
Power and Area Efficient VLSI Architectures for
Communication Signal Processing

Dejan Markovic, Borivoje Nikolic, Robert W. Brodersen

Berkeley Wireless Research Center, University of California at Berkeley
2108 Allston Way, Suite 200, Berkeley, CA 94704, USA

Abstract—A methodology for VLSI realization of signal

processing algorithms for wireless communications is presented
that optimizes architecture for reduced power and area. When
power is limited, optimal architecture represents a point on the
best power-area tradeoff curve that is obtained by balancing the
algorithm throughput with the power-performance tradeoff of
the underlying building blocks. Architectural optimization is
done in the graphical Matlab/Simulink environment, which is
also used for algorithm verification. Hardware description
language produced by Simulink enables algorithm emulation on
the FPGA and also serves as design entry for the chip realization.
This is illustrated on complex multi-dimensional algorithms such
as wideband MIMO channel decoupling through singular value
decomposition (SVD) using 16 sub-carriers.

Keywords—Circuit synthesis, design methodology, architecture,
adaptive signal processing, matrix decomposition, MIMO systems.

I. INTRODUCTION

The growing demand for data-centric wireless connectivity
has inspired the development and realization of complex
signal processing algorithms such as those used in multiple-
input multiple-output (MIMO) communication. At the same
time, complexity of the devices has been steadily growing due
to a need for multi-mode, multi-standard functionality. In the
past, the growth of complexity of practically implemented
wireless algorithms has tracked the improvements provided
through the technology scaling. The recent need to support
MIMO algorithms has increased the need for more power and
cost efficient radios.

The goal of implementing a communications chip is to meet
the functionality, throughput and latency of the underlying
standard with minimum power and area cost. Most common
techniques to minimize power or area (as a dominant measure
of cost) are architectural. However, these techniques have
been largely heuristic, and there is no established systematic
way for trading off throughput, power and area.

With technology scaling, designers have more options in
selecting supply voltages and transistor thresholds in addition
to various circuit design techniques such as the use of sleep
modes. All these techniques present some power-performance
tradeoff, which makes architecture selection more complicated
and also more interesting. The goal is therefore to develop a
methodology that simultaneously minimizes power and area
for given throughput and latency constraints.

In this paper, various architectural techniques in the energy-
area-performance space are evaluated in order to minimize
power and area. Prior work applied similar techniques to

simple building blocks such as FIR filters, [1], in standard
VLSI design environment. The methodology presented in this
paper is scalable to large degrees of complexity. This work
uses the Matlab/Simulink environment familiar to both
theorists and implementers, thus giving practical insight to
algorithm developers as well as better understanding of the
algorithms by VLSI architects.

II. CHOOSING AN OPTIMAL ARCHITECTURE

Optimal VLSI architecture is technology dependent, which
requires characterization of main functional blocks for speed,
power, and area. This information is used to navigate the
architectural optimization procedure that is based on balancing
the algorithm throughput requirement with the capability of the
underlying basic building blocks. Data throughput and latency
are main constraints in chip realizations. Data throughput is
interesting for optimization since, for a given architecture, the
throughput can be related to the frequency of operation.

The key information that provides basis for optimization is
technology specific energy-delay tradeoff in datapath logic as
shown in Fig. 1. This tradeoff exists because the energy
needed to operate digital logic gates is related to their speed.
The tradeoff is obtained by adjusting design parameters such
as gate size, supply and threshold voltage. Introducing a new
technology shifts the entire E-D tradeoff curve toward lower
energy and delay. The architecture is energy optimal if its E-
D tradeoff curve has the same slope as the underlying datapath
logic. A good tradeoff point is indicated in Fig. 1. Otherwise
the design would have a high cost in terms of energy or delay.

