. While this exceeds most everyday life experiences,
electronic circuits can operate at very high speed and it is therefore prudent to check the
assumption of instantaneous interaction.

For example, a computer operating at 1 GHz clock rate executes 109 operations per sec-
ond, or one operation in every nano-second. During this time electrical signals propagate
30 cm. Since integrated circuit chips are much smaller and most signals travel only through
part of a chip, the delay is indeed usually negligible. We conclude that for systems operat-
ing at frequencies less than about 1 GHz and with their longest dimension no larger than
about ten centimeters, the assumption of instantaneous interaction is valid.

The second assumption, interaction solely though wires, is obviously violated by many
electronic circuits. Depending on the situation, such interaction is variously referred to
wireless communication or interference. Since however the signals generated by such re-
mote action are usually small, the effects can often be neglected. Having said that we
certainly will observe interference in the laboratory and learn about some simple precau-
tions.
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The final approximation is a consequence of the electrostatic force between two charged
bodies. This force grows very rapidly and quickly counteracts any temporary charge
buildup. See Problem 2.6 on page 28 for an example.

In practice and unless we work e.g. on wireless devices we can usually assume that the
assumptions listed above are valid but should be ready to check if we observe otherwise
inexplicable phenomena.

2.2 Schematic Diagrams

Electronic circuit components and interconnects come in a wide variety. Even simple de-
vices such as batteries or switches exist in many forms and colors. Although these aspects
are certainly important, they are do not affect the electrical function. For effective circuit
design we need a representation that only captures the operation of the electronic circuits.

Schematic diagrams meet this requirement. Figure 2.1 shows an example. The rectan-
gles indicate the components; interconnect wires are represented by lines. The coloring,
blue for components and green for interconnects, is for clarification only.

Just like the electronic circuits they represent, schematic diagrams are hierarchical: ex-
cept for basic components such as batteries or resistors, the components themselves are
electronic circuits and can be represented by their own schematic diagram.

Figure 2.1 Schematic circuit diagram showing
electronic components (blue) and their intercon-
nects (green).

In the example, each component has only two connections. Practical components have
anywhere from two (e.g. resistors or single pole switches) to several thousand connections
(some microprocessors). An optional label, such as X1 or R5 names the component. Often
it also indicates its function. The prefix R, for example, is usually reserved for resistors.

The orientation and position of the circuit components in the schematic is arbitrary, al-
though neat arrangements that for example minimize crossings of interconnects are prefer-
able. It is also good practice to indicate which interconnects are connected with a dot, as
shown in the sample diagram. This is particularly important for crossings. The schematic
in Figure 2.2 has two crossings, one with and the other without dot, indicating that the
wires are connected on one case but not in the other. Of course it would be better to redraw
the schematic to avoid the crossing without connection to avoid possible misunderstand-
ings.

Many free and commercial tools are available for drawing schematic diagrams. Often
they are integrated with other programs e.g. for printed circuit board layout or electronic
circuit simulators used for verification.

Although versatile, schematic diagrams are not the only solution for representing cir-
cuits. Especially when interacting with computer tools netlists listing all components and
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Figure 2.2 Schematic diagram with
wire crossings.

their interconnections in a textual format are often preferred. Fortunately most schematic
capture programs automatically convert the graphical to a textual representation.

2.3 Schematic Diagrams

Figure 2.3 shows a schematic diagram consisting of branches and nodes. In this diagram,
branches are shown in blue and nodes are shown in green. This is for clarity only, often
circuit diagrams are in a single color. In electronics, the terms schematic diagram and
circuit diagram are used interchangeably.

Figure 2.3 Schematic circuit diagram showing circuit
components (blue) and interconnects (green).

The branches in the diagram represent circuit components such as batteries, switches,
transistor, etc. Optionally, components are given names such as X1, X2, or R7.

Nodes represent electrical interconnects such as wires or copper traces on printed cir-
cuit boards or integrated circuits. Each contiguous green trace represents a node, regardless
of the number of branches connected to it. The circuit in Figure 2.3 has four nodes. Dots
indicate where interconnects are tied together.

The schematics shown in Figure 2.4 are functionally equivalent since they contain the
same components and interconnected in the same way, as can be seen by redrawing the
schematic on the right. For circuit analysis, simple arrangements are preferable. For exam-
ple, it is much easier to count the number of nodes in the schematic on the left than in the
functionally equivalent schematic on the right.

EXAMPLE 2-1: Number of branches and nodes.
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Figure 2.4 Two identical circuit diagrams: The circuit on the right can be transformed into the one on the
left by rearranging the components.

EXAMPLE 2-2: Equivalent circuits.

2.3.1 Voltage and Current

Circuit components interact with each other via currents flowing in the interconnects. Cur-
rent is electronic charge passing through the interconnects. In most electronic systems the
charges are electrons. Voltage, also known as electromotive force, drives the current flow
and is established for example by a battery.

define I, V, units

charge

q_e

velocity of electrons

Figure 2.5 Cur-
rents and voltages
in a schematic dia-
gram.
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Current and voltage are analogous to velocity and pressure in a hydraulic system, with
water molecules taking the place of electrons, pipes corresponding to interconnects, and
valves and pumps assuming the roles of switches and voltage sources.

Figure 2.5 shows how currents (i1, i2, iz, . . . ) and voltages (v1, v2, vy, . . . ) are indicated
in a schematic diagram. The direction of the symbols is arbitrary: redrawing the arrow
indicating current i1 to point simply corresponds to changing the sign of the current from
+3 mA to -3 mA.

