
 

Abstract—Two decoding schedules and the corresponding 
serialized architectures for low-density parity-check (LDPC) 
decoders are presented. They are applied to codes with parity-
check matrices generated either randomly or using geometric 
properties of elements in Galois fields.  Both decoding 
schedules have low computational requirements.  The original 
concurrent decoding schedule has a large storage requirement 
that is dependent on the total number of edges in the 
underlying bipartite graph, while a new, staggered decoding 
schedule which uses an approximation of the belief 
propagation, has a reduced memory requirement that is 
dependent only on the number of bits in the block.  The 
performance of these decoding schedules is evaluated through 
simulations on a magnetic recording channel.   

I. INTRODUCTION 
Sequences of Low Density Parity Check (LDPC) codes have 

been demonstrated to achieve information rates very close to the 
Shannon limit when iteratively decoded [1].  Using the message-
passing algorithm, LDPC decoders require an order of magnitude 
less arithmetic computations than equivalent Turbo decoders [2].  
However, the implementations of decoders for these codes suffer 
from complex interconnect or large memory requirements due to 
the sparse nature of the underlying bipartite graph [2].   

A number of recent theoretical publications [3] [4] presented 
the construction of LDPC codes using finite field geometries.  
These codes result in reduced implementation complexities for 
both encoder and decoder, but the decoder continues to suffer the 
disadvantages caused by the sparseness of the graph. 

This paper presents a new staggered decoding schedule that 
reduces the amount of memory requirement to the size of a code 
block, independent of the number of edges in the graph.  In 
addition, it shows that the large memory requirement can be 
attributed to the feature that messages are updated concurrently 
through each round of decoding, and each edge in the graph 
represents a unique message. 

An LDPC code can be employed in magnetic recording 
channels using the structure shown in Fig. 1, with an LDPC code 
serially concatenated with a partial response channel [5].  All 
systems considered in this paper limit the number of user bits to a 
sector size of 4096 bits.  Targeted throughput rates are above 
1Gbps, in line with current trends in high throughput applications.   

The arithmetic computation and hardware complexity of the 
iterative soft decoding algorithm will be reviewed in Section II.  In 
Section III, a new staggered decoding schedule is proposed and 
compared with the original concurrent decoding schedule.  
Section IV presents an implementation of the staggered decoding 
schedule for codes based on finite geometries.  Simulation results 
are presented for these finite field-based codes and for random 
codes in Section V. 
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Fig. 1. Serial concatenation of LDPC encoder with a partial response 
channel. 

II. SOFT DECODING OF LDPC CODES 

A. Message Passing Algorithm 
For each received bit, xi for i=1, 2, …, N, in an N-bit block, an 

LDPC decoder accepts as input, the log-likelihood ratio (LLR) of 
probability of possible values for xi, as defined in (1).  LDPC codes 
are often represented by bipartite graphs made up of two families of 
nodes, bit nodes and check nodes.  Bit nodes represent the 
transmitted bits in the code.  Each bit node is connected to a 
number of check nodes through an unstructured array of edges.  
Each check node represents a parity check constraint on the set of 
adjacent bit nodes.   
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LDPC decoders implement the message passing algorithm, 
which specifies the computation and communication of messages 
between bit nodes and check nodes as defined by the edges in the 
graph.  An iteration of LDPC decoding consists of a round of 
message passing from each bit node to all adjacent check nodes, 
followed by another round of message passing from each check 
node to all adjacent bit nodes.  Optimum decoding performance is 
achieved through repeated iterations of message passing along 
edges in the graph. 

Let H be the N×M parity check matrix of an LDPC code 
comprising N bit nodes and M check nodes.  ν(m) = {n: Hm,n = 1} 
is the set of bits that are connected to check m.  µ(n) = {m: Hm,n = 
1} is the set of checks that are connected to bit n.  Qnm and Rmn 
refer to the messages that are passed between bit n and check m, as 
defined according to (2) and (3) respectively. 

Message from bit n to check m: 
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Message from check m to bit n: 
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Fig. 2.  Bit-to-Check message (Qnm) computation. 
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Fig. 3.  Serialized and fully pipelined implementation requires two memory 
buffers per stage, alternating between read/write. 
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The primary objective of an LDPC decoder is to perform the above 
message computations and to ensure the proper transportation of messages 

between the two classes of nodes.   
Fig. 2 illustrates an example functional block that uses a tree of 

adders to evaluate (2).  The computational complexity required for 
evaluation of either bit-to-check or check-to-bit messages is low, 
compared to existing types of decoders such as the Viterbi 
decoder or Turbo decoders [2].  However, the irregular structure 
of the underlying bipartite graph leads to interconnect 
complications with parallel implementation architectures and 
excessive memory requirement in alternative serial 
implementation architectures. 