By using basic concepts of parallelism and time
multiplexing an algorithm can be mapped into a range of
architectures with widely varying throughput and latency.
Architectural transformations such as data-stream interleaving,
loop retiming and folding support more complex operations
with concurrent or time-serial execution, which may also
involve feedback loops.

high Delay cost

high
Energy

cost

good E-D
tradeoff

time-multiplexingparallelism

Delay (~1/Throughput)

E
ne

rg
y

Fig. 1. Energy-delay tradeoff in digital circuits.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

1-4244-0355-3/06/$20.00 (c) 2006 IEEE

3223

A. Parallelism and Time Multiplexing
The concepts of parallelism and time-multiplexing are well-

known in architecture design. Parallelism combined with
adjustment in supply voltage improves the energy by slowing
down the clock and distributing computation over several
parallel branches. Alternatively, when using constant clock
frequencies, parallelism trades off the increase in area for
higher throughputs, Fig. 2(b), [2]. Time-multiplexing as
shown in Fig. 2(d)-(e) does the opposite: it reduces the area by
repeating computation on the same hardware unit, but needs a
higher clock rate and higher supply voltage to maintain the
throughput. Alternatively, it can reduce performance by
maintaining the clock rate.

Similar tradeoffs as that from parallelism are available
through pipelining, e.g. by inserting extra pipeline register
between logic blocks A and B, Fig. 2(c). Pipelining has much
smaller area overhead than parallelism, but is generally more
difficult to implement since it requires design re-partitioning.

Basic energy-performance tradeoff in Fig. 1 provides good
insights into techniques of introducing parallelism and time-
multiplexing. Starting from a good E-D tradeoff point and
moving toward higher speed (lower delay), we observe a steep
increase in required energy. To conserve the energy,
parallelism shifts the curve to the left, which can also improve
the performance. Time-multiplexing reduces the area when
circuit blocks can provide excess performance. It effectively
shifts the curve to the right, maintaining a good E-D tradeoff.

B. Data-Stream Interleaving
Data-stream interleaving is another technique to improve

area efficiency. In essence it is a way of time multiplexing the
data. The case when the algorithm contains a recursion is
analyzed as described with the simple difference equation:
 z(k) = x(k) + c·z(k−1). (1)

The signal processing representation of the difference
equation above is shown in Fig. 3(a). Algorithmic latency of
one symbol period is represented with explicit register
between z(k) and multiply block. Symbol rate is defined by
clock frequency fClk. This simple model abstracts away any

extra latency in add and multiply blocks. From the technology
perspective, an N bit add operation is less complex in terms of
the number of gates and area than an N-by-N multiplication.
In order to balance the complexity of datapath logic blocks,
add and multiply operations need to have different latency.

A more realistic model of Eq. (1) that captures the different
latency of addition and multiplication is shown in Fig. 3(b). A
number of a and m pipeline registers has been assigned to the
adder and the multiplier, respectively, to balance the
throughput by increasing latency. By going around the loop,
the feedback signal y(k−1) will have an increased latency of
a + m. By increasing the clock rate by a factor a + m, the same
algorithmic latency can be maintained. In order to fill the
added pipeline with useful computation, multiple independent
signal streams can be interleaved onto the same hardware. If
the number of independent signals N is greater than a + m,
then b = N−a−m of additional pipeline registers is required to
maintain the latency.

Interleaving effectively improves the area efficiency by
sharing data-path logic across independent streams of data. A
practical use of carrier interleaving is in multi-carrier
communications, where the independent narrow-band sub-
carrier streams can be time-interleaved.

C. Folding
Folding, similarly to data-stream interleaving, reduces the

area. Assume serially ordered execution of some algorithmic
operation Alg as shown in Fig. 4(a). The first block in the
chain takes independent data samples y1(k), all other blocks
take the result from the previous block. The concept of
folding is shown in Fig. 4(b), [4]. Input to Alg is provided by

2
f

2
f

(a) reference

(c) pipeline (b) parallel

A B

A B B

BA

A

f f

f f f

f

A
f

(d) reference for time-mux (e) time-multiplex

f

A
f f

Af f

f f
2f 2f

Fig. 2. Basic micro-architectural techniques: reference architecture (a), and its

parallel (b) and pipelined (c) equivalents. Reference architecture (d) for
time-multiplexing (e). Area overhead is indicated by shaded blocks.

c

x(k) z(k)

c

z
m ba

x2xN

time index
k

y1 y2 yN

k-1

zN z2 z1

k-a/N

a+m+b=N

time index

x1

N*fClk

y(k-1)

fClk

(a) simple model

(b) data-stream interleaving
Fig. 3. Concept of data-stream interleaving (feedback example).