Currents ia and iy are identical. Such redundancy is sometimes convenient, but can also
result in confusion.

2.3.2 Kirchhoff’s Laws

Voltages and currents in electronic circuits obey the same laws of conservation as flow and
pressure in hydraulic systems. In electronic circuits the resulting relationships are referred
to as Kirchoff’s Current Law (KCL) and Kirchhoff’s Voltage Law (KVL).

Figure 2.6 Cir-
cuit illustrating for
Kirchhoff’s Current
Law (KCL). The
sum of all currents
exiting any closed
shape, such as
the ellipse shown
in the diagram, is
zero.

Kirchhoff’s Current Law (KCL)

Kirchhoff’s Current Law expresses formally the fact that the total current flowing out of a
node must equal zero. Consider the circuit in Figure 2.6. The sum of all currents exiting the
region indicated by the ellipse must be zero. Otherwise, excess charges would continue to
accumulate in the wires, a situation that is physically impossible. The sum of all currents
exiting the ellipse is

i1 + i2 + (−i3) = 0 (2.1)

Current i3 appears in the equation with a negative sign since it is entering rather than
leaving the ellipse.

EXAMPLE 2-3: Applying KCL to find unknown currents.

In the circuit diagram in Figure 2.7, currents i1 = 3 mA, i2 = −7 mA and i3 = 5 mA are known.
Determine the unknown currents ix and iy.

We first apply Kirchhoff’s Current Law to the region indicated in the schematic by the ellipse.
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The sum of all currents leaving the ellipse is

(−i1) + (−ix) + (−i2) = 0.

Solving for ix we get ix = −i1 − i2 = 4 mA.

Figure 2.7 Example illustrating how
to use KCL to determine unknown
currents.

Similarly we can find an equation for iy, for example by summing the currents leaving a shape that
includes the three components at the top right of the diagram to get

(−iy) + i3 + ix + i2 = 0.

Solving for iy and substituting the result from above for ix yields iy = i3 + ix + i2 = 2 mA.

Figure 2.8 Applying Kirchhoff’s Cur-
rent Law to a region that includes circuit
components.

Figure 2.8 shows a situation where the region with net zero current outflow includes cir-
cuit components. Kirchhoff’s law applies here also because of the assumption that the net
charge on circuit components is always zero. Applying KCL yields the following equation

ia + ib + ic = 0. (2.2)

For ia = −3 A and ib = 2 A we get ic = −ia − ib = 1 A.
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Kirchhoff’s Voltage Law (KVL)

Analogous to Kirchhoff’s Current Law, Kirchhoff’s Voltage Law (KVL) states that the sum
of the voltages along any closed path must be zero. This can be visualized with an anal-
ogy to staircases: No matter which stairs we take between floors in a building, the total
hight gain and loss must be equal after returning to the starting point. In the hydrology
equivalent, the sum of all pressure drops along a closed path is zero.

Figure 2.9 Circuit illustrating Kirchhoff’s
Voltage Law (KVL). The sum of the volt-
ages along any closed path is zero.

Figure 2.9 shows an example. The sum of all voltages along the path indicated in red is

v1 + v2 + (−v3) = 0. (2.3)

Voltage v3 appears in the equation with a minus sign since when circling the ellipse in
clockwise direction the negative sign marking the orientation of v3 is encountered first.
For voltages v1 and v2 the plus sign is encountered first, consequently they appear with a
plus sign in the sum.

2.4 Power

Power is the product of voltage times current and measured in Watts. A circuit component
can either deliver power to the rest of the circuit or absorb power delivered by other com-
ponents in the same circuits. Which of the two situations applies must be determined from
the orientation of the voltage and current and the signs of their values.

To analyze the power of component X1 in Figure 2.10, consider a charge q passing
through X1 in the direction of current arrow i1. Since the voltage increases when pass-
ing through the component, the charge gains energy q × v1 from X1. Hence component
X1 is delivering power pd = v1i1. For v1 = 3 V and i1 = 2 mA, the power delivered is
pd = 6 mW.

Similarly, in component X2 charge moving in the direction of current i2 looses energy,
hence X2 is absorbing power pa = v2i2. If v2 = 1 V and i2 = −3 mA, the power dissipated is
pa = −3 mW, which is the same as saying that the power delivered by X2 is pd = −v1i1 =
3 mW.

Figure 2.11 summarizes the different cases for power delivered and absorbed. The sit-
uation on the left is usually referred to as “active sign convention”, the one on the right
“passive sign convention”.

When labeling circuit diagrams we typically use the active sign convention for sources
such as batteries, and the passive sign convention for dissipating elements such as resistors.
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Figure 2.10 Illustration of Kirch-
hoff’s Voltage Law (KVL). The sum of
all voltages along any closed path is
zero.

This is only a convention, the direction of power flow must always be determined from the
direction of voltage and current and the signs of their values. For example, a rechargeable
battery can both deliver and absorb power.

Active Sign Convention Passive Sign Convention

Power delivered pd = v1i1 pd = −v2i2
Power absorbed pa = −v1i1 pa = v2i2

Figure 2.11 Summary of the signs for power delivered and absorbed.

From conservation of energy it follows that the sum of the power delivered (or, analo-
gously, absorbed) by all components in a circuit must equal to zero.

EXAMPLE 2-4: Power delivered and absorbed

Determine the power delivered by each component in the circuit in Figure 2.12 for v1 = 3 V, v2 = −2 V,
i1 = 3 mA, and i3 = −5 mA.

