Architectures and Implementations of
Low-Density Parity Check Decoding Algorithms

Engling Yeo, Borivoje Nikoli¢, and Venkat Anantharam

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley, CA 94720-1770, USA

ABSTRACT

Architectures for low-density parity-check (LDPC} decoders are
discussed, with methods to reduce their complexity. Serial
implementations similar to traditional microprocessor datapaths
arc compared against implementations with multiple processing
elements that exploit the inherent parallelism in the decoding
algorithm. Several classes of LDPC codes, such as those based
on irregular random graphs and geometric properties of finite
fields are evaluated in terms of their suitability for VLSI
implementation and performance as measured by bit-error rate.
Efficient realizations of low-density parity check decoders under
area, power, and throughput constraints are of particular.interest
in the design of communications receivers.

1. Introduction

Low Density Parity Check (LDPC) codes have been
demonstrated to achieve information rates very close to the
Shannon limit when iteratively decoded [i]. In general, LDPC
decoders are known to require an order of magnitude less
arithmetic computations than Turbo decoders [2] that provide
similar  bit-error  performance. Furthermore, decoding
aigorithms for LDPC codes also have the benefit of being
inherently paraliel.  In principle, this permits exploiting the
common approach of using multiple parallel processing
elements to increase the throughput of the decoder. However
implementation of a fully parallel LDPC decoder is impeded by
the complexity of the interconnect between the processing
elements. This is due to the inherently sparse nature of the
underlying bipartite graph [2].

This paper discusses tradeoffs between various LDPC
decoder implementations. The desire is to emphasize the
implications that code construction techniques have on decoder
implementation, beyond just bit-error rate performance. The
paper has a tutorial nature.

2. Soft Decoding of LDPC Codes

For each received bit, x, forn=1,2, ..., N, in an N-bit block,
an LDPC decoder accepts as input the log-likelihood ratio (o)
of probability of possible values for x,, as defined in (1):

Prix, =1)
a, = In —a . N
Prix, = 0
LDPC codes are often represented by bipartite graphs made
up of two families of nodes, variable nodes and check nodes.
Variable nodes represent the transmitted bits in the code,

including both information bits and parity bits. Each variable
node is connected to a few check nodes through a sparse array

0-7803-7523-8/02/$17.00 ©2002 |EEE

of edges. Each check node represents a parity check constraint
on the set of adjacent bit nodes.

LDPC decoders implement a message-passing algorithm,
which specifies the computation of messages and their
communication between variable nodes and check nodes as
defined by the edges in the graph. An iteration of LDPC
decoding consists of a round of message passing from each
variable node to all adjacent check nodes, followed by another
round of message passing from each check node to its adjacent
varigble nodes. Decoding performance is achieved through
repeated iterations of message passing along edges in the graph,
with some stopping criterion.

Let H be the MxN parity check matrix of an LDPC code
comprising N variable nodes and M check nodes. The set
wm) = {n: H,,,= 1) defines the variables that are connected to
check m. pn} = {m: H,, = 1} is the set of checks that are
connected to variable n. (), ,, and R,, , refer 1o the messages that
are passed between variable n and check m, as defined in (2)
and (3) respectively.

Message from variable » to check m:

Qn‘m =, +[ sz'.n ]‘ Rm.n (2)
meyin)

Message from check m to variable n:

Ryp =7 {{ >:¢(Qn-.m)]—¢{an.m )} (3)

n'e Nim)
X(Sgn( n.m)' HSEH(Qn',m)]
nev(m}

D(x) =-log [lanh(%]xi)): o', x20 (4)

In order to simplify the hardware, for computation of the first
term in (3), a lookup table is used to approximate {4), The
second term is computed by applying an exclusive-or function
on the mosi-significant bits of the input messages. The
messages are naturally represented as signed-magnitude values,
such that ®(x} is a function of the magnitude value of its
operand.

Figure 1 shows an example structur¢ which computes the
messages Ry, f0T n = ny, no,..., Ay with a wordlength of b.
The structure is divided into two portions. The top half
evaluates the magnitude values of the check-to-variable
messages with a collection of adders. The lower half evaluates
the marginalized parity checksums through an XOR exchange.
The size of the adders and the XOR exchange depends on the
edge degree of the particular node, defined as the number of
edges connected to it. A (x,y) regular code is detined as one
whose variable and check nodes have uniform edge degrees of x

II1-437



and vy respectively.

