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Abstract—A methodology for VLSI realization of signal 

processing algorithms for wireless communications is presented 
that optimizes architecture for reduced power and area.  When 
power is limited, optimal architecture represents a point on the 
best power-area tradeoff curve that is obtained by balancing the 
algorithm throughput with the power-performance tradeoff of 
the underlying building blocks.  Architectural optimization is 
done in the graphical Matlab/Simulink environment, which is 
also used for algorithm verification.  Hardware description 
language produced by Simulink enables algorithm emulation on 
the FPGA and also serves as design entry for the chip realization.  
This is illustrated on complex multi-dimensional algorithms such 
as wideband MIMO channel decoupling through singular value 
decomposition (SVD) using 16 sub-carriers. 

Keywords—Circuit synthesis, design methodology, architecture, 
adaptive signal processing, matrix decomposition, MIMO systems. 

I. INTRODUCTION 

The growing demand for data-centric wireless connectivity 
has inspired the development and realization of complex 
signal processing algorithms such as those used in multiple-
input multiple-output (MIMO) communication.  At the same 
time, complexity of the devices has been steadily growing due 
to a need for multi-mode, multi-standard functionality.  In the 
past, the growth of complexity of practically implemented 
wireless algorithms has tracked the improvements provided 
through the technology scaling.  The recent need to support 
MIMO algorithms has increased the need for more power and 
cost efficient radios. 

The goal of implementing a communications chip is to meet 
the functionality, throughput and latency of the underlying 
standard with minimum power and area cost.  Most common 
techniques to minimize power or area (as a dominant measure 
of cost) are architectural.  However, these techniques have 
been largely heuristic, and there is no established systematic 
way for trading off throughput, power and area. 

With technology scaling, designers have more options in 
selecting supply voltages and transistor thresholds in addition 
to various circuit design techniques such as the use of sleep 
modes.  All these techniques present some power-performance 
tradeoff, which makes architecture selection more complicated 
and also more interesting.  The goal is therefore to develop a 
methodology that simultaneously minimizes power and area 
for given throughput and latency constraints. 

In this paper, various architectural techniques in the energy-
area-performance space are evaluated in order to minimize 
power and area.  Prior work applied similar techniques to 

simple building blocks such as FIR filters, [1], in standard 
VLSI design environment.  The methodology presented in this 
paper is scalable to large degrees of complexity.  This work 
uses the Matlab/Simulink environment familiar to both 
theorists and implementers, thus giving practical insight to 
algorithm developers as well as better understanding of the 
algorithms by VLSI architects. 

II. CHOOSING AN OPTIMAL ARCHITECTURE 

Optimal VLSI architecture is technology dependent, which 
requires characterization of main functional blocks for speed, 
power, and area.  This information is used to navigate the 
architectural optimization procedure that is based on balancing 
the algorithm throughput requirement with the capability of the 
underlying basic building blocks.  Data throughput and latency 
are main constraints in chip realizations.  Data throughput is 
interesting for optimization since, for a given architecture, the 
throughput can be related to the frequency of operation. 

The key information that provides basis for optimization is 
technology specific energy-delay tradeoff in datapath logic as 
shown in Fig. 1.  This tradeoff exists because the energy 
needed to operate digital logic gates is related to their speed.  
The tradeoff is obtained by adjusting design parameters such 
as gate size, supply and threshold voltage.  Introducing a new 
technology shifts the entire E-D tradeoff curve toward lower 
energy and delay.  The architecture is energy optimal if its E-
D tradeoff curve has the same slope as the underlying datapath 
logic.  A good tradeoff point is indicated in Fig. 1.  Otherwise 
the design would have a high cost in terms of energy or delay. 

By using basic concepts of parallelism and time 
multiplexing an algorithm can be mapped into a range of 
architectures with widely varying throughput and latency.  
Architectural transformations such as data-stream interleaving, 
loop retiming and folding support more complex operations 
with concurrent or time-serial execution, which may also 
involve feedback loops. 
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Fig. 1.  Energy-delay tradeoff in digital circuits. 
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A. Parallelism and Time Multiplexing 
The concepts of parallelism and time-multiplexing are well-

known in architecture design.  Parallelism combined with 
adjustment in supply voltage improves the energy by slowing 
down the clock and distributing computation over several 
parallel branches.  Alternatively, when using constant clock 
frequencies, parallelism trades off the increase in area for 
higher throughputs, Fig. 2(b), [2].  Time-multiplexing as 
shown in Fig. 2(d)-(e) does the opposite: it reduces the area by 
repeating computation on the same hardware unit, but needs a 
higher clock rate and higher supply voltage to maintain the 
throughput.  Alternatively, it can reduce performance by 
maintaining the clock rate. 