Figure 2.12 Circuit for power analysis ex-
ample.
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First we label the voltages and currents in all components. The directions are arbitrary. Here we use
the choices indicated in Figure 2.13; you are encouraged to redo the example for different directions and
verify that you get the same final result.

Figure 2.13 Labeled circuit for computing
power delivered and absorbed.

Next we use KVL and KCL to determine the unknown voltages and currents to get v3 = −v2 = 2 V,
v4 = v1 − v2 = 5 V, i2 = i1 + i3 = −2 mA, and i4 = −i1 = −3 mA.

Now we use Figure 2.11 to determine the sign convention for each component and appropriate equation
to determine the power dissipated. Finally we verify that the sum of the power delivered by all components
is zero. The table below summarizes the results.

Component Sign Convention Power Delivered
X1 passive pX1,d = −v1i1 = −9 mW
X2 active pX2,d = v2i2 = 4 mW
X3 active pX3,d = v3i3 = −10 mW
X4 passive pX4,d = −v4i4 = 15 mW

All ∑i pXi,d = 0 mW

2.5 Energy

2.6 Skills

Problems

• max chip size for fs

• number of electrons in universe

• force holding atomic nuclei together

1. What is the SI symbol for the unit of temperature?
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2. What is the SI symbol for 10−18?

3. At what frequency does the power system in the United States operate?

4. A wire carries a 8.8 µA current. Calculate the number of electrons passing per second.

5. In this problem we investigate charge neutrality.

The force between two electrical charges q1 and q2 at distance r can be calculated
using Coulomb’s law,

Fc =
1

4πε0

q1q2

r2

a) Calculate the absolute value of the electrostatic force between an electron and a
proton at distance r = 9 mm.

b) From the assumption that the net charge on every circuit component remains zero
at all times, it follows that currents i1 and i2 are equal in the circuit shown be-
low. To get a better feel for the assumption, let’s assume instead that i1 = 0 A and
i2 = 9 mA. Then negatively charged electrons accumulate on X2, leaving behind
positively charged atomic nuclei on X1. Calculate the attractive force (it is posi-
tive) between X1 and X2 after t = 1 s for X1 and X2 at a distance of 6 mm (treat X1
and X2 as point charges).

c) How many loaded trucks weighing m = 40000 kg each can you lift with this force?
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6. The number of free electrons (i.e. available to conduct current) in copper is about
3× 1024cm−3. Calculate the carrier velocity in a copper wire with radius 4.9 mm that
conducts 8.4 A. The SI unit for velocity is m/s. E.g. 1.4nm/s.

The information is carried by the electric field which propagates at or near the speed
of light, not by the electrons which travel much more slowly.

7. A computer operating at frequency fs = 4.8 GHz executes instructions in T = 1/ fs
seconds. Assuming that electrical signals propagate at the speed of light, how far do
signals propagate in one cycle T?

Finite propagation delay must be considered in the design of computers whose size
exceeds a few percent of this value.

8. In the circuit below find vx for

v1 = 1.3 V
v1 = −4.7 V

9. In the circuit below find ix for

i1 = 6.6 mA ix =
i1 = −1.4 µA ix =

10. a) What is the number of nodes in the circuit below?
b) What is the number of branches?
c) For i1=9.5 µA and i3=-1.9 µA find ix =
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11. In the circuit below v1=-9.8 kV and v2=-7.8 kV. Find
vx =
vy =

12. For i1 = 0.9 mA, i2 = 5.6 mA, v1 = 7.9 V and v2 = −4.5 V calculate
ix =
iy =
iz =

PX1 =
PX2 =
PX3 =
PX4 =

∑4
i=1 PXi =

The notation PXi stands for the power dissipated in component Xi.

13. For how long will a 5.2 V battery with 6.8 kJ capacity power a flash light consuming
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6.8 mW? Report your result in seconds, i.e. s, ks, Ms, etc.

14. Rechargeable batteries are often rated in “Ampere-hours”, the number of hours that
the battery can deliver a current of 1 A at its nominal voltage. Note that in reality the
voltage would drop gradually, and small batteries cannot even deliver 1 A. Despite
these shortcomings, the measure is convenient and popular.

A 12 V car battery is rated for 54 Ah. Assuming that the battery is initially fully
charged and needs to be 20 percent full to start the engine, how long can the lights
consuming 28 W total be left on (with motor off) before the car will no longer start?
The SI unit for time is s, e.g. 34.7ks.

15. What are the power PV1 and PI2 dissipated in sources V1 and I2 for

V1 I2 PV1 PI2

9.0 mV 7.5 A
8.0 V -7.6 µA
-2.7 V 0.4 mA

16. What are the minimum and maximum positive voltages Vmin and Vmax that can be
synthesized using either one or both voltage sources with values V1 = 6.6 V and
V2 = 2.3 V?

Vmin =
Vmax =



Chapter 5

Operational Amplifiers [amp]

5.1 Introduction

The need for amplification is a common occurance in sensor interfaces. For example, the
output from a microphone cannot drive a speaker directly without prior amplification.

These amplifiers are electronic circuits themselves, usually made from transistors, re-
sistors, and a few other circuit components. Amplifier design is a complex subject, but
fortunately ready-made circuits are available called operational amplifiers. Operational
amplifiers are very general devices that can be configured for many different applications
using a technique called “feedback”.