(a) reference

Alg

(b) folding

Alg Alg Alg

Alg

f f f f

4f

y1(k)

y1(k)

y 2(
k-

1)

y 3(
k-

2)

y 4(
k-

3)

y1(k)

y2(k-1)y3(k-2)

y4(k-3)in

in

Fig. 4. Concept of folding: (a) time-serial computation, (b) operation folding.

Block Alg performs some algorithmic operation.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

3224

a multiplexer, which selects external data y1 or internally
generated results y2, y3, y4. During the first quarter of the
symbol period, up-sampled and interleaved data y1 is used.
The output of Alg is then folded over in time, back to its input,
to compute y2, y3, and y4. Re-ordering of y1 samples is needed
to align data at input in, as shown in the life-chart in Fig. 4(b).
Up-sampling the clock in block Alg is necessary to sustain
external (y1) throughput rate.

If Alg is a simple feed-forward unit, no additional pipeline
registers are needed. In case Alg block has internal feedback
loops, additional pipelining is necessary to keep the internal
states. This raises the issue of how to optimally distribute
pipeline registers around the loop to maximize throughput,
which is addressed next.

D. Loop Retiming
Loop retiming is a technique of distributing pipeline

registers around recursive loops. The goal is to assign the
right amount of latency to basic functional building blocks and
then distribute the pipeline registers inside the blocks such that
all internal datapath logic blocks lay at the same point (shown
in Fig. 1) in the energy-delay space. This guarantees top-level
optimality. As in the case of interleaving, additional balancing
registers may be needed to ensure equal loop latency in all
recursive loops.

The approach of loop retiming is illustrated in Fig. 5 on the
example of iterative divider. This is a simple example with
two nested loops, but the concepts are general. In a data-flow
graph representation of a function, a, m, u are the latency of
pre-characterized library blocks. This case uses adder (a),
multiplier (m), and multiplexer (u). For each of the loops, the
loop constraints are formulated as in Eq. (2).

NbuamL

NbumL
=+++

=++

22

11

2:
: (2)

For a given throughput constraint, the solution of Eq. (2) is a
set of positive integers (m, a, u) that corresponds to equal
clock period, adding b1 and b2 balancing registers as needed to
satisfy loop latency N. Accounting for different latency of
library blocks nicely extends the retiming algorithm from [5].

Retiming strategy can be easily expanded to traverse the
layers of hierarchy. Each block is characterized with latency
from its primary inputs (i) to its primary outputs (o) as well as
loop constraints inside the block. This information is used to
derive i/o latencies and loop constraints at the next level of
hierarchy. At the top-level, loop constraints from all lower
levels are thus considered.

E. Delayed Iteration
Delayed iteration occurs when majority of loops have

similar latency, while only a few loops need to compute
longer. Adding balancing registers to all the non-critical loops

to compensate for this effect would solve the problem, but in a
very power and area inefficient way. The idea is to use
delayed iteration in those few loops and take delayed sample
at time instant k−1 instead of taking it at time instant k. If this
is algorithmically possible, requirements for power and area
can be much improved.

III. SIMULINK-BASED DESIGN FRAMEWORK

We use Matlab/Simulink environment to avoid design re-
entry, which is a standard practice today. A design is entered
in various forms by different engineering teams, resulting in
heterogeneous design descriptions. Algorithm developers tend
to work in Matlab environment, which has an array of built-in
functions convenient for quick algorithm verification. C code
is another sequential processing entry, which requires more
sophisticated coding skills. Still, neither of the representations
captures the architecture and information about sampling rate.
The architectural description is then created by hardware
designers who have to completely re-enter the design in HDL.

Matlab/Simulink design environment enables theorists and
implementers to work together. An algorithm is entered only
once is a graphical block form, which provides timed data-
flow representation of the design and abstract view of design
architecture. With technology-specific data for speed, power,
and area of functional blocks, algorithm designers can explore
the implementation space while remaining in Simulink
environment to verify the algorithm.