An LDPC decoder performs the message computations (2)-{3)
and provides for proper relaying of messages between the two
classes of nodes. The computational complexity required for
evaluation of either variable-to-check or check-to-variable
messages is low, compared 1o Turbo decoders [2]. However, the
sparse structure of the underlying bipartite graph leads to
complex interconnect in parallel architectures, or excessive
memory requirements in the alternative serial implementations.

3. Parallel vs, Serial Architectures

3.1 Parallel Architecture

The message passing algorithm described above is inherently
parallel because there 15 no dependency between computation of
either @, forn =1, 2, ., NorR,, form=1,2, ., M
Parallel decoder architectures directly map the nodes of a
bipartite graph onto message computation units known as
processing elements, and the edges of the graph onto a network
of interconnect,

A fully parallel architecture (Figure 2) provides potentially
the fastest decoding throughput. Since it relics on concurrent
computation of messages, the number of processing elements
required is the same as the number of nodes in the underlying
graph.  Parallel architectures are also subject to complex
interconnect because a hard-wired route is required between
every pair of adjacent processing elements. An implemented
1024-bit LDPC decoder [5] with an average variable edge
degree of 3.25 and message wordlength of 3 has 9750 wires.
The design has logic density of only 50% in order to
accommodate the complexity of the interconnect fabric, Area of
implementation and interconnect routing are the two major
issues related to parallel architectures. Due to irregularity in the
parity check matrix, it is difficult to partition a fully parallel
design into smaller sub-blocks.

3.2 Serial Architecture

An altemative approach is to serialize and distribute an
inherently parallel algorithm among a small number of
processing elements [2],[6] as shown in Figure 3. The messages
O, and R, are stored temporarily in memory between their
generation and consumption. This architecture results in less
area and much less routing, but dramatically increases memory
requirements.

By traversing multiple steps through the bipartite graph, it can
be shown that the computation of messages in the decoding
algorithm has data dependencies on messages corresponding to
a large number of edges. For example, the computation of a
message J,,, in (2) has data dependencies on messages R, , for
m'e v(n)\m . These messages depend on a larger set of O,
n'e ,u(m‘)\n from the last iteration, In LDPC codes with good
asymptotic performance, the trace of dependencies grows
rapidly through each step. This behavior is related to the
requiremnent that the girth of the graph be large [13], and implies
that the decoder will be required to have written most of the
computed (,,, messages into memory, before the computation
of R,,, messages can proceed (and vice-versa). The size of the
memory required is therefore dependent on the total number of

edges in the particular code design. A serial implementation of
a rate-8/9 4608-bit LDPC decoder described in [2] has more
than 18000 edges in the underlying graph, and would have to
perform 37000 memory rcad or write operations for each
iteration ot decoding.

Serial architectures that use more than one processing element
require memory devices with operating frequencies that are
faster than the datapath, or multiple [/O ports. Memory access is
approximately 2ns (general-purpose  single-ported  32kb
memories in (.13 um CMOS technology), significantly more
than the sub-400ps required to add four 5-bit numbers in the
LDPC decoding logic (0.13um CMOS ASIC design}). The
memory access is therefore in the critical path. On the other
hand, the area of memories is subject to quadratic growth with
number of I/O ports. The transistor widths in the SRAM ceils of
a multi-ported memory have to be increased in order to provide
greater noise immunity. Thus, both options are unsuitable
sclutions for high throughput decoder implementation.

» Delay
Delay
0,9 H[T0T ST P
"ONZml + LUT LUT] "Rmm!
[ &1
L—a
Qg _t:@ L D b—1 R irim!
Delay
Delay
MSB(Q,, ) : MSB(A,. ..}
MSB(Q,, ) 1 MSB(R,, ,)
MEB(Oy g == [+ MSB(R,, 1)

Figure 1. Structure for computing check-to-variable
messages R, , for n = ny, my, ..., Ry with wordlength b.

RN

Soft Soft Soft Soft
Input,y Input,y Input, Input, nput,
Soft  Seft Soft  Soft Soft Soft
Output, Output, Output, Cutput, Output,, . Output,,

Check-to-Variable Processing Element

Variable-to-Check Processing Element

Figure 2. Parallel architecture.

