

Abstract—Two decoding schedules and the corresponding
serialized architectures for low-density parity-check (LDPC)
decoders are presented. They are applied to codes with parity-
check matrices generated either randomly or using geometric
properties of elements in Galois fields. Both decoding
schedules have low computational requirements. The original
concurrent decoding schedule has a large storage requirement
that is dependent on the total number of edges in the
underlying bipartite graph, while a new, staggered decoding
schedule which uses an approximation of the belief
propagation, has a reduced memory requirement that is
dependent only on the number of bits in the block. The
performance of these decoding schedules is evaluated through
simulations on a magnetic recording channel.

I. INTRODUCTION
Sequences of Low Density Parity Check (LDPC) codes have

been demonstrated to achieve information rates very close to the
Shannon limit when iteratively decoded [1]. Using the message-
passing algorithm, LDPC decoders require an order of magnitude
less arithmetic computations than equivalent Turbo decoders [2].
However, the implementations of decoders for these codes suffer
from complex interconnect or large memory requirements due to
the sparse nature of the underlying bipartite graph [2].

A number of recent theoretical publications [3] [4] presented
the construction of LDPC codes using finite field geometries.
These codes result in reduced implementation complexities for
both encoder and decoder, but the decoder continues to suffer the
disadvantages caused by the sparseness of the graph.

This paper presents a new staggered decoding schedule that
reduces the amount of memory requirement to the size of a code
block, independent of the number of edges in the graph. In
addition, it shows that the large memory requirement can be
attributed to the feature that messages are updated concurrently
through each round of decoding, and each edge in the graph
represents a unique message.

An LDPC code can be employed in magnetic recording
channels using the structure shown in Fig. 1, with an LDPC code
serially concatenated with a partial response channel [5]. All
systems considered in this paper limit the number of user bits to a
sector size of 4096 bits. Targeted throughput rates are above
1Gbps, in line with current trends in high throughput applications.

The arithmetic computation and hardware complexity of the
iterative soft decoding algorithm will be reviewed in Section II. In
Section III, a new staggered decoding schedule is proposed and
compared with the original concurrent decoding schedule.
Section IV presents an implementation of the staggered decoding
schedule for codes based on finite geometries. Simulation results
are presented for these finite field-based codes and for random
codes in Section V.

Outer LDPC
Encoder

PR
Channelu x1 x2

Noise

y+

Fig. 1. Serial concatenation of LDPC encoder with a partial response
channel.

II. SOFT DECODING OF LDPC CODES

A. Message Passing Algorithm
For each received bit, xi for i=1, 2, …, N, in an N-bit block, an

LDPC decoder accepts as input, the log-likelihood ratio (LLR) of
probability of possible values for xi, as defined in (1). LDPC codes
are often represented by bipartite graphs made up of two families of
nodes, bit nodes and check nodes. Bit nodes represent the
transmitted bits in the code. Each bit node is connected to a
number of check nodes through an unstructured array of edges.
Each check node represents a parity check constraint on the set of
adjacent bit nodes.

=
=

=
)0(Pr
)1(Pr

ln
i

i
x
x

LLR (1)

LDPC decoders implement the message passing algorithm,
which specifies the computation and communication of messages
between bit nodes and check nodes as defined by the edges in the
graph. An iteration of LDPC decoding consists of a round of
message passing from each bit node to all adjacent check nodes,
followed by another round of message passing from each check
node to all adjacent bit nodes. Optimum decoding performance is
achieved through repeated iterations of message passing along
edges in the graph.

Let H be the N×M parity check matrix of an LDPC code
comprising N bit nodes and M check nodes. ν(m) = {n: Hm,n = 1}
is the set of bits that are connected to check m. µ(n) = {m: Hm,n =
1} is the set of checks that are connected to bit n. Qnm and Rmn
refer to the messages that are passed between bit n and check m, as
defined according to (2) and (3) respectively.

Message from bit n to check m:

mn
nm

nm
i

i
nm RR

p
pQ −

∑+

=

∈)('
')0(

)1(
ln

µ
 (2)

Message from check m to bit n:

() ()

() |)(|
'

)('

)('
'

1

)1()sgn(sgn mN
mn

mn
nm

nm
mNn

mnmn

QQ

QQR

−⋅

∏⋅×

Φ−

∑ΦΦ=

∈

∈

−

ν

(3)

Engling Yeo, Payam Pakzad, Borivoje Nikolić, and Venkat Anantharam
Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720-1770.

High Throughput Low-Density Parity-Check Decoder Architectures

3019

0-7803-7206-9/01/$17.00 © 2001 IEEE

nmR
1

Prior

Delay Chain

Delay Chain

Delay Chain

Delay Chain

.