For practical realization, algorithm functionality is entered
using hardware-equivalent blocks from Xilinx library as
shown in Fig. 6. This library has basic arithmetic operators
such as add, multiply, shift, mux etc. with notion of hardware
parameters such as latency and word-lengths. The Simulink
description of the block interconnects is used to generate
hardware description for mapping the design onto an FPGA
for hardware emulation or used by ASIC place and route tools
for an ASIC. Test vectors generated in Simulink are used for
functional verification in both FPGA and ASIC flows.

A. “Chip-in-a-Day” Design Flow
Our “chip-in-a-day” design flow is illustrated in Fig. 7. We

start with Simulink design description using Xilinx block-set.
After functional verification of the design, we use an in-house
tool for wordlength reduction to reduce area. The floating-to-
fixed point conversion (FFC) tool minimizes hardware cost
(FPGA utilization) subject to user defined performance
measures such as MSE error due to quantization. Integer part
is extracted from node profiling and range detection, while
fractional word-size optimization is done by perturbation

m a m u
L1

L2

Fig. 5. Data-flow graph model of iterative division. (m, a, u indicate latency)

Hardware
cost
estimation

For
FFC

Fig. 6. Illustration of FFC-enhanced Simulink model.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

3225

theory, [6]. Once bit-true cycle-accurate behavior is obtained,
hardware description language (HDL) for technology mapping
is then created using Xilinx System Generator (XSG) netlist
utility. This HDL code can be used for FPGA emulation.

To avoid re-entry at the HDL level, an in-house tool
translates FPGA dialect into format supported by commercial
implementation tools (Synopsys). After logic synthesis that
performs technology mapping, the resulting mapped netlist is
verified for functionality using test vectors from Simulink.
The netlist can be further optimized to do register retiming and
logic sizing, before going to the final stage of physical layout
synthesis, which is highly automated. This is where designers
often stop after obtaining functionally correct behavior.

Making correct architectural decisions in Simulink relies on
architectural feedback from synthesis. This is needed as early
in the flow as possible to avoid unnecessary iterations. First
estimates for area, speed, and power are fed back after initial
logic synthesis, Fig. 7. These results can be refined if desired
by more accurate estimates from physical layout synthesis.
Efficient algorithm implementation is possible without
requiring much post synthesis information in Simulink, with
extensive characterization of basic building blocks.

B. Characterization Methodology
The goal in characterization is to augment XSG block-set

with technology-dependent information for speed, power, and
area. The complexity of basic and most commonly used
library blocks is very low (granularity of add, multiply, shift,
mux, register etc.), so full characterization over a range of
latency and word-size parameters is possible.

Approach to block-level characterization is illustrated in
Fig. 8 for cases of add and multiply operations. These two
blocks differ in arithmetic complexity (reflected in latency), so
we characterize the speed in terms of cycle time, which is a
global parameter. Equal cycle time means that complexity of
logic blocks between two pipeline registers has to be the same
in all blocks, which allows hierarchical expansion around this
block-set. Each point along the latency vs. cycle time curve is
also characterized for power and area. Estimates from

physical synthesis can be further refined with switch-level
accuracy, which is very time-consuming. This is usually done
for just a few blocks, with results extrapolated to other points.

The Simulink block library is also characterized for area
utilization of regular FPGA fabric (look-up tables, flip-flops),
so users can obtain quick estimate of hardware cost in terms of
FPGA resources. Translating into ASIC terminology, 10,000
FPGA slices ⇔ 1mm2 of layout area (~80% layout density) in
90nm CMOS. This relationship is obtained from linear
extrapolation of area estimates for several examples that are
about an order of magnitude apart from each other in terms of
complexity ranging from simple arithmetic operations such as
add and multiply, to complex matrix algorithms. This way, we
can obtain early estimate of chip area at the Simulink level.

It is common practice in IC design to normalize silicon area
to the area of a gate from standard cell library (e.g. 2-input
NAND). At higher levels of granularity, we can also scale the
area by the area of some basic operation such as addition.

C. Architectural Transformations
Architectural optimization approach is illustrated in Fig. 9.

The goal is to drive the design to a desired E-D tradeoff point
(e.g. reference point), while minimizing the area. This is done
manually by the designer using transformations shown in
Fig. 9. For example, time-multiplexing saves the area, but
requires increased supply voltage which results in an increase
in energy per operation. Parallelism and pipelining save the
energy through supply voltage scaling, but increase the area.
It is important to realize that there is no unique architectural
solution since energy-efficiency can be traded for area.