I11-438



Ir::‘z-p Memary Memary

PE., PE.

Figure 3. Serial architecture.

B Variable-
Soft Bankof M- e Soft
nputs, 2 § || _to-Check PEs Outputs
-
Bankof M S & Check-to-
Momories [ Variable PE;

Figure 4. Reducing routing congestion by pipelined and
serial implementation.

0.16um ASIC [5]

Xitinx Vinex-E FRGA
18l

TI TMSI0C6281 OSP
114]

Intel BDGMHzZ
Microprocessor

Throughput (bps)
+ + 4 } } 4 {
1E43  1E404 1E405 1E+B  1E7  1E+08 SE-09

Figure 5. Various platfortns vs. realistic throughput rates
of rate-Y2 decoders.

To improve the speed of multiple-memory access, a solution
[6} uses a crossbar switch to facilitate communication between P
processing elements and a bank of memories consisting of P
independent SRAMs. Each processing element selects an input
from one of the SRAMs in each memory cycle. However,
inadvertent memory access collisions will cause the processing
elements to stall. The solution in [6] proposed an ad-hoc
scheduling method to avoid such conflicts. This schedule,
though, may require an access pattern that is difficult to compute
on the fly and therefore has to be stored as ROM data.

4. Platforms for LDPC Decoding

LDPC codes: are applicable to wireless, wired and optical
communications. The type of application dictates the particular
class of platforms suitable for implementation of an LDPC
decoder. Wireless applications are focused on low power
implementation with rates at a few hundreds of kbps to several
Mbps.  Wireline access technologies such as VDSL have
envisaged daia rates up to 52 Mb/s downstream. Wireless LANs
require data rates of the order of 100Mb/s. Storage applications
require about 1Gbps, while optical communication throughputs
can be above 10Gbps. :

Microprocessors and digital signal processors (DSPs) have a
limited number of execution units but provide the most
flexibility. These platforms naturally implement the serial
architecture for LDPC decoding.  Although an optimized
program may decode at throughput rates of a few hundreds of
kbps, practical use of microprocessors have to address operating
system overhead. As a result, sustained decoding throughputs
up to 100kbps are more realistic. Microprocessors and DSPs
are used as tools for the majority of researchers in this field to

design, simulate, and perform comparative analysis of LDPC
codes. Performing simulations with bit error rates below 10,
however, is a lengthy process.

FPGAs and custom ASICs are suitable for direct mapping of
the message-passing algorithm, and offer more parallelism with
reduced flexibility. Each computational logic block (CLB) in an
example Xilinx™ Virtex-E FPGA can implement a 4-bit adder,
or two 5-input XORs, or four 4-bit table lookups. The array of
104 x 156 CLBs in a XCV3200E is sufficient to execute the
decoding logic of a fully parallel decoder for a 1024-bit, rate-14,
(3.6) regular LDPC code. The implementation of each variable-
to-check (5 adders) and check-to-variable (eleven adders, six 5-
input XORs, and twelve table lookups) processing element
requires 5 CLBs and 17 CLBs respectively. However, fully
parallel LDPC decoding architectures will face mismatch
between the routing requirements of the programmable
interconnect fabric and bipartite graph. FPGAs are intended for
datapath intensive designs, and thus have an interconnect grid
optimized for local routing. The sparse nature of the LDPC
graph, however, requires global and significantly longer routing,
Existing implementations [7] [8] eluded this problem by using
time-shared hardware and memories in place of interconnect,
This serial method limits the internal throughput to 56Mbps.

A direct-mapped custom ASIC implementation has been
demonstrated on a rate-%2, 1024-bit paraltel LDPC decoder [5]
in 0.16pm technology. It dissipates 690mW at 1Gbps decoding
throughput, and has an area of 7mmx7mm. Unfortunately, the
high throughput and low power dissipation of a parallel design
is not easily scalable to codes with larger block sizes, For
decoding near the capacity bound, block sizes with tens of
thousands of bits are required. With at least 10 times more
interconnect wires, a parallel implementation will face imminent
routing congestion, and exceed viable chip areas.