Similar tradeoffs as that from parallelism are available 
through pipelining, e.g. by inserting extra pipeline register 
between logic blocks A and B, Fig. 2(c).  Pipelining has much 
smaller area overhead than parallelism, but is generally more 
difficult to implement since it requires design re-partitioning. 

Basic energy-performance tradeoff in Fig. 1 provides good 
insights into techniques of introducing parallelism and time-
multiplexing.  Starting from a good E-D tradeoff point and 
moving toward higher speed (lower delay), we observe a steep 
increase in required energy.  To conserve the energy, 
parallelism shifts the curve to the left, which can also improve 
the performance.  Time-multiplexing reduces the area when 
circuit blocks can provide excess performance.  It effectively 
shifts the curve to the right, maintaining a good E-D tradeoff. 

B. Data-Stream Interleaving 
Data-stream interleaving is another technique to improve 

area efficiency.  In essence it is a way of time multiplexing the 
data.  The case when the algorithm contains a recursion is 
analyzed as described with the simple difference equation: 
 z(k) = x(k) + c·z(k−1). (1) 

The signal processing representation of the difference 
equation above is shown in Fig. 3(a).  Algorithmic latency of 
one symbol period is represented with explicit register 
between z(k) and multiply block.  Symbol rate is defined by 
clock frequency fClk.  This simple model abstracts away any 

extra latency in add and multiply blocks.  From the technology 
perspective, an N bit add operation is less complex in terms of 
the number of gates and area than an N-by-N multiplication.  
In order to balance the complexity of datapath logic blocks, 
add and multiply operations need to have different latency. 

A more realistic model of Eq. (1) that captures the different 
latency of addition and multiplication is shown in Fig. 3(b).  A 
number of a and m pipeline registers has been assigned to the 
adder and the multiplier, respectively, to balance the 
throughput by increasing latency.  By going around the loop, 
the feedback signal y(k−1) will have an increased latency of 
a + m.  By increasing the clock rate by a factor a + m, the same 
algorithmic latency can be maintained.  In order to fill the 
added pipeline with useful computation, multiple independent 
signal streams can be interleaved onto the same hardware.  If 
the number of independent signals N is greater than a + m, 
then b = N−a−m of additional pipeline registers is required to 
maintain the latency. 

Interleaving effectively improves the area efficiency by 
sharing data-path logic across independent streams of data.  A 
practical use of carrier interleaving is in multi-carrier 
communications, where the independent narrow-band sub-
carrier streams can be time-interleaved. 

C. Folding 
Folding, similarly to data-stream interleaving, reduces the 

area.  Assume serially ordered execution of some algorithmic 
operation Alg as shown in Fig. 4(a). The first block in the 
chain takes independent data samples y1(k), all other blocks 
take the result from the previous block.  The concept of 
folding is shown in Fig. 4(b), [4].  Input to Alg is provided by 
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Fig. 2.  Basic micro-architectural techniques: reference architecture (a), and its 

parallel (b) and pipelined (c) equivalents.  Reference architecture (d) for  
time-multiplexing (e).  Area overhead is indicated by shaded blocks. 
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Fig. 4.  Concept of folding: (a) time-serial computation, (b) operation folding.  

Block Alg performs some algorithmic operation. 

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

3224



a multiplexer, which selects external data y1 or internally 
generated results y2, y3, y4.  During the first quarter of the 
symbol period, up-sampled and interleaved data y1 is used.  
The output of Alg is then folded over in time, back to its input, 
to compute y2, y3, and y4.  Re-ordering of y1 samples is needed 
to align data at input in, as shown in the life-chart in Fig. 4(b).  
Up-sampling the clock in block Alg is necessary to sustain 
external (y1) throughput rate. 