XSG Model
Wordlength Opt

Simulink/XSG

INSECTA

Synopsys

HDL Translation
Logic Synthesis
HDL Simulation

Reg Retiming
Floorplaning

Behavioral HDL

Mapped HDL

Area
Power

Speed

Tech
Lib

behavioral

logical

physical

Area
Power

Speed

Post-layout

Pre-layout

Place & Route

Re- synthesis

Architectural
Feedback

Fig. 7. Simulink-based “Chip-in-a-Day” design flow.

Simulink

Synopsys

RTL

netlist

Area
Power

Speed

Switch-level
accuracy

HSPICE

12

9

6

3

0
0 1 2 3

cycle time (norm.)

la
te

nc
y

mult
add

Area
Power

Speed

Fig. 8. Block-level characterization (add, mult examples).

D

E

A

time-mux

parallel
pipeline,intl,

fold
parallel pipeline

intl,
fold

time-mux

VDD scaling

referencereference

Fig. 9. Architectural transformations in Area-Energy-Delay space.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

3226

When power is limited, which is often the case in practical
designs, the area can be minimized as follows. Given power
limit, desired power efficiency is calculated from the required
amount of functionality, using a known relationship between
the energy per operation and supply voltage. This determines
the desired operating point on E-D line. Optimization
procedure then applies appropriate transformations as in Fig. 9
to reach the desired point.

IV. EXAMPLES

The use of architectural techniques is illustrated on few
examples. We first look at simple iterative square rooting and
division, then analyze more complex vector-based operations
including Grahm Schmidt orthogonalization procedure and
eigen-mode decomposition.

A. Iterative Square Rooting and Division
Square rooting and division are operations common to

many wireless communication algorithms, [7]. Computing the
norm requires inverse square rooting, for example. More
specifically, in adaptive algorithms input argument changes
relatively slowly, which is often the case in wireless channels.
The slow-varying condition makes the iterative approach
attractive for practical realization.

Among the algorithms for iterative square rooting and
division, a method based on Newton-Rhapson formulas is
attractive because of its favorable convergence properties.
Survey of these algorithms can be found in [8]. Equations (3)
and (4) describe inverse square rooting and division:
))(3(

2
)()1(2kxNkxkx s

s
s ⋅−⋅=+ , (3)

))(2()()1(kxNkxkx ddd ⋅−⋅=+ , (4)

where N is the input argument, xs describes inverse square
rooting, and xd describes division. Analysis of error dynamics
reveals quadratic convergence: es(k+1)= − 0.5es(k)2·(3 + es(k)),
ed(k+1) = −ed(k)2. In implementation terms, this means that
each iteration resolves two bits of accuracy, [8].

The number of iterations required for algorithms to
converge is a function of initial condition and error dynamics.
Table 1 summarizes convergence properties for a 25% and
50% initial error, for various accuracies of the final answer.
Even for very large initial error of 50%, only five iterations
are needed to achieve accuracy within 0.1%. The results in
Table 1 also suggest that the error quickly decreases in every
iteration. So, if the result of current iteration is taken as the
initial condition for the next iteration, under slow-varying
input the answer can be obtained in only one iteration.

Main architectural techniques applied in this example are
loop retiming (the model in Fig. 5 illustrates division) and
data-stream interleaving for multiple operands. Loop
constraint N is equal to the number of interleaved operands.

For the case with 64 narrow-band 1MHz wide sub-carriers,
required throughput is 64MHz. The total (power, area) is
estimated at (180µW, 0.07 mm2) for inverse square rooting
and (120µW, 0.05mm2) for division. This example illustrated
an architecture for scalar operations. In the next example, we
analyze vector arithmetic.