5.2 Ideal Operational Amplifiers

Operational amplifiers, “opamps” for short, are very versatile building blocks that can be
configured for many different functions with just a few external components. Figure 5.1
shows pictures of packaged operational amplifiers.

opamps.jpg

Figure 5.1 Operational amplifiers come in packages containing one or several
individual amplifiers, each consisting of ten or more individual components. Details
such as connection diagrams are described in data sheets and available from the
manufacturer’s websites. Typical opamps about one Dollar in quantities of 1000.

Although differing in their details, the basic characteristics of all operational amplifiers
are the same and described by the circuit in Figure 5.2a. The output vo is set by the input
voltages vp and vn:

vo = av
(
vp − vn

)
(5.1)

where av is the gain of the operational amplifier.
Ideal operational amplifiers have input currents ip and in equal to zero and infinite gain

37
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(a)

(b)

Figure 5.2 (a) Equiv-
alent circuit describing
the operation of an oper-
ational amplifier with in-
puts vp and vn and output
vo = av(vp − vn). (b)
Symbol for an ideal opamp.

av, i.e.

ip = in = 0 A and

av → ∞
(5.2)

Real operational amplifiers come close to the ideal. Typical values for the input current
are 50 fA . . . 10 µA; gains range from 104 to 105, depending on the specific device used. In
many applications, the errors arising from non-ideal opamp behavior are negligible.

In circuit diagrams, opamps are usually represented with the symbol shown in Fig-
ure 5.2b. Note that the symbol omits the ground terminal from the equivalent circuit. This
sometimes causes confusion, since the output current io seems to come from nowhere. If of
course comes from the ground terminal, as illustrated by the equivalent circuit.

Amplifiers with infinite or near infinite gain are not terribly useful. Fortunately a tech-
nique called “feedback” is available that lowers their gain to any desired value. We will
study feedback in the next section and then apply it to operational amplifiers.

5.3 Feedback

Feedback is very common. For example, nature uses feedback to control population growth:
a species taking overhand results in the decimation of its food source, which in turn results
in famine and reduction of the population. Thermostats turn on the heater when the tem-
perature falls below a threshold, and turn it off when the desired temperature is reached
or exceeded. Governments try feedback to reduce greenhouse emissions with taxes on car-
bon dioxide. Any system that observes the consequences of its actions to adjust the actions
themselves is using feedback.
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Desired Speed 
vd

Actual Speed 
va

vd - va

Engine

Wheel Speed

S

Figure 5.3 Example illustrating the use
of feedback for driving a vehicle at a de-
sired speed vd. The driver compares the
vd to the actual speed va measured by the
speedometer. If the difference vd − va is
positive, he accelerates the engine and de-
celerates otherwise. This in turn changes
the wheel speed, which in turn results in
an updated speedometer reading. Adjust-
ing actions based on their result is called
feedback.

Let’s consider a concrete example. Suppose you are driving and would like to go at
the speed limit. To do this, you compare the speed limit to the speedometer reading, as
shown in Figure 5.3. Depending on which speed is larger, you accelerate or decelerate in
an attempt of keeping the two speeds as close as possible. Since you are observing the
outcome of your action (accelerating) to determine the action, you are using feedback to
control your vehicles velocity.

Since you are subtracting the outcome (the odometer reading) from the desired speed,
this type of feedback is called negative feedback. Switching the sign results in positive feedback
and has completely different characteristics. Here we focus on negative feedback, returning
to positive feedback only at the end of the chapter in Section 5.7 on page 44.

In our example we can make a few observations that apply to (negative) feedback sys-
tems in general:

a) Feedback minimizes the difference between a desired quantity (the speed limit) and the
feedback signal (the speedometer reading), ideally driving it to zero.

b) Feedback uses amplification (the car engine) to accomplish this goal. The higher the
gain (more powerful the engine), the smaller the difference. For example, a sports car
with a very powerful engine is capable to quickly adjust to increases of the speed limit.

c) The exact value of the amplification (power of the engine) is not important, as long as
it is high. Any car with a powerful engine is capable of keeping a speed of 60 km/h,
independent of its specific horsepower rating.

We will now apply feedback to electronic amplifiers, observing the same basic princi-
ples summarized above.

5.4 Feedback Amplifiers

5.4.1 Non-inverting Operational Amplifier

Figure 5.4 shows an ideal operational amplifier with negative feedback: the output vo is
brought back to the negative summing terminal vn = vo and subtracted from the input
vp = vi. If we assume that initially vi = vo = 0 V, the difference vd = vi − vo at the
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(a)

(b)

Figure 5.4 Operational
amplifier with negative
feedback. (a) Equivalent
circuit, (b) using opamp
symbol.

amplifier input is zero, resulting in vo = 0 V regardless of the amplifier gain av. If now the
input vi is increased to 1 V vd increases also. The amplifier amplifies vd, in turn increasing
vo. This continues until vo reaches the value of vi. Now vd = 0 V, and the amplifier output
no longer changes. The same happens for any other value of vi: because of the feedback
the output vo follows the input vi. The voltage gain of this circuit is

Av =
vo

vi
= 1. (5.3)

This value is very different from the gain of the amplifier, av, which is very large (ideally
infinite). The amplifier gain av without feedback is often referred to as open-loop gain, while
the resulting gain Av with feedback applied is the closed-loop gain.

A puzzle remains: how can the output vo be 1 V when its input, vd = 0 V? We can gain
insight by analyzing the circuit assuming finite open-loop gain av. Substituting v+i = vi
and v−i = vo in Equation 5.1 we get

vo = av (vi − vo) = avvd (5.4)

or

vd = vp − vo =
vo

av
(5.5)

The voltage difference vd at the amplifier input goes to zero as av → ∞. For a typical
opamp with gain av = 100, 000, vd = 10 µV for vo = 1 V and is relevant only in very high
precision circuits.