If Alg is a simple feed-forward unit, no additional pipeline 
registers are needed.  In case Alg block has internal feedback 
loops, additional pipelining is necessary to keep the internal 
states.  This raises the issue of how to optimally distribute 
pipeline registers around the loop to maximize throughput, 
which is addressed next. 

D. Loop Retiming 
Loop retiming is a technique of distributing pipeline 

registers around recursive loops.  The goal is to assign the 
right amount of latency to basic functional building blocks and 
then distribute the pipeline registers inside the blocks such that 
all internal datapath logic blocks lay at the same point (shown 
in Fig. 1) in the energy-delay space.  This guarantees top-level 
optimality.  As in the case of interleaving, additional balancing 
registers may be needed to ensure equal loop latency in all 
recursive loops. 

The approach of loop retiming is illustrated in Fig. 5 on the 
example of iterative divider.  This is a simple example with 
two nested loops, but the concepts are general.  In a data-flow 
graph representation of a function, a, m, u are the latency of 
pre-characterized library blocks.  This case uses adder (a), 
multiplier (m), and multiplexer (u).  For each of the loops, the 
loop constraints are formulated as in Eq. (2). 
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For a given throughput constraint, the solution of Eq. (2) is a 
set of positive integers (m, a, u) that corresponds to equal 
clock period, adding b1 and b2 balancing registers as needed to 
satisfy loop latency N.  Accounting for different latency of 
library blocks nicely extends the retiming algorithm from [5]. 

Retiming strategy can be easily expanded to traverse the 
layers of hierarchy.  Each block is characterized with latency 
from its primary inputs (i) to its primary outputs (o) as well as 
loop constraints inside the block.  This information is used to 
derive i/o latencies and loop constraints at the next level of 
hierarchy.  At the top-level, loop constraints from all lower 
levels are thus considered. 

E. Delayed Iteration 
Delayed iteration occurs when majority of loops have 

similar latency, while only a few loops need to compute 
longer.  Adding balancing registers to all the non-critical loops 

to compensate for this effect would solve the problem, but in a 
very power and area inefficient way.  The idea is to use 
delayed iteration in those few loops and take delayed sample 
at time instant k−1 instead of taking it at time instant k.  If this 
is algorithmically possible, requirements for power and area 
can be much improved. 

III. SIMULINK-BASED DESIGN FRAMEWORK 

We use Matlab/Simulink environment to avoid design re-
entry, which is a standard practice today.  A design is entered 
in various forms by different engineering teams, resulting in 
heterogeneous design descriptions.  Algorithm developers tend 
to work in Matlab environment, which has an array of built-in 
functions convenient for quick algorithm verification.  C code 
is another sequential processing entry, which requires more 
sophisticated coding skills.  Still, neither of the representations 
captures the architecture and information about sampling rate.  
The architectural description is then created by hardware 
designers who have to completely re-enter the design in HDL. 

Matlab/Simulink design environment enables theorists and 
implementers to work together.  An algorithm is entered only 
once is a graphical block form, which provides timed data-
flow representation of the design and abstract view of design 
architecture.  With technology-specific data for speed, power, 
and area of functional blocks, algorithm designers can explore 
the implementation space while remaining in Simulink 
environment to verify the algorithm. 

For practical realization, algorithm functionality is entered 
using hardware-equivalent blocks from Xilinx library as 
shown in Fig. 6.  This library has basic arithmetic operators 
such as add, multiply, shift, mux etc. with notion of hardware 
parameters such as latency and word-lengths.  The Simulink 
description of the block interconnects is used to generate 
hardware description for mapping the design onto an FPGA 
for hardware emulation or used by ASIC place and route tools 
for an ASIC.  Test vectors generated in Simulink are used for 
functional verification in both FPGA and ASIC flows. 

A. “Chip-in-a-Day” Design Flow 
Our “chip-in-a-day” design flow is illustrated in Fig. 7.  We 

start with Simulink design description using Xilinx block-set.  
After functional verification of the design, we use an in-house 
tool for wordlength reduction to reduce area.  The floating-to-
fixed point conversion (FFC) tool minimizes hardware cost 
(FPGA utilization) subject to user defined performance 
measures such as MSE error due to quantization.  Integer part 
is extracted from node profiling and range detection, while 
fractional word-size optimization is done by perturbation 
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Fig. 5.  Data-flow graph model of iterative division.  (m, a, u indicate latency)
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Fig. 6.  Illustration of FFC-enhanced Simulink model.
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theory, [6].  Once bit-true cycle-accurate behavior is obtained, 
hardware description language (HDL) for technology mapping 
is then created using Xilinx System Generator (XSG) netlist 
utility.  This HDL code can be used for FPGA emulation. 