B. Grahm-Schmidt Orthogonalization
Another common technique in communication signal

processing is the projection of a set of vectors onto an
orthogonal base. A popular approach is the method of Grahm
Schmidt orthogonalization (GSO). In practice, it is also
possible that during adaptation, phase shifts and magnitude
changes cause vectors to loose orthogonality. GSO is then
periodically applied to rectify this. The concept of GSO is
illustrated in Fig. 10. Two basic operations are indicated in
boxes A and N. In the figure, v1-v4 are complex input vectors,
and v1o-v4o is their orthogonal form. Due to repetitive use of
operations A and N, this algorithm is suitable for time-
multiplexing if the required data rate is low.

Regular time-multiplexing from Fig. 2 is possible, but this
would result in a sizeable interconnect overhead. Each of the
lines in Fig. 10 represents a complex vector with N bits. For
example, a vector of dimension 4 with 16 bits for in-phase and
quadrature components would mean 4×16×2 = 128 bits, and
this number is further multiplied by the level of time-
multiplexing (4 for block N, 6 for block A). So, traditional
time-multiplexing is not favorable in terms of interconnect
complexity. To reduce wire complexity, time-multiplexing
can be implemented using memory, as shown in Fig. 10(b).
Only 128 bits now need to be exchanged between memory and
processing blocks, reducing the routing overhead. Summary
of silicon area and routing complexity is given in Table 2 for
cases of direct implementation, regular time-multiplexing, and
memory based time-multiplexing. Savings in routing
complexity directly translate to power reduction since power
spent in switching of interconnect wires is also reduced.

TABLE I
CONVERGENCE SPEED OF ITERATIVE SQRT AND DIV ALGORITHMS

Target relative error (%) 0.1% 1% 5% 10%
e0: 50%, # iter (sqrt / div) 5 / 4 5 / 3 4 / 3 3 / 2
e0: 25%, # iter (sqrt / div) 3 / 3 3 / 2 2 / 2 2 / 1

(a) direct mapping

Av1

Av2

Av3

Av4

N

A N

A A N v4o

v3o

v2o

v1o

A

N

1/sqrt(x’x)

mult-mult-add

(b) time-multiplexing using memory

A N

memory

control

p/s s/p

v1
v2
v3
v4 v4o

v3o

v2o

v1o

Fig. 10. Grahm Schmidt Orthodonalization: (a) direct mapped architecture,

(b) memory based time-multiplexing approach.

TABLE II
SUMMARY OF GSO IMPLEMENTATION FEATURES

Architecture Direct mapped Time-mux (TM) TM w/ memory
Area (silicon / FPGA) 2.6 mm2 / 60k 1.2 mm2 / 14k 1.0 mm2 / 14k

Total wire length 6.6 m 3.2 m 2.2 m

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

3227

C. Singular Value Decomposition
As a final example, we analyze architecture for estimation

of indoor wireless channels through adaptive Singular Value
Decomposition (SVD), [9]. The core of the SVD algorithm is
in estimation of U and Σ matrices, summarized in Fig. 11. As
illustrated on practical example of a 4×4 MIMO system, the
algorithm extracts eigen-pairs (ui, λi) through successive rank
reduction, where ui is ith eigen-vector, and λi is ith eigenvalue,
i=1-4. Deflation (def) block does successive rank reduction;
LMS block computes the eigen-pairs. Each spatial sub-
channel introduces a pair of LSM-def processing elements.
Within LMS and def blocks there is the inverse square rooting
operation from the earlier example. Step size µi inside the
LMS block is adaptively adjusted based on estimated eigen-
values, µi ∝ 1/λi. Since eigen-values are slowly changing over
time, iterative division is employed for adaptive gear-shifting.

This example is an interesting case from the architectural
standpoint, as discussed below. A concept of loop retiming in
square rooting block is hierarchically expanded to include the
whole algorithm. Narrow-band algorithm described in [9] is
extended to wide-band MIMO case by introducing multiple
sub-carriers. Each sub-carrier performs the same operation, so
data-stream interleaving is applied to sub-carriers. In this
example, the case with 16 sub-carriers is assumed (usually not
all sub-carriers are needed for channel estimation; other sub-
channels can be estimated using interpolation), with a
1 Msymbol/s data rate on each sub-carrier. The organization
in Fig. 11 is also convenient for folding over the antennas for
further area reduction as shown in Fig. 9.