.

.
... .

.

.

nmR
2

nm n
R

1|)(| −µ

nm n
R

|)(|µ

1nmQ

2nmQ

|)(| mnmQ
µ

1|)(| −mnmQ
µ

Fig. 2. Bit-to-Check message (Qnm) computation.

M
E
M
O
R
Y

M
E
M
O
R
Y

Bit-
to-

Check

M
E
M
O
R
Y

M
E
M
O
R
Y

Check-
to-
Bit

...Soft
Inputs

Fig. 3. Serialized and fully pipelined implementation requires two memory
buffers per stage, alternating between read/write.

0);()
2
1tanh(log)(1 ≥Φ=

−=Φ − xxxx (4)

The primary objective of an LDPC decoder is to perform the above
message computations and to ensure the proper transportation of messages

between the two classes of nodes.
Fig. 2 illustrates an example functional block that uses a tree of

adders to evaluate (2). The computational complexity required for
evaluation of either bit-to-check or check-to-bit messages is low,
compared to existing types of decoders such as the Viterbi
decoder or Turbo decoders [2]. However, the irregular structure
of the underlying bipartite graph leads to interconnect
complications with parallel implementation architectures and
excessive memory requirement in alternative serial
implementation architectures.

B. Parallel Implementation Architecture
The algorithmic description of the message passing algorithm

suggests an inherently parallel organization because there is no
dependency between computation of either Qnm for n=1, 2, …, N
or Rnm for m=1, 2, …, M. A parallel decoder architecture directly
maps the nodes in the bipartite graph onto message computation
units and the edges of the graph onto a network of interconnect. A
rate-½, 1024-bit LDPC decoder [6] implemented in 0.16µm
technology occupies an area of 7mm×7mm, where logic density is
reduced to 50% to accommodate the complexity of the
interconnect fabric. This approach leads to higher throughput and
lower power dissipation because of the inherent parallelism. It is
however, not scalable to codes with larger block sizes. A silicon
implementation of a 4096-bit decoder will have 4 times more
interconnect wires that are also prohibitively long.

C. Serial Implementation Architecture
Another approach is to serialize and distribute an inherently

parallel algorithm amongst a number of processing units [2] [7].
The hardware complexity of the functional units of such a decoder
will be significantly lowered, but the implementation still requires a
substantial amount of memory to avoid complex interconnect and a
large number of algorithmic units. The lack of spatial locality
between any subset of bit nodes connected to the same check node
(and vice versa) makes it impossible to update the messages for the
next round of decoding until a majority of the messages in a
particular direction are received. Therefore, a majority of the Qnm
and Rmn messages need to be stored in a memory whose size is
dependent on the total number of edges in the particular code
design. A serialized rate 8/9 4608-bit LDPC decoder described in
[2] would have to perform memory read and write operations for
37,000 messages in each iteration of decoding.

In addition, serialized implementations are slower and will
require hardware pipelining (through segmenting the check-to-bit
and bit-to-check stages) in order to sustain high throughput rates.
Full utilization of all pipelined stages is only achievable if each
section of the message computation is operating on independent
blocks of data. This requires two memory buffers per stage,
alternating between read/write, as shown in Fig. 3. The amount of
memory required for each iteration is therefore four times the total
number of edges in the graph, and grows linearly with the number
of iterations. Ad-hoc rescheduling [7] of the serialized
computations leads to increased efficiency of the computational
units but remains largely limited by the communication between
memory and functional units.

III. LDPC DECODING SCHEDULES
This section addresses the memory issue common to all

serialized architectures by reviewing the original concurrent
schedule of the LDPC decoding algorithm, and proposes an
algorithm with an alternative schedule, with modifications to the
scheduling theorem discussed in [8].

In particular, the notation M and S(k) are used to denote the set
of check nodes in the code, and the subset of check nodes that are
processed at time step k, respectively.

3020

A1

TIME

11

21
31

41
51

61

71
81

91

101

12

22
32

42
52

62

72
82

92

102

B1

C1

A2

B2

C2

Fig. 4. Concurrent decoding schedule of the message passing algorithm;
circles represent bit nodes; boxes represent check nodes.

A
1

2

3

4

5

6

7

8

9

10

A

TIME

C

B

7

6

5

4

3

2

1

10

9

8

7

6

5

4

3

2

1

10

9

8

7

6

5

4

3

2

1

10

9

8

7

6

5

4

3

2

1

10

9

8

Fig. 5. Staggered decoding schedule of the modified message passing
algorithm with |S(t)|=1.