To avoid re-entry at the HDL level, an in-house tool 
translates FPGA dialect into format supported by commercial 
implementation tools (Synopsys).  After logic synthesis that 
performs technology mapping, the resulting mapped netlist is 
verified for functionality using test vectors from Simulink.  
The netlist can be further optimized to do register retiming and 
logic sizing, before going to the final stage of physical layout 
synthesis, which is highly automated.  This is where designers 
often stop after obtaining functionally correct behavior. 

Making correct architectural decisions in Simulink relies on 
architectural feedback from synthesis.  This is needed as early 
in the flow as possible to avoid unnecessary iterations.  First 
estimates for area, speed, and power are fed back after initial 
logic synthesis, Fig. 7.  These results can be refined if desired 
by more accurate estimates from physical layout synthesis.  
Efficient algorithm implementation is possible without 
requiring much post synthesis information in Simulink, with 
extensive characterization of basic building blocks. 

B. Characterization Methodology 
The goal in characterization is to augment XSG block-set 

with technology-dependent information for speed, power, and 
area.  The complexity of basic and most commonly used 
library blocks is very low (granularity of add, multiply, shift, 
mux, register etc.), so full characterization over a range of 
latency and word-size parameters is possible. 

Approach to block-level characterization is illustrated in 
Fig. 8 for cases of add and multiply operations.  These two 
blocks differ in arithmetic complexity (reflected in latency), so 
we characterize the speed in terms of cycle time, which is a 
global parameter.  Equal cycle time means that complexity of 
logic blocks between two pipeline registers has to be the same 
in all blocks, which allows hierarchical expansion around this 
block-set.  Each point along the latency vs. cycle time curve is 
also characterized for power and area.  Estimates from 

physical synthesis can be further refined with switch-level 
accuracy, which is very time-consuming.  This is usually done 
for just a few blocks, with results extrapolated to other points. 

The Simulink block library is also characterized for area 
utilization of regular FPGA fabric (look-up tables, flip-flops), 
so users can obtain quick estimate of hardware cost in terms of 
FPGA resources.  Translating into ASIC terminology, 10,000 
FPGA slices ⇔ 1mm2 of layout area (~80% layout density) in 
90nm CMOS.  This relationship is obtained from linear 
extrapolation of area estimates for several examples that are 
about an order of magnitude apart from each other in terms of 
complexity ranging from simple arithmetic operations such as 
add and multiply, to complex matrix algorithms.  This way, we 
can obtain early estimate of chip area at the Simulink level. 

It is common practice in IC design to normalize silicon area 
to the area of a gate from standard cell library (e.g. 2-input 
NAND).  At higher levels of granularity, we can also scale the 
area by the area of some basic operation such as addition. 

C. Architectural Transformations 
Architectural optimization approach is illustrated in Fig. 9.  

The goal is to drive the design to a desired E-D tradeoff point 
(e.g. reference point), while minimizing the area.  This is done 
manually by the designer using transformations shown in 
Fig. 9.  For example, time-multiplexing saves the area, but 
requires increased supply voltage which results in an increase 
in energy per operation.  Parallelism and pipelining save the 
energy through supply voltage scaling, but increase the area.  
It is important to realize that there is no unique architectural 
solution since energy-efficiency can be traded for area. 
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Fig. 7.  Simulink-based “Chip-in-a-Day” design flow. 
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Fig. 8.  Block-level characterization (add, mult examples). 
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Fig. 9.  Architectural transformations in Area-Energy-Delay space. 
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When power is limited, which is often the case in practical 
designs, the area can be minimized as follows.  Given power 
limit, desired power efficiency is calculated from the required 
amount of functionality, using a known relationship between 
the energy per operation and supply voltage.  This determines 
the desired operating point on E-D line.  Optimization 
procedure then applies appropriate transformations as in Fig. 9 
to reach the desired point. 