An approach to avoid the routing congestion is through time-
sharing of hardware units; with hardware pipelining (through
segmenting the check-to-variable and variable-10-check stages)
to sustain the high throughput rates. Full utilization of all
processing elements in the pipeline is only achievable if the
computation of each class of messages is operating on an
independent block of data. Figure 4 illustrates the vse of
separate banks of memories to store messages corresponding to
consecutive blocks. The messages are routed through a crossbar
switch to two groups of processing elements, divided by their
functionality, The amount of memory required remains a linear
function of the total number of edges in the bipartite graph. An
LDPC decoder core that exemplifies this approach has become
available as a commercial IP [9]. It supports a maximum
parallelism factor of 128, though details of the particular LDPC
code have not been published.

Additional reduction of the memory requirement has been
proposed through a staggered decoding schedule [10]. This
approach does not perform marginalization of the variable-to-
check messages. By not computing the last term in (2}, it has a
memory requirement that is dependent only on the total number
of variable nodes in the block. Decoders with arca or power
constraints that limit the number of iterations to five or less will
benefit from more than 75% reduction in memory requirement,
while yielding to less than 0.5dB loss in BER performance. It is
noted that the staggered decoding will not achieve the same

I1I-439



asympotic results as LDPC decoding under belief propagation.
The deceding throughputs of several platforms implementing
rate-%2 codes are compared in Figure 5.

5. Effects of Code Construction on
Implementation

Most research has focused on the design of LDPC codes with
the best possible bit-error-rate performance while the suitability
of these codes for parallel implementation has received little
attention. In terms of implementation-related issues, LDPC
code construction techniques can be differentiated along the
lines of whether the code has a structured graph, a uniform edge
degree (regular codes), and whether the maximum edge degree
(of both check and variable nodes} is relatively large or not.

The method of LDPC construction based on density evolution
[3] [111 has one of the best reported performances being only
0.0045dB away from the Shannon bound. An example of this
construction method yields a rate-Y2 irregular code with a
maximum variable degree of 100 and block size of 107 bits. It
also requires an average of more than 1000 iterations to achieve
the above decoding results.  Practical implementations of
decoders, particularly parallel ones, however, benefit from a
regular code with a small maximum edge degree in order to
avoid detrimental arithmetic precision effects, and the
complexity of collating a large number of inputs and outputs at
the processing elements. A parallel decoder implementation
with 107 processing elements will exceed realistic area
constraints. These codes are thus much more easily mapped
onto a serial architecture, but will result in extended decoding
latencies.

Codes based on Cayley graphs and Ramanujan graphs
[12]{13] have an unstructured graph representation with
maximum edge degrees that are usually less than 10. The
implementation of decoders for these codes continue to face the
primary difficulty of routing unstructured interconnects.
However, the lowered maximum edge degrees make the decoder
implementation more feasible. An implementation [7] was able
to use a bus to multiplex a number of neighboring interconnects
in order to reduce routing congestion. These codes do suffer
some degradation in SNR performance. A rate-%2 (3,6) regular
code with 4896 bits achieved a bit error rate of 10° at 1.7dB
away from the theoretical bound [12].

Finally, a class of highly structured and regular codes is based
on properties of finite fields [4]. These constructions allow for
both high or low edge degrees, with correspending implications
on.their error correcting performance; the performance suffers
both if the degree is too small and if it is too large. The
demonstrated rate-Y2 (32,64) code has a block size of 8190 bits,
and achieves a bit error rate of 10% at 1.8dB away from the
theoretical bound. Although the edge degree is higher than
codes based on Cayley or Ramanujan graphs, these codes have a
natural cyclic structure, which can be exploited to allow the use
of high-speed shift registers. Column splitting on these codes
also yields added parallelism between memory accesses in serial
architectures with a limited number of parallel processing
elements [10]. A fully parallel implementation, however, still
has to cope with complex interconnect because the sparseness of
the graph requires a large amount of global routing.

In order to produce viable real-time LDPC decoding, future
technigues in code construction will have to address the
complexity of routing parallel implementations.