Finite open-loop gain av also causes an error in the closed-loop gain Av. Solving Equa-



Section 5.4 Feedback Amplifiers 41

tion 5.4 for vo and dividing by vi we get

Av =
vo

vi
=

av

1 + av
=

1
1 + 1

av

≈ 1︸︷︷︸
Correct Result

− 1
av︸︷︷︸

Error

(av � 1)
(5.6)

For open-loop gain av in excess of 100, the error of the closed-loop gain Av is less than one
percent. Since most practical operational amplifiers have much higher gain, the gain error
is negligible in most applications and the approximation av → ∞ is justified. Note that the
exact value of av does not need to be known to obtain a precise value of Av.

This is a very important property of feedback: accurate closed-loop gain only requires
the amplifier gain to be high, without requiring it to have a precise or even constant value.
The data sheets of operational amplifiers typically specify a range for the open-loop gain,
e.g. 50,000 . . . 250,000 that takes into account factors such as manufacturing tolerances and
temperature change. Practical electronic systems make liberal use of feedback to reduce
their sensitivity to these variations.

Insensitivity of the closed-loop to the precise value of the amplification is important also
in the example of driving at a constant speed discussed in Section 5.3 on page 38: imagine
how impractical it would be if you needed to know the engine power to be able to drive at
the speed limit. Indeed, this would be the case without feedback: if you could not observe
the odometer or another effect informing you about your actual speed, it would be next to
impossible to maintain a desired velocity.

Unless otherwise marked, we assume that operational amplifiers are ideal and hence

vd = vp − vn = 0, (5.7)

except when noted otherwise. In general, it is often a good idea to first investigate circuit
operation assuming ideal opamps, followed by an analysis of the effect of nonidealities.
Such verification can frequently be performed by circuit simulation. Vendors of operational
amplifiers usually offer SPICE models for their designs that include nonidealities such as
non-zero input current and finite gain.

The amplifier discussed above and shown in Figure 5.4 has unity closed-loop gain,
Av = 1. Often of course a larger gain is required, and Figure 5.5 shows a circuit that
accomplishes this.

Resistor ratio sets gain, very precise if resistors alike and at same temperature

EXAMPLE 5-1: Temperature Sensor

EXAMPLE 5-2: Addition, Subtraction, and Scaling
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Figure 5.5 non-inverting opamp exam-
ple, gain = 10

Figure 5.6 design
example: Av = 5 –>
R1/R2=4, consider
power diss in fb net-
work & iout

Figure 5.7 inverting
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Figure 5.8 Temperature sensor circuit

Figure 5.9 multiple in-
puts

Design an amplifier with four inputs v1, v2, v3 and v4 and output

vo = A1v1 + A2v2 − A3v3 − A4v4 (5.8)

where A1 = 5, A2 = 3, A3 = 2 and A4 = 7.

vo = v1
Ra||R2

R1 + Ra||R2

Rb + R3||R4

R3||R4
+ v2

Ra||R1

R2 + Ra||R1

Rb + R3||R4

R3||R4
− v3

R3

Rb
− v4

R4

Rb
(5.9)

In this circuit, the summation of v1 and v2 is accomplished by the resistive circuit formed by R1, R2,
and Ra. Since the network is passive, it attenuates v1 and v2. The amplifier then a the resulting attenuated
signal vi1 . . .

NVA example

5.5 Amplifier Input and Output Resistance

model input as resistor model output as Thevenin equivalent finite ro instrumentation am-
plifier current source input example pos resistor example
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Figure 5.10 Difference Amplifier.

Figure 5.11 Circuit for voltage addition, subtraction, and scaling.

5.6 Practical Amplifiers

supply offset

5.7 Positive Feedback

compare w/ negative rule of thumb: if loop goes back to - terminal, it’s probably neg
feedback complex issue, entire courses on this alone

Usually we recognize negative feedback by a connection that feeds all or a fraction of
the output of an amplifier back to its negative input. In general the analysis of feedback is
more complicated, as the next example shows.
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Figure 5.12 NVA example

(a) (b)

Figure 5.13 pos vs neg feedback

Figure 5.14 Thermostat ex-
ample



46 Chapter 5: Operational Amplifiers [amp]

EXAMPLE 5-3: Negative Feedback Example?

Figure 5.15 Two
opamps with neg
feedback

Find the value of the closed-loop gains of the circuit in Figure 5.15, Av1 = vo1/vi and Av2 = vv2/vi.
In the first step, we need to find all feedback loops and determine for each one if it is positive or

negative. Resistor R2 samples the output vo2 of amplifier OP2 and returns a portion back to its negative
input terminal vb. The feedback around this loop is negative.

The output vo1 from OP1 is amplified by OP2 and then fed back to input va of OP1. Since the feedback
is to the positive input of OP1, is seems as if this feedback is positive. This, however, is not the case since
OP2 inverts the output vo1 from OP1 before feeding it back to the positive input va of OP1. Feeding back
to the negative input of OP1 would result in a second inversion and overall positive feedback.