M
E
M
O
R
Y

Message
Computation

M
E
M
O
R
Y

Message
Computation

M
E
M
O
R
Y

Message
Computation

Soft
Inputs

...

K Copies

Fig. 6. Architecture for random LDPC decoder with K iterations of
staggered schedule.

A. Concurrent Decoding Schedule
The original concurrent decoding schedule, illustrated in
Fig. 4 with an example 10 bit nodes and 3 check nodes, shows

that all messages in a round of computation are updated and
passed between the two classes of nodes concurrently. This is
equivalent to S(k) being the set of all check nodes.

In order to compute the marginalized output messages from
each node on the bipartite graph, the update equations given by
(2) and (3) require that all messages, Rmn or Qnm, be available
during the message computation. This is the basis of belief

propagation [9], and leads to a large memory requirement in order
to store all messages in serialized decoder implementation.

B. Staggered Decoding Schedule
An approximation of the update equation is shown in (5). It

omits the rightmost term in (2), Rmn, and leads to significant
reduction of memory requirement for serialized decoder
implementations. The effect of this simplification should be
minimal when the ratio mnR / ∑

∈)('
'

nm
nmR

µ
is small. This is related to

the average edge degree of the bit nodes.

+

≈ ∑

∈)('
')0(

)1(
ln

nm
nm

i

i
nm R

p
pQ

µ
 (5)

The approximation is combined with a new staggered schedule,
which processes only a limited subset of the check nodes. Similar
to the original algorithm, parity check node m computes messages
Rmn, n ∈ ν(m), according to (3). However, each bit node, n, is
associated only with a single message Q’n(k), which is broadcasted
to the subset of active check nodes, S(k), at step k. Each message,
Q’n(0) for n=1, 2, …, N is initialized with the input LLR of the
corresponding bit n, and updated according to (6) at the end of
each step.

() ()
(){ }

∑
∩∈

+−=
nMtSm

nmnn RkQkQ
)('

'
'' 1 (6)

Fig. 5 illustrates an example schedule that processes only one
check node per step, according to the following definition.

() { }MkmkS mod= (7)

An implementation of the staggered schedule only needs to store
one message, Qn(k), for each bit n. This compares favorably with
the concurrent schedule where a list of messages Qmn, m∈µ(n),
need to be stored for each bit node n. For typical LDPC codes
where the number of edges in the graph ranges between 4 to 8
times the number of bits in the code-block, this schedule provides
more than 75% savings in memory requirement.

Each iteration of the staggered LDPC decoding is defined as one
complete cycle through all the sequential parity checks in the
graph. This ensures that the number of messages processed in an
iteration of decoding is the same in both types of schedules. As
such, the decoding arithmetic complexity is similar. Fig. 5 shows
the staggered decoding schedule with only one check node active
per step.

Fig. 6 illustrates the use of one sector of memory and one
constraint check arithmetic unit, per code block processed. A full
throughput, K-iteration LDPC decoder, demultiplexes each input
block of data into one of the K copies of memory and computation
unit pair. This removes the need to move large amounts of data
through memory, at a slight cost of control mechanisms to perform
the multiplex operations.

TABLE 1.

LDPC CODES CONSIDERED FOR MAGNETIC RECORDING APPLICATIONS
Finite Field

Construction
Matrix

Dimension
Column

Split
Factor

PC Matrix
Dimension.

Row Wt.
×

Col Wt.
2D× GF(25) 1023 × 1023 4 1023 × 4092 32×8

2D× GF(24) 255 × 255 16 255 × 4080 16×1

3D× GF(23) 511 × 511 8 511 × 4088 8×1

3021

Fig. 7. Rendition of 1023×4092 parity check matrix used in codes based on
finite fields. Black dots represent non-zero entries.

IV. FINITE FIELD BASED LDPC DECODER
LDPC codes based on finite geometries avoid short cycles of

length 4 in the underlying graph [4], which are known to degrade
the performance of the code [1]. An example 1023×1023 LDPC
matrix was constructed from a 2-dimensional (Euclidean
geometry) Galois Field, GF(25). Consecutive rows in this parity
check matrix are cyclic shifts. In order to reduce its density, each
column in the matrix was further split into four to obtain a
1023×4092 parity check matrix, with the non-zero entries in each
column in the initial matrix rotated amongst the 4 new columns.
This matrix, shown as an image in Fig. 7 with black dots
representing non-zero entries, produces a code that comprises
3070 user bits and 1022 parity bits; a code rate of 3/4.