6. Conclusion

When compared with trbo decoders, LDPC decoders need
much less computation to achieve a similar performance.
However, the sparse nature of the LDPC code presents a serious
implementation bottleneck. Serial and parallel implementations
of LDPC decoders have to primarily address the issue of large
memory requirement and interconnect congestion respectively.
The choice between a serial and a parallel implementation is
thus tied to the tradeoff between memory or interconnect
complexity concerns.

Direct mapping of the decoding algorithm onto an FPGA or
custom ASIC offer the ability to exploit higher levels of
parallelism, leading to higher throughputs without incurring
heavy power penalties. However, it comes at the cost of
convoluted interconnect and ultimately, implementation area.

While the topic of LDPC code construction has been a major
subject of interest in recent years, it has largely proceeded with
the sole purpose of improving the error correcting properties.
Methods based on density evolution, Cayley and Ramanujan
graphs showed promising BER performance, but future practicat
implementations of high-throughput LDPC decoders will be
trading off the emor correcting performance for reduced
implementation complexity through the code construction.

7. References

[11 D.J. C. Mackay and R. M. Neal, “Near Shannor limit performance of low
density parity check codes,” IEE Electronicy Letters, vol.33, no.6, pp.457-
458, Mar. 1997,

[2] E. Yeo, P. Pakzad, B. Nikolic, and V. Anantharam, “VLSI architectures for
iterative decoders in magnetic recording channels,” JEEE Truns. Magnelics,
vol.37, no.2, pp. 748-755, Mar. 2001,

[31 T. ) Richardson, M. A, Shokrollahi, and R. L. Urbanke, “Design of capacirty-
appreaching ircegular low-density parity-check codes,” [EEE Trans.
Information Theory, vol 47, pp.619-637, Feb. 2001.

[41 Y. Kon, 8 Lin, and M. P.C. Fossorier, "Low-density parity-check codes based
ot finite geometries: a rediscovery and new results,” [EEE Trans. Information
Theory, vol.47, n0.7, pp.2711-2736, Nov. 2001.

f5] A.}. Blanksby and C.J. Howland, “A 690-mW 1-Gb/s 1024-b, rate-¥2 low-
density parity-check code decoder,” JEEE Journal of Selid-State Circuits,
vol.37, no.3, pp.404-412, Mar. 2002.

fe]  G. AkRawi, I Cioffi, and M. Horowitz, “Optimizing the mapping of low-
density parity check codes on paralicl decoding architectures.” Proc. [EEE
ITCC, Las Vegas, NV, USA, Apr. 2-4, 2001, pp.578-586.

[71 M. M. Mansour and N. R. Shanbhag, “Memory-efficient turbo decoder
architectures for LDPC codes,” to appear in Proc. IEEE SIP§ 2002, San
Diego, CA, USA, Oct 16-18, 2002.

{8] T. Zhang and K. Parhi, “A 36Mbps (3,6)-Regular FPGA LDPC Decoder,” to
appear in Prog. IEEE SIPS 2002, San Diego, CA, USA, Oct 16-18, 2002,

91 “Vector-LDPC ™ Core Soluticns™, Flarion  Technologies, Ine.,
hitg#www flarion.com, South Bedminster, NJ 07921, USA.

{101 E. Yeo, P. Pakzad, B. Nikelic, and V. Anantharam, “High throughput low-
density parity-check arclutectures,” Proc. {EEE Globecom, San Antonio, TX.
USA, Nov. 25-29, 2001, pp.3019-3024.

{11] S. Chung; G.D. Ferney, TJ. Richardson, and R, Urbanke, “On the design of
low-density parity-check codes within 0.0045 dB of the Shannon limit," JEEE
Comm. Letters, val.5, pp.58-60, Feb. 2001,

[12] 1. Rosenthal and P. O. Vontobel, “Constructions of regular and irregular
LDPC codes using Ramanujan graphs and ideas from Margulis,” Prec. [EEE
JSIT, Washington, DC, USA, Jun. 24-29, 2001, p.5.

(137 M. Sipser and D. A. Spielman, “Expander codes,” TEEE Trans. Information
Theory, vol42, pp.1710-1722, Nov. 1996,

[14] T. Bhat, K Narayanan. and N. Kehtamavaz, “Fixed Point DSP
Implementation of Low-Density Parity Check Codes,” Proc JIEEE DSP2000,
Hunt, TX, USA, Oct. 15-18, 2000.

11-440



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