IV. EXAMPLES 

The use of architectural techniques is illustrated on few 
examples.  We first look at simple iterative square rooting and 
division, then analyze more complex vector-based operations 
including Grahm Schmidt orthogonalization procedure and 
eigen-mode decomposition. 

A. Iterative Square Rooting and Division 
Square rooting and division are operations common to 

many wireless communication algorithms, [7].  Computing the 
norm requires inverse square rooting, for example.  More 
specifically, in adaptive algorithms input argument changes 
relatively slowly, which is often the case in wireless channels.  
The slow-varying condition makes the iterative approach 
attractive for practical realization. 

Among the algorithms for iterative square rooting and 
division, a method based on Newton-Rhapson formulas is 
attractive because of its favorable convergence properties.  
Survey of these algorithms can be found in [8].  Equations (3) 
and (4) describe inverse square rooting and division: 
 ))(3(

2
)()1( 2kxNkxkx s

s
s ⋅−⋅=+ , (3) 

 ))(2()()1( kxNkxkx ddd ⋅−⋅=+ , (4) 

where N is the input argument, xs describes inverse square 
rooting, and xd describes division.  Analysis of error dynamics 
reveals quadratic convergence: es(k+1)= − 0.5es(k)2·(3 + es(k)), 
ed(k+1) = −ed(k)2.  In implementation terms, this means that 
each iteration resolves two bits of accuracy, [8]. 

The number of iterations required for algorithms to 
converge is a function of initial condition and error dynamics.  
Table 1 summarizes convergence properties for a 25% and 
50% initial error, for various accuracies of the final answer.  
Even for very large initial error of 50%, only five iterations 
are needed to achieve accuracy within 0.1%.  The results in 
Table 1 also suggest that the error quickly decreases in every 
iteration.  So, if the result of current iteration is taken as the 
initial condition for the next iteration, under slow-varying 
input the answer can be obtained in only one iteration. 

Main architectural techniques applied in this example are 
loop retiming (the model in Fig. 5 illustrates division) and 
data-stream interleaving for multiple operands.  Loop 
constraint N is equal to the number of interleaved operands.  

For the case with 64 narrow-band 1MHz wide sub-carriers, 
required throughput is 64MHz.  The total (power, area) is 
estimated at (180µW, 0.07 mm2) for inverse square rooting 
and (120µW, 0.05mm2) for division.  This example illustrated 
an architecture for scalar operations.  In the next example, we 
analyze vector arithmetic. 

B. Grahm-Schmidt Orthogonalization 
Another common technique in communication signal 

processing is the projection of a set of vectors onto an 
orthogonal base.  A popular approach is the method of Grahm 
Schmidt orthogonalization (GSO).  In practice, it is also 
possible that during adaptation, phase shifts and magnitude 
changes cause vectors to loose orthogonality.  GSO is then 
periodically applied to rectify this.  The concept of GSO is 
illustrated in Fig. 10.  Two basic operations are indicated in 
boxes A and N.  In the figure, v1-v4 are complex input vectors, 
and v1o-v4o is their orthogonal form.  Due to repetitive use of 
operations A and N, this algorithm is suitable for time-
multiplexing if the required data rate is low. 

Regular time-multiplexing from Fig. 2 is possible, but this 
would result in a sizeable interconnect overhead.  Each of the 
lines in Fig. 10 represents a complex vector with N bits.  For 
example, a vector of dimension 4 with 16 bits for in-phase and 
quadrature components would mean 4×16×2 = 128 bits, and 
this number is further multiplied by the level of time-
multiplexing (4 for block N, 6 for block A).  So, traditional 
time-multiplexing is not favorable in terms of interconnect 
complexity.  To reduce wire complexity, time-multiplexing 
can be implemented using memory, as shown in Fig. 10(b).  
Only 128 bits now need to be exchanged between memory and 
processing blocks, reducing the routing overhead.  Summary 
of silicon area and routing complexity is given in Table 2 for 
cases of direct implementation, regular time-multiplexing, and 
memory based time-multiplexing.  Savings in routing 
complexity directly translate to power reduction since power 
spent in switching of interconnect wires is also reduced. 