B. Parallel Implementation Architecture 
The algorithmic description of the message passing algorithm 

suggests an inherently parallel organization because there is no 
dependency between computation of either Qnm for n=1, 2, …, N 
or Rnm for m=1, 2, …, M.  A parallel decoder architecture directly 
maps the nodes in the bipartite graph onto message computation 
units and the edges of the graph onto a network of interconnect.  A 
rate-½, 1024-bit LDPC decoder [6] implemented in 0.16µm 
technology occupies an area of 7mm×7mm, where logic density is 
reduced to 50% to accommodate the complexity of the 
interconnect fabric.  This approach leads to higher throughput and 
lower power dissipation because of the inherent parallelism.  It is 
however, not scalable to codes with larger block sizes.  A silicon 
implementation of a 4096-bit decoder will have 4 times more 
interconnect wires that are also prohibitively long. 

C. Serial Implementation Architecture 
Another approach is to serialize and distribute an inherently 

parallel algorithm amongst a number of processing units [2] [7].  
The hardware complexity of the functional units of such a decoder 
will be significantly lowered, but the implementation still requires a 
substantial amount of memory to avoid complex interconnect and a 
large number of algorithmic units.  The lack of spatial locality 
between any subset of bit nodes connected to the same check node 
(and vice versa) makes it impossible to update the messages for the 
next round of decoding until a majority of the messages in a 
particular direction are received.  Therefore, a majority of the Qnm 
and Rmn messages need to be stored in a memory whose size is 
dependent on the total number of edges in the particular code 
design.  A serialized rate 8/9 4608-bit LDPC decoder described in 
[2] would have to perform memory read and write operations for 
37,000 messages in each iteration of decoding. 

In addition, serialized implementations are slower and will 
require hardware pipelining (through segmenting the check-to-bit 
and bit-to-check stages) in order to sustain high throughput rates.  
Full utilization of all pipelined stages is only achievable if each 
section of the message computation is operating on independent 
blocks of data.  This requires two memory buffers per stage, 
alternating between read/write, as shown in Fig. 3.  The amount of 
memory required for each iteration is therefore four times the total 
number of edges in the graph, and grows linearly with the number 
of iterations.  Ad-hoc rescheduling [7] of the serialized 
computations leads to increased efficiency of the computational 
units but remains largely limited by the communication between 
memory and functional units. 

III. LDPC DECODING SCHEDULES 
This section addresses the memory issue common to all 

serialized architectures by reviewing the original concurrent 
schedule of the LDPC decoding algorithm, and proposes an 
algorithm with an alternative schedule, with modifications to the 
scheduling theorem discussed in [8].   

In particular, the notation M and S(k) are used to denote the set 
of check nodes in the code, and the subset of check nodes that are 
processed at time step k, respectively. 
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Fig. 4.  Concurrent decoding schedule of the message passing algorithm; 
circles represent bit nodes; boxes represent check nodes. 
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Fig. 5.  Staggered decoding schedule of the modified message passing 
algorithm with |S(t)|=1. 
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Fig. 6.  Architecture for random LDPC decoder with K iterations of 
staggered schedule. 

A. Concurrent Decoding Schedule 
The original concurrent decoding schedule, illustrated in  
Fig. 4 with an example 10 bit nodes and 3 check nodes, shows 

that all messages in a round of computation are updated and 
passed between the two classes of nodes concurrently.   This is 
equivalent to S(k) being the set of all check nodes. 

In order to compute the marginalized output messages from 
each node on the bipartite graph, the update equations given by 
(2) and (3) require that all messages, Rmn or Qnm, be available 
during the message computation.  This is the basis of belief 

propagation [9], and leads to a large memory requirement in order 
to store all messages in serialized decoder implementation. 

B. Staggered Decoding Schedule  
An approximation of the update equation is shown in (5).  It 

omits the rightmost term in (2), Rmn, and leads to significant 
reduction of memory requirement for serialized decoder 
implementations.  The effect of this simplification should be 
minimal when the ratio mnR / ∑

∈ )('
'

nm
nmR

µ
is small.  This is related to 

the average edge degree of the bit nodes.   
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The approximation is combined with a new staggered schedule, 
which processes only a limited subset of the check nodes.  Similar 
to the original algorithm, parity check node m computes messages 
Rmn, n ∈ ν(m), according to (3).  However, each bit node, n, is 
associated only with a single message Q’n(k), which is broadcasted 
to the subset of active check nodes, S(k), at step k.  Each message, 
Q’n(0) for n=1, 2, …, N is initialized with the input LLR of the 
corresponding bit n, and updated according to (6) at the end of 
each step. 
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Fig. 5 illustrates an example schedule that processes only one 
check node per step, according to the following definition. 