Now that we have found the feedback loops and determined that they are both negative, we can pro-
ceed in the usual fashion, exploiting that the difference between the inputs of operational amplifiers it zero
for negative feedback, i.e. vo2 = va = vi and vb = 0 V. Since the gain of OP2 is A2 = vo2/vo1 =
−R2/R1, we get vo1 = vo2/A2 = −vo2R2/R1. Using vo2 = vo1 and dividing by vo1 we get
Av1 = vo1/vi = −R2/R1, the inverse of the gain of OP2 alone.

Problems

Assume that all operational amplifiers are ideal, unless specified otherwise.

• add tons of problem analyzing gain of many configurations

• calculate iout

• finite av with f != 1, error for large Av gets big –> limit Av to 100 typ

• min av for <0.1% gain error, vary R2 (Av)

• error from finite Rin, vary av, Av, R1

• Rin = f(av) for trans-R amp

• Current source
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• Neg Rin

1. Calculate the ratio v2/v1. Assume that the operational amplifier is ideal. Use R1 =
4.5 kΩ, R2 = 6.9 kΩ.

v2/v1 =

2. Calculate the power dissipated in resistor R3. Assume that the operational amplifier
is ideal. Parameter: V1 = 6.4 V, R1 = 7.5 kΩ, R2 = 8.6 kΩ, R3 = 4.9 kΩ.

PR3 =

3. In Section 5.4.1 on page 39 we derived an expression of for the error in the closed-
loop gain Av as a function of finite open-loop gain av for a unity gain amplifier. Now
we generalize this result to arbitrary closed-loop gain.

a) Derive an algebraic expression of the closed-loop gain Av = vo/vi of the circuit
below as a function of the open-loop gain av and feedback resistors R1 and R2.
Write your result in the form

Av =
R2

R1 + R2
× f (av, R1, R2)
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You will recognize the first factor in the equation as the closed-loop gain Av∞ of
the circuit for av → ∞. The term f (av, R1, R2) models the error incurred for finite
av and you need to find it in terms of av, R1, and R2.

b) Bring your result into the form

Av ≈
R2

R1 + R2
(1− ε) (av � 1)

using the approximation

1
1 + x

≈ 1− x (x � 1).

Find the relative gain error ε as a function of av, R1, and R2.
c) In the final step, replace the dependence on R1 and R2 in the above result by

rewriting ε as a function only of the closed-loop gain Av∞ of the circuit for av → ∞
and the open-loop gain av of the amplifier. You have now found a very useful
result: evidently, keeping the closed-loop gain error ε small requires not only a
large open-loop gain av, but large “excessive gain”, av/Av∞. In other words, the
open-loop gain must be much larger than the desired closed-loop gain, i.e. av �
Av.
This is one reason why it is rarely possible to achieve a gain in excess of about 100
with a single operational amplifier. For higher gain, several amplifiers must be
cascaded. For example, the overall gain of two cascaded amplifiers with gain 50
each is 502 = 2500.

d) What is the minimum open-loop gain av,min required to keep the error of the
closed-loop gain Av = 66 less than 0.1 %?
av,min =

Adjusting the values of R1 and R2 slightly to compensate for finite av is impractical
because of the variation of av with temperature and other uncontrollable effects.

4. Calculate vo for Assessment Problem 5.4 in N & R with Rx = 11.7 kΩ. For simplicity
assume that the amplifier is ideal and that the output voltage does not saturate due
to the finite supply voltage.

vo =
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5. The open-loop gain av of an operational amplifier is defined as the ratio of output
voltage vo over the input differential voltage v1 − v2,

av =
vo

v1 − v2
(5.10)

Ideal operational amplifiers have infinite gain, av → ∞. Then the closed loop gain

Gv =
vo

vi
(5.11)

is a function only of the feedback network (R1 and R2 in the circuit below), and
does not depend on av. Typical gains of real operational amplifiers are in the range
104 . . . 107. Because of the finite open loop gain, the closed loop gain Gv(av) is slightly
off from its ideal value, Gv∞ = Gv(av → ∞).

Let’s analyze this effect. Derive first an expression for Gv(av) as a function of R1, R2,
and av. Verify that for av → ∞ you obtain the expected expression for the gain for an
non-inverting amplifier. Then solve for the gain error ε as a function of finite open
loop gain, av, which is defined as

ε =

∣∣∣∣Gv(av)

Gv∞
− 1
∣∣∣∣ (5.12)

Substitute Gv∞ for R1 and R2 so that the result is a function only of av and Gv∞.

From the equation we conclude that for small error we want av � Gv∞, a condition
that because of the high value of av for most operational amplifiers is usually met
and justifies common practice to evaluate circuits assuming av → ∞. The validity
of the assumptions can be checked for example by simulating the circuit with an
operational amplifier with the actual gain. Use Gv∞ = 94 to compute the values in
the table below.

av = 106 ε =
av = 104 ε =
av = 102 ε =

Unless otherwise specified you may always assume in EE40 that the gain of opera-
tional amplifiers is “infinite”.
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6. Find the voltage at node vx for V1 = 1.0 V, V2 = 3.5 V, I1 = 1.4 mA.

Note: the solution of this problem is trivial!

vx =

7. Large resistor ratios are required if a big closed-loop gain |vo/vi| is desired in an
operational amplifier circuit. E.g. setting the gain of an inverting amplifier to -1000
requires resistors with values 10 kΩ and 10 MΩ or multiples thereof. Such large re-
sistor values and ratios often exhibit unacceptably large variation, causing error in
the closed-loop gain. In integrated circuits, large resistor values occupy a large area,
increasing fabrication cost.