TABLE I 
CONVERGENCE SPEED OF ITERATIVE SQRT AND DIV ALGORITHMS 

Target relative error (%) 0.1% 1% 5% 10% 
e0: 50%, # iter (sqrt / div) 5 / 4 5 / 3 4 / 3 3 / 2 
e0: 25%, # iter (sqrt / div) 3 / 3 3 / 2 2 / 2 2 / 1 
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Fig. 10.  Grahm Schmidt Orthodonalization: (a) direct mapped architecture,  

(b) memory based time-multiplexing approach. 

TABLE II 
SUMMARY OF GSO IMPLEMENTATION FEATURES 

Architecture Direct mapped Time-mux (TM) TM w/ memory
Area (silicon / FPGA) 2.6 mm2 / 60k 1.2 mm2 / 14k 1.0 mm2 / 14k 

Total wire length 6.6 m 3.2 m 2.2 m 
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C. Singular Value Decomposition 
As a final example, we analyze architecture for estimation 

of indoor wireless channels through adaptive Singular Value 
Decomposition (SVD), [9].  The core of the SVD algorithm is 
in estimation of U and Σ matrices, summarized in Fig. 11.  As 
illustrated on practical example of a 4×4 MIMO system, the 
algorithm extracts eigen-pairs (ui, λi) through successive rank 
reduction, where ui is ith eigen-vector, and λi is ith eigenvalue, 
i=1-4.  Deflation (def) block does successive rank reduction; 
LMS block computes the eigen-pairs.  Each spatial sub-
channel introduces a pair of LSM-def processing elements.  
Within LMS and def blocks there is the inverse square rooting 
operation from the earlier example.  Step size µi inside the 
LMS block is adaptively adjusted based on estimated eigen-
values, µi ∝ 1/λi.  Since eigen-values are slowly changing over 
time, iterative division is employed for adaptive gear-shifting. 

This example is an interesting case from the architectural 
standpoint, as discussed below.  A concept of loop retiming in 
square rooting block is hierarchically expanded to include the 
whole algorithm.  Narrow-band algorithm described in [9] is 
extended to wide-band MIMO case by introducing multiple 
sub-carriers.  Each sub-carrier performs the same operation, so 
data-stream interleaving is applied to sub-carriers.  In this 
example, the case with 16 sub-carriers is assumed (usually not 
all sub-carriers are needed for channel estimation; other sub-
channels can be estimated using interpolation), with a 
1 Msymbol/s data rate on each sub-carrier.  The organization 
in Fig. 11 is also convenient for folding over the antennas for 
further area reduction as shown in Fig. 9. 

By sharing logic blocks common to operations indicated in 
Fig. 11, the algorithm is synthesized in only 3.5mm2 of area in 
a 90nm CMOS technology (for comparison, Simulink block 
model takes 35k FPGA slices).  The arithmetic complexity of 
this algorithm is 70 GOPS (12-bit equivalent add).  Estimated 
power consumption from logic synthesis is 21mW, with an 
achievable 250Mbps throughput using adaptive PSK 
modulation.  This algorithm is relatively new, so no existing 
VLSI realizations exist for comparison purposes. 

 
 
 
 

V. CONCLUSION 

This paper presented architectural techniques for power and 
area efficient VLSI realization of signal processing algorithms 
for wireless communications.  The choice of architecture is 
highly influenced by the energy-delay tradeoffs of underlying 
technology and data throughput of the algorithm. 

Highly automated algorithm implementation is possible 
starting with the algorithm description in a simple graphical 
Matlab/Simulink environment.  The algorithm can be rapidly 
evaluated on an FPGA or realized in ASIC.  Characterization 
of few basic blocks from Simulink hardware library provides 
much needed information for architectural design early at the 
Simulink level, without the need for extra iterations.  This 
provides a unified framework for algorithm developers and 
implementers.  Several examples of varying complexity are 
discussed to illustrate the methodology for power and area 
minimization. 

Looking forward, it is interesting to consider the cost of 
adding flexibility.  Two possible directions are the following: 
investigate flexibility required for the execution of common 
operations across multiple standards, and study flexibility of 
having multi-functionality on a single hardware unit. 
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Fig. 11.  Eigen-mode decomposition algorithm from [9]. 
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