( ) { }MkmkS mod=  (7) 

An implementation of the staggered schedule only needs to store 
one message, Qn(k), for each bit n.  This compares favorably with 
the concurrent schedule where a list of messages Qmn, m∈µ(n), 
need to be stored for each bit node n.  For typical LDPC codes 
where the number of edges in the graph ranges between 4 to 8 
times the number of bits in the code-block, this schedule provides 
more than 75% savings in memory requirement. 

Each iteration of the staggered LDPC decoding is defined as one 
complete cycle through all the sequential parity checks in the 
graph.  This ensures that the number of messages processed in an 
iteration of decoding is the same in both types of schedules.  As 
such, the decoding arithmetic complexity is similar.  Fig. 5 shows 
the staggered decoding schedule with only one check node active 
per step.   

Fig. 6 illustrates the use of one sector of memory and one 
constraint check arithmetic unit, per code block processed.  A full 
throughput, K-iteration LDPC decoder, demultiplexes each input 
block of data into one of the K copies of memory and computation 
unit pair.  This removes the need to move large amounts of data 
through memory, at a slight cost of control mechanisms to perform 
the multiplex operations. 

 
TABLE 1. 

LDPC CODES CONSIDERED FOR MAGNETIC RECORDING APPLICATIONS 
Finite Field 

Construction 
Matrix 

Dimension 
Column 

Split 
Factor 

PC Matrix 
Dimension. 

Row Wt. 
×       

Col Wt. 
2D× GF(25) 1023 × 1023 4 1023 × 4092 32×8 

2D× GF(24) 255 × 255 16 255 × 4080 16×1 

3D× GF(23) 511 × 511 8 511 × 4088 8×1 
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Fig. 7. Rendition of 1023×4092 parity check matrix used in codes based on 
finite fields.  Black dots represent non-zero entries. 

IV. FINITE FIELD BASED LDPC DECODER  
LDPC codes based on finite geometries avoid short cycles of 

length 4 in the underlying graph [4], which are known to degrade 
the performance of the code [1].  An example 1023×1023 LDPC 
matrix was constructed from a 2-dimensional (Euclidean 
geometry) Galois Field, GF(25).  Consecutive rows in this parity 
check matrix are cyclic shifts.  In order to reduce its density, each 
column in the matrix was further split into four to obtain a 
1023×4092 parity check matrix, with the non-zero entries in each 
column in the initial matrix rotated amongst the 4 new columns.  
This matrix, shown as an image in Fig. 7 with black dots 
representing non-zero entries, produces a code that comprises 
3070 user bits and 1022 parity bits; a code rate of 3/4.  

The number of user bits and code rate are less than typical 
values for magnetic recording applications.  A list of the 
alternative code constructions that may lead to more suitable 
(higher) code rates is provided in Table 1.  It shows that the 
2D×GF(25) construction results in the only feasible parity check 
matrix, which does not have a column weight of one. 

An implementation of an LDPC decoder using the staggered 
decoding schedule with the above code is illustrated in Fig. 9.  The 
cyclic property of the rows in the 1023×1023 matrix (before 
column splitting) is exploited by replacing random access memory 
with fast shift registers.  Since the 1:4 column splitting ensures that 
no more than 1 bit node in each group of 4 consecutive bit nodes is 
connected to any parity check node, the running Qn(t) messages are 
grouped into clusters of four, forming four parallel shift register 
chains.  This has the advantage that the circuit can be operated at a 
quarter of the frequency while maintaining the same throughput.   

Feedback loops in the shift-register chains enable multiple 
decoding iterations. Multiplexers provide the appropriate register 
contents to the Message Computation Block that evaluates (3).  
Signed-magnitude representation is a natural choice for 
implementation of the Check-to-Bit computation block because the 
lookup table functions are sign-invariant, while the XOR operators 
are magnitude invariant.  Fig. 8 shows a 4-bit example 
implementation of a check-to-bit message computation block, 
where the most-significant bits are fed into a tree of XOR 
operators, while the lower 3 bits are fed into a tree of adders. 

V. SIMULATION RESULTS 
The empirical results of comparisons performed between the 

concurrent and staggered decoding schedules with |S(t)| = 1 are 
presented.  Two LDPC codes with parity check matrices based on 
random and 2-dimensional GF(25) construction are evaluated.  The 
experiments are performed with a binary antipodal Gaussian 
channel and LLR inputs. 

Performance is evaluated through 1, 3, and 5 iterations of 
message passing decoding.  These iteration counts represent the 
expected number of iterations that are realizable in serialized 
decoder implementations, with considerations given to logic 
density and overall memory requirement. 

Delay
Delay

Delay
Delay

Qm,n1[0:2]

.

.

.

... .
.
.

L
U
T

L
U
T

.

.

.
...

Delay
Delay

Delay
Delay

.

.

.