By sharing logic blocks common to operations indicated in
Fig. 11, the algorithm is synthesized in only 3.5mm2 of area in
a 90nm CMOS technology (for comparison, Simulink block
model takes 35k FPGA slices). The arithmetic complexity of
this algorithm is 70 GOPS (12-bit equivalent add). Estimated
power consumption from logic synthesis is 21mW, with an
achievable 250Mbps throughput using adaptive PSK
modulation. This algorithm is relatively new, so no existing
VLSI realizations exist for comparison purposes.

V. CONCLUSION

This paper presented architectural techniques for power and
area efficient VLSI realization of signal processing algorithms
for wireless communications. The choice of architecture is
highly influenced by the energy-delay tradeoffs of underlying
technology and data throughput of the algorithm.

Highly automated algorithm implementation is possible
starting with the algorithm description in a simple graphical
Matlab/Simulink environment. The algorithm can be rapidly
evaluated on an FPGA or realized in ASIC. Characterization
of few basic blocks from Simulink hardware library provides
much needed information for architectural design early at the
Simulink level, without the need for extra iterations. This
provides a unified framework for algorithm developers and
implementers. Several examples of varying complexity are
discussed to illustrate the methodology for power and area
minimization.

Looking forward, it is interesting to consider the cost of
adding flexibility. Two possible directions are the following:
investigate flexibility required for the execution of common
operations across multiple standards, and study flexibility of
having multi-functionality on a single hardware unit.

ACKNOWLEDGMENT

This research is supported in part from "Robust, Rapid and
Wireless Chip Design" project sponsored by MARCO on
contract #02919 via Carnegie Mellon University. The authors
acknowledge technology support from ST Microelectronics
and members of the BWRC.

REFERENCES
[1] T. Gemmeke, M. Gansen, H.J. Stockmanns, and T.G. Noll, “Design

Optimization of Low-Power High-Performance DSP Building Blocks,”
IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1131-1139, July 2004.

[2] A.P. Chandrakasan, S. Sheng, and R.W. Brodersen, “Low-power CMOS
digital design,” IEEE J. Solid-State Circuits, vol. 27, no. 4, pp. 473-484,
Apr. 1992.

[3] D. Markovic, V. Stojanovic, B. Nikolic, M.A. Horowitz, and R.W.
Brodersen, “Methods for True Energy-Performance Optimization,”
IEEE J. Solid-State Circuits, vol. 39, no. 8, pp. 1282-1293, Aug. 2004.

[4] K.K. Parhi, VLSI Digital Signal Processing Systems, New York: NY,
John Wiley & Sons, 1999.

[5] Y. Yi, R. Woods, L.K. Ting, and C.F.N. Cowna, “High sampling rate
retimed DLMS filter implementation in Virtex-II FPGA,” IEEE
Workshop on Signal Processing Systems, pp. 139-145, Oct. 2002.

[6] C. Shi and R.W. Brodersen, "Automated Fixed-point Data-type
Optimization Tool for Signal Processing and Communication Systems,"
in Proc. IEEE Design Automation Conf., pp. 478-483, June 2004.

[7] D. Tse and P. Viswanath, Fundamentals of Wireless Communication,
Cambridge University Press, 2005.

[8] C.V. Ramamoorthy, J.R. Goodman, and K.H. Kim, “Some Properties of
Iterative Square-Rooting Methods Using High-Speed Multiplication,”
IEEE Trans. Computers, vol. C-21, no. 8, pp. 837-847, 1972.

[9] A.S.Y. Poon, D.N.C. Tse, and R.W. Brodersen, “An adaptive multiple-
antenna transceiver for slowly flat-fading channels,” IEEE Trans.
Communications, vol. 51, no. 13, pp. 1820-1827, Nov. 2003.

)]()('[)()1(kwkwrrkwkw iiiiii ⋅−⋅⋅⋅+=+ λµ
)1()1(')1(+⋅+=+ kwkwk iiiλ

)(/)()1(kkwku iii λ=+

)(/)]1()1('[kkwrkwrr iiiniinout λ+⋅⋅+−=

y(k)

LMS

def

LMS

def

LMS

def

LMS

ant-1 ant-2 ant-3 ant-4

Fig. 11. Eigen-mode decomposition algorithm from [9].

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

3228

