EE 105

Microelectronic Devices and Circuits

Bernhard E. Boser University of California, Berkeley <u>boser@eecs.berkeley.edu</u>

Copyright © 2012 by Bernhard Boser

Outline

- BJT Small-signal model "second-order effects"
 - Finite Early Voltage, V_A
 - Finite current gain, β
 - Other ... finite r_b , r_e , ..., device capacitance (later)
- Biasing
 - Why constant voltage bias won't work
 - Biasing with feedback
 - Biasing with resistors
 - Replica bias circuit
 - Emitter degeneration

µPhone Amplifier

Finite Current Gain β

Maximum Gain

Current Source "Load"

Early Voltage

"Enhanced" (?!) BJT Small-Signal Model

Common Emitter with Current Source Load

Transistor Current Source

Active Current Source Bias Options

High-Gain Common-Emitter Amplifier

Small-Signal Summary

- Small-signal model
- Linearized about "bias point"
- Parameters are derivative of large signal model
- BJT small-signal model:

Biasing

- Constant Voltage
- Feedback
- Resistor Bias
- Emitter Degeneration
- Replica Bias

Bias with Feedback

A familiar problem ...

EE 140 covers feedback in analog circuits in detail

Resistor Biasing

Resistor Biasing

Emitter Degeneration

Outline

- BJT Small-signal model "second-order effects"
 - Finite Early Voltage, V_A
 - Finite current gain, β
 - Other ... finite r_b , r_e , ..., device capacitance (later)
- Biasing
 - Why constant voltage bias won't work
 - Biasing with feedback
 - Biasing with resistors
 - Replica bias circuit
 - Emitter degeneration
- Practice!