L
U
T

L
U
T

L
U
T

L
U
T

Qm,n2[0:2]

Qm,n31[0:2]

Qm,n32[0:2]

Qm,n32[3]

Qm,n31[3]

Qm,n2[3]
Qm,n1[3]

Qm,n1[0:2]

Qm,n2[0:2]

Qm,n31[0:2]

Qm,n32[0:2]

Qm,n32[3]

Qm,n31[3]

Qm,n2[3]

Qm,n1[3]

L
U
T

L
U
T

 
Fig. 8. Check-to-bit message computation block for staggered decoding with finite field codes.
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Fig. 9.  Shift register-based implementation of LDPC code generated from 2D GF(2M) with 1:4 column splitting and a message computation latency of L=3. 
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Fig. 10.  Simulation results from random codes (a), and GF codes (b) with concurrent vs. staggered decoding schedule. 
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In order to determine the BER for a given signal-noise ratio 
(SNR), the simulation model adds Gaussian noise to a maximum 
of 30,000 blocks of data.  The BER figure is continuously 
evaluated over the total number of decoded message bits until it 
has converged within 1% of the eventual value. The SNR 
definition in (9) represents the user and code bit energies with EB 
and EC respectively, and the noise variance with σ2. 
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A. LDPC Codes Generated From Random Matrices 
A 512×4608 parity check matrix is obtained by appending 4 

random 128x4608 matrices with column weight of 1 and average 
row weight of 36.  Each block of data comprises 4096 user bits 
and 512 parity bits; a code rate of 8/9.  Results of performing 1, 3, 
and 5 iterations with the concurrent decoding schedule and the 
staggered decoding schedule are plotted in Fig. 10a.  

It is observed that the concurrent decoding schedule yields an 
improvement in error performance with each increase in number 
of iterations.  The staggered decoding schedule, however, shows 
little improvement between 3 to 5 iterations.  With 3 iterations and 
at BER=10-5, the staggered decoding schedule achieves 0.4dB 
improvement over the concurrent decoding schedule.  With 5 
iterations, it results in less than 0.2dB degradation.  

B. LDPC Codes Generated From 2D GF(25) 
A 1023×4092 parity check matrix is based on 2D lines in 

GF(25), and a 1:4 column splitting as described previously.  Each 
block of data comprises 3070 user bits and 1022 parity bits; a 
code rate of 3/4.  Results of performing 1, 3, and 5 iterations with 
both decoding schedules are shown in Fig. 10b.   

The concurrent decoding schedule yields an improvement in 
error performance with each increase in number of iterations, 
while the staggered decoding schedule shows little improvement 
between 3 to 5 iterations.  At BER=10-5, the staggered decoding 
schedule achieves 0.3dB improvement with 3 iterations, and has 
less than 0.1dB degradation with 5 iterations. 

C. Performance Differences 
In the concurrent decoding schedule, messages from each bit 

node are relayed to the closest neighbors in a single iteration.  Fig. 
4 shows that the path for a message from bit node 4 to bit node 10 
would require 2 iterations (41→A1→11→C2→102). On the other 
hand, the staggered decoding schedule has the capacity for 
messages to be relayed to more distant nodes; in the example 
given in Fig. 5, a path exists from bit node 4 to bit node 10 within 
a single iteration (4→A→1→B→1→C→10).  The further 
reaching schedule is expected to converge faster, thus the better 
performance with low number of iterations.   

The staggered decoding schedule is an approximation of the 
belief propagation algorithm [9], as noted in Section III-B.  The 
use of a running sum Q’n(k) gathers cycles, with effects that are 

increasingly noticeable at higher number of decoding iterations.    
Fig. 5 contains a cycle, which starts and ends at check node A 
(A→1→B→1→C→1→A).  These cycles limit the performance of 
the code, as is evident in Fig. 10a and  Fig. 10b, which show that 
the staggered schedule has no BER performance advantage over the 
concurrent decoding schedule if the decoding is repeated for 5 
iterations. 

VI. CONCLUSION 
The implementation of LDPC decoders for two classes of LDPC 

codes, based on random matrices and Euclidean geometries in 
Galois Fields, have been described.  The arithmetic structures are 
straightforward, and meet the high throughput requirements of 
magnetic recording applications.  The proposed staggered decoding 
schedule decouples the memory requirement from its dependency 
on the number of edges in the graph.   It is recognized that the 
staggered decoding schedule will not achieve the same results as 
LDPC decoding under belief propagation.  However, it represents a 
heuristic approach that results in significant reduction in 
implementation complexity.  In consideration that practical power 
and area constraints are likely to limit the number of iterations to 
three, the staggered decoding schedule performs systematically 
better than the concurrent decoding schedule. 

Besides magnetic recording applications, the staggered decoding 
schedule is also appropriate for forward error correction 
applications in wireless, wireline, and optical communication 
systems. 
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