The number of user bits and code rate are less than typical
values for magnetic recording applications. A list of the
alternative code constructions that may lead to more suitable
(higher) code rates is provided in Table 1. It shows that the
2D×GF(25) construction results in the only feasible parity check
matrix, which does not have a column weight of one.

An implementation of an LDPC decoder using the staggered
decoding schedule with the above code is illustrated in Fig. 9. The
cyclic property of the rows in the 1023×1023 matrix (before
column splitting) is exploited by replacing random access memory
with fast shift registers. Since the 1:4 column splitting ensures that
no more than 1 bit node in each group of 4 consecutive bit nodes is
connected to any parity check node, the running Qn(t) messages are
grouped into clusters of four, forming four parallel shift register
chains. This has the advantage that the circuit can be operated at a
quarter of the frequency while maintaining the same throughput.

Feedback loops in the shift-register chains enable multiple
decoding iterations. Multiplexers provide the appropriate register
contents to the Message Computation Block that evaluates (3).
Signed-magnitude representation is a natural choice for
implementation of the Check-to-Bit computation block because the
lookup table functions are sign-invariant, while the XOR operators
are magnitude invariant. Fig. 8 shows a 4-bit example
implementation of a check-to-bit message computation block,
where the most-significant bits are fed into a tree of XOR
operators, while the lower 3 bits are fed into a tree of adders.

V. SIMULATION RESULTS
The empirical results of comparisons performed between the

concurrent and staggered decoding schedules with |S(t)| = 1 are
presented. Two LDPC codes with parity check matrices based on
random and 2-dimensional GF(25) construction are evaluated. The
experiments are performed with a binary antipodal Gaussian
channel and LLR inputs.

Performance is evaluated through 1, 3, and 5 iterations of
message passing decoding. These iteration counts represent the
expected number of iterations that are realizable in serialized
decoder implementations, with considerations given to logic
density and overall memory requirement.

Delay
Delay

Delay
Delay

Qm,n1[0:2]

.

.

.

... .
.
.

L
U
T

L
U
T

.

.

.
...

Delay
Delay

Delay
Delay

.

.

.

L
U
T

L
U
T

L
U
T

L
U
T

Qm,n2[0:2]

Qm,n31[0:2]

Qm,n32[0:2]

Qm,n32[3]

Qm,n31[3]

Qm,n2[3]
Qm,n1[3]

Qm,n1[0:2]

Qm,n2[0:2]

Qm,n31[0:2]

Qm,n32[0:2]

Qm,n32[3]

Qm,n31[3]

Qm,n2[3]

Qm,n1[3]

L
U
T

L
U
T

Fig. 8. Check-to-bit message computation block for staggered decoding with finite field codes.

3022

...
Q0

Q1

Q2

Q3

+
+

+
+

Q4

Q5
Q6

Q7

Q8

Q9

Q10

Q11

+
+

+
+

QN-4

QN-3

QN-2

QN-1

Check-to-Bit Message Computation Block

Fig. 9. Shift register-based implementation of LDPC code generated from 2D GF(2M) with 1:4 column splitting and a message computation latency of L=3.

(a)

(b)

Fig. 10. Simulation results from random codes (a), and GF codes (b) with concurrent vs. staggered decoding schedule.

BER

BER

SNR [dB]

SNR [dB]

3023

In order to determine the BER for a given signal-noise ratio
(SNR), the simulation model adds Gaussian noise to a maximum
of 30,000 blocks of data. The BER figure is continuously
evaluated over the total number of decoded message bits until it
has converged within 1% of the eventual value. The SNR
definition in (9) represents the user and code bit energies with EB
and EC respectively, and the noise variance with σ2.

ofCodeBitsNum
ofUserBitsNumR

.
.= ; bc ERE ⋅= (8)

⋅=

⋅= 2

0 2
log10log10

σR
E

N
ESNR cb (9)

A. LDPC Codes Generated From Random Matrices
A 512×4608 parity check matrix is obtained by appending 4

random 128x4608 matrices with column weight of 1 and average
row weight of 36. Each block of data comprises 4096 user bits
and 512 parity bits; a code rate of 8/9. Results of performing 1, 3,
and 5 iterations with the concurrent decoding schedule and the
staggered decoding schedule are plotted in Fig. 10a.

It is observed that the concurrent decoding schedule yields an
improvement in error performance with each increase in number
of iterations. The staggered decoding schedule, however, shows
little improvement between 3 to 5 iterations. With 3 iterations and
at BER=10-5, the staggered decoding schedule achieves 0.4dB
improvement over the concurrent decoding schedule. With 5
iterations, it results in less than 0.2dB degradation.