The circuit shown below requires resistor ratios that are much smaller than the closed-
loop gain. Find the ratio R2/R1 such that vo/vi = −550. Use R1 = R3 = 2 kΩ and
R2 = R4.

R2/R1 =
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8. Find the value of vo for V1 = 4.6 V, I1 = 9.8 mA, I2 = 3.4 mA, I3 = 5.1 mA and
R1 = R2 = R3 = R4 = R5 = R6 = 1 kΩ.
Suggestion: use superposition.

vo =

9. Calculate the closed-loop gain Av and input resistance Ri of the circuit below. Use
R1 = 4.9 kΩ, R2 = 7.0 kΩ, R3 = 4.5 kΩ, R4 = 6.3 kΩ, R5 = 5.9 kΩ.

Note: this problem can be solved by inspection.

Av = vo/vi =
Ri = vi/ii =

10. The current ix in the circuit below is independent of the value of Rx, i.e. the circuit
realizes a current source ix. Find ix/vi for R = 7.2 kΩ and R1 = 35 kΩ.

Note: the unit of the result is [S] = [1/Ω] (Siemens).
ix/vi =
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11. The circuit below is part of an instrumentation amplifier. Calculate vo for R1 =
5.2 kΩ, R2 = 7.5 kΩ, R3 = 9.0 kΩ and Vi1 = 9.2 V, Vi2 = 9.3 V.
Suggestion: use circuit insight, not node voltage analysis.
vo =

12. Photodiodes are often used as light sensors (e.g. to measure ambient illumination
or as receivers in fiberoptic communication systems). From a circuit perspective a
photodiode behaves just like a current source iD with output resistance RD.

In practice, a voltage output is usually preferred. Without the amplifier circuit shown
below, the change of the voltage across the photodiode is small and further depends
on the value of RD, which itself is a function of the signal. The amplifier solves both
problems. Find the value of R1 resulting in a transresistance vo/iD of 5.8V/µA.
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R1 =

Such circuits have many applications, e.g. in electronic devices to measure ambient
illumination and adjust the intensity of LCD back-lighting accordingly. Combined
with an (LED) light source, this circuit can be used in an intruder alarm. Options for
the class project.

13. The current into the input of an ideal operational amplifier is ideally zero. Many
operational amplifiers come close to this ideal, with leakage currents in the pA or
even fA range.1 This corresponds to a very high input resistance (TΩ range) that is
usually negligible.

High input resistance of the open-loop amplifier (i.e. without feedback resistors) does
not always translate into the same characteristic for the closed-loop configuration.
Specifically, non-inverting closed-loop configurations retain the high input resistance
of the open-loop amplifier, but in inverting configurations the input resistance is de-
termined by the feedback network and therefore much smaller.

The diagram below shows a test circuit. Calculate the input resistance Ri = vi/ii for
R1 = 2.5 kΩ and R2 = 52 kΩ.

Ri =

1This depends on the type of amplifier. In particular, amplifiers with MOS or JFET inputs have very small
input currents, while the input current of BJT amplifiers is much larger, often in the µA range. BJT amplifiers
have other advantages, such has higher speed or output current capability and lower offset voltage. If low input
resistance is critical, an operational amplifier with either MOS or JFET inputs is preferred.
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14. Ideally the output of an operational amplifier behaves like an ideal voltage source
with zero output resistance, i.e. the output voltage is independent of the current sup-
plied by the amplifier. In practice, the output resistance ro of an operational ampli-
fier is finite, as is its gain av. Here we examine the effect on the output resistance
Ro = vo/io of the closed-loop amplifier. To evaluate Ro we connect a test source
It to the output of the amplifier, as shown in the diagram below. Calculate Ro for
ro = 184 Ω, R1 = 14 kΩ and R2 = 61 kΩ.

Note that ro is the open-loop output resistance of the operational amplifier, i.e. the
output resistance without feedback applied. Resistance Ro is the closed-loop output
of the circuit with feedback.

av =1e6 Ro =
av =1e4 Ro =
av =1e2 Ro =

If you solved this problem correctly, you will notice that high-gain feedback lowers
the output resistance. This is a very desirable and often used property of feedback. In
fact, it is difficult to design operational amplifiers with open-loop output resistance
ro less than a few Ohms. Fortunately this value can be reduced to the mΩ range or
less using feedback.

For example, lab power supplies and voltage regulator chips use feedback to achieve
very low output resistance and hence closely approximate the behavior of ideal volt-
age sources.

15. Sensor applications frequently call for amplification of a voltage difference. We have
seen such a situation in the strain gage laboratory. Many sensors further have a high
output resistance, requiring an amplifier with very large input resistance. The non-
inverting amplifier has this characteristic, but the input resistance of the inverting
amplifier is too small for many sensor applications and because of this cannot be
used directly.

A solution is shown below that employs two non-inverting amplifiers to buffer the
input signal, followed by an inverting stage that forms the difference. This configu-
ration is usually referred to as “instrumentation amplifier”. Since it has many uses,
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integrated circuits containing the complete structure are available from several man-
ufacturers. The resistor Rgain is usually external and used to adjust the circuit gain.
Calculate the gain Av = vo/(vi1 − vi2) for Rgain = 8 kΩ, R1 = R1a = R1b = 13 kΩ,
R2 = R2a = R2b = 18 kΩ and R3 = R3a = R3b = 80 kΩ.
Av =

16. Calculate the input resistance Ri = vi/ii of the circuit below. Use R1 = 7.7 kΩ,
R2 = 19 kΩ and R3 = 11 kΩ.
Ri =

If you cannot get this right, check the sign of your answer.

17. Precision opamps come particularly close to the specifications of “ideal” amplifiers,
but usually cannot drive low resistance loads RL. In the circuit below, the “precision
opamp” sets vo, while the “power opamp” delivers the load current iL. Determine R1
such that io = 0. Hint: this condition is met when iL + ix = 0.
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Parameter: R2 = 4.4 kΩ, RL = 99.0 Ω, Rx = 75.3 Ω.

R1 =

18. Calculate the closed-loop gain vo
ii

of the circuit below. Assume that the operational
amplifier is ideal. Remember to include the correct unit with your result.

Parameter: R1 = 2.0 kΩ, R2 = 2.6 kΩ, R3 = 6.7 kΩ, R4 = 4.5 kΩ, R5 = 2.1 kΩ.

vo
ii
=

19. In the circuit below, RT is a temperature dependent resistor with value

RT(T) = Ro (1 + αT)

where T is the temperature in degrees Celsius [C], Ro = 4.3 kΩ and α = 0.05 C−1.

Find the values of R1 and R3 such that the output voltage vo of the circuit is
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vo(T) = 1 V for T = 0 C and
vo(T) = 2 V for T = 100 C.

Use R2 = 7.9 kΩ and Vre f = 8.5 V. Note: results my be negative.

R1 =
R3 =

In a practical application you would connect vo to the input of a microcontroller for
display and function (e.g. thermostat).

20. A simple speaker model consists of a resistor R1 = 9.3 Ω in series with an inductor
L1 = 9.9 mH. The speaker is driven by a “bad” amplifier that has a DC (constant)
output Vdc = 8.6 V superimposed on the audio signal. For the analysis below assume
that the audio signal is a pure sinewave with frequency f1 = 440 Hz and amplitude
V1 = 3.1 V superimposed on Vdc.

Calculate the average P and reactive Q power delivered by the amplifier.

P =
Q =

21. Practical operational amplifiers suffer from numerous nonidealities. In this problem
we examine the effect of offset and finite bandwidth. We analyze both effects sepa-
rately. Use the following component values: R1 = 6.0 kΩ, R2 = 6.8 kΩ, C1 = 7.4 nF,
C2 = 8.1 nF.

Important: Simplify your results for parts (b) and (c) so that they are in the form of a
ratio of polynomials of s, i.e.

H(s) = G

N

∑
i=0

aisi

M

∑
k=0

bksk
(5.13)
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with a0 = b0 = 1. Simplify all your results.

a) In this part we just consider offset, modeled by the source Voff. Convince yourself
that, assuming that the opamp is otherwise ideal, V2 = 0 V for V1 = 0 V and
Voff = 0 V. Practical opamps have Voff 6= 0 V. The actual value is random (varies
from part to part); from measurements you find that for your particular opamp
Voff = 6.2 mV. Calculate the value of V1 such that V2 = 0 V at f = 0 Hz.
V1 =

b) Find an algebraic expression for Hb(s) = V2(s)/V1(s) assuming that the opera-
tional amplifier is ideal. Having dealt with Voff we use Voff = 0 V.

c) Find an algebraic expression for Hc(s) = V2(s)/V1(s) assuming that the oper-
ational amplifier has finite bandwidth ωb. Model the operational amplifier fre-
quency response as a(s) = ωb/s. Use Voff = 0 V.

22. In the circuit below the operational amplifier is ideal except for finite unity-gain band-
width fb and output resistance ro. Find the value of fb for which the magnitude of the
output impedance Z(s) = Vo(s)/Io(s) equals 69 mΩ at f = 8 kHz. Use V1 = 6.0 V
and ro = 2 Ω.
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fb =

23. Calculate the closed-loop gain vo
ii

of the circuit below. Assume that the operational
amplifier is ideal. Remember to include the correct unit with your result.

Parameter: R1 = 7.8 kΩ, R2 = 6.4 kΩ, R3 = 7.0 kΩ, R4 = 2.2 kΩ, R5 = 6.0 kΩ.

vo
ii
=

24. In the circuit below, RT is a temperature dependent resistor with value

RT(T) = Ro (1 + αT)

where T is the temperature in degrees Celsius [C], Ro = 8.4 kΩ and α = 0.05 C−1.

Find the values of R1 and R3 such that the output voltage vo of the circuit is

vo(T) = 1 V for T = 0 C and
vo(T) = 2 V for T = 100 C.

Use R2 = 1.9 kΩ and Vre f = 7.7 V. Note: results my be negative.

R1 =
R3 =
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In a practical application you would connect vo to the input of a microcontroller for
display and function (e.g. thermostat).

25. Opamp circuits with high closed-loop gain require large resistor ratios. On integrated
circuits these take up significant area and are therefore costly. The circuit below uses
a so-called T-network to reduce the required resistor ratio.
Calculate the value of resistor R3 such that vo/vi = −85. Use R1 = 2 kΩ, R2 = R4 =
5 kΩ and R5 = 1 kΩ.

R3 =

26. The output voltage of a temperature sensor element is

vt(T) = −2
mV
oC
× T

where T is the temperature in degrees Celsius.
Design a thermometer circuit with output voltage

vo(T) = 10
mV
oC
× T
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using the sensor, resistors, and ideal opamps. Your circuit should produce the correct
output independent of the output resistance Ro of the temperature sensor, which is
in the range 50 kΩ . . . 100 kΩ. Draw the schematic diagram in the space provided
below. Specify the values of all resistors (except Ro).
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