B. LDPC Codes Generated From 2D GF(25)
A 1023×4092 parity check matrix is based on 2D lines in

GF(25), and a 1:4 column splitting as described previously. Each
block of data comprises 3070 user bits and 1022 parity bits; a
code rate of 3/4. Results of performing 1, 3, and 5 iterations with
both decoding schedules are shown in Fig. 10b.

The concurrent decoding schedule yields an improvement in
error performance with each increase in number of iterations,
while the staggered decoding schedule shows little improvement
between 3 to 5 iterations. At BER=10-5, the staggered decoding
schedule achieves 0.3dB improvement with 3 iterations, and has
less than 0.1dB degradation with 5 iterations.

C. Performance Differences
In the concurrent decoding schedule, messages from each bit

node are relayed to the closest neighbors in a single iteration. Fig.
4 shows that the path for a message from bit node 4 to bit node 10
would require 2 iterations (41→A1→11→C2→102). On the other
hand, the staggered decoding schedule has the capacity for
messages to be relayed to more distant nodes; in the example
given in Fig. 5, a path exists from bit node 4 to bit node 10 within
a single iteration (4→A→1→B→1→C→10). The further
reaching schedule is expected to converge faster, thus the better
performance with low number of iterations.

The staggered decoding schedule is an approximation of the
belief propagation algorithm [9], as noted in Section III-B. The
use of a running sum Q’n(k) gathers cycles, with effects that are

increasingly noticeable at higher number of decoding iterations.
Fig. 5 contains a cycle, which starts and ends at check node A
(A→1→B→1→C→1→A). These cycles limit the performance of
the code, as is evident in Fig. 10a and Fig. 10b, which show that
the staggered schedule has no BER performance advantage over the
concurrent decoding schedule if the decoding is repeated for 5
iterations.

VI. CONCLUSION
The implementation of LDPC decoders for two classes of LDPC

codes, based on random matrices and Euclidean geometries in
Galois Fields, have been described. The arithmetic structures are
straightforward, and meet the high throughput requirements of
magnetic recording applications. The proposed staggered decoding
schedule decouples the memory requirement from its dependency
on the number of edges in the graph. It is recognized that the
staggered decoding schedule will not achieve the same results as
LDPC decoding under belief propagation. However, it represents a
heuristic approach that results in significant reduction in
implementation complexity. In consideration that practical power
and area constraints are likely to limit the number of iterations to
three, the staggered decoding schedule performs systematically
better than the concurrent decoding schedule.

Besides magnetic recording applications, the staggered decoding
schedule is also appropriate for forward error correction
applications in wireless, wireline, and optical communication
systems.

VII. REFERENCES
[1] D. J. C. Mackay and R. M. Neal, “Near Shannon limit performance of

low density parity check codes,” IEE Electronics Letters, vol.33, no.6,
pp.457-8, March 1997.

[2] E. Yeo, P. Pakzad, B. Nikolic, and V. Anantharam, "VLSI
architectures for iterative decoders in magnetic recording channels,"
IEEE Trans. Magnetics, vol.37, no.2, pp. 748-55, March 2001.

[3] R.M. Tanner, "A recursive approach to low complexity codes," IEEE
Trans. Inform. Theory, vol.IT-27, no.5, pp.533-47, Sept. 1981.

[4] Y. Kou, S Lin, and M. P.C. Fossorier, "Low density parity check
codes based on finite geometries: a rediscovery", Proc. IEEE ISIT,
Sorrento, Italy, p. 200, Jun 2000.

[5] J. Fan and J. Cioffi, "Constrained coding techniques for soft iterative
decoders," Proc.GLOBECOM'99, Rio de Janeireo, Brazil, pp 723-7,
Dec. 1999.

[6] A. Blanksby and C. J. Howland, “A 220mW 1-Gbit/s 1024-Bit Rate-
1/2 Low Density Parity Check Code Decoder,” Proc IEEE CICC, Las
Vegas, NV, USA, pp. 293-6, May 2001.

[7] G. Al-Rawi; J. Cioffi, and M. Horowitz, “Optimizing the mapping of
low-density parity check codes on parallel decoding architectures,”
Proc. IEEE ITCC, Las Vegas, NV, USA, pp.578-86, Apr 2001.

[8] S. M. Aji and R. J. McEliece, "The generalized distributive law,"
IEEE Trans. Inform. Theory, vol.46, no.2, pp.325-43, March 2000.

[9] J. Pearl, “Probabilistic reasoning in intelligent systems: Networks of
plausible inference,” San Mateo, CA, Morgan Kaufmann, 1988.

3024

