An Automated Design Flow for Low-Power, High-Throughput,
Dedicated Signal Processing Systems

W. Rhett Davis, Ning Zhang, Kevin Camera, Dejan Markovié, Tina Smilkstein,
Nathan Chan, M. Josie Ammer, Engling Yeo, Borivoje Nikolié¢, Robert W. Brodersen
Berkeley Wireless Research Center, Dept. of EECS, University of California, Berkeley

Abstract

A system-level perspective of a hierarchical automated
design flow for low-energy direct-mapped signal
processing integrated circuits is presented. Capturing
design decisions in a dataflow graph allows push-button
automation of layout and performance estimation. A
detailed example of the design process for a DSSS TDMA
baseband receiver is presented.

1 Introduction

The architectures commonly used to implement signal-
processing algorithms in hardware differ most significantly
in terms efficiency and flexibility. General purpose
processors are the least energy and area efficient, while
slightly more specialized architectures, such as
programmable digital signal processors, can often
accomplish the same task with an order of magnitude less
energy. The most efficient architectures in terms of power
and area can be obtained by directly mapping the
algorithms into hardware. Computational energy and area
efficiencies that can be achieved with this approach are
100-1000 MOPS/mW and 100-1000 MOPS/mm? . These
efficiencies can be 2 to 3 orders of magnitude higher than
the efficiency achieved by software processors [1].

A direct-mapped architecture can be obtained by mapping
the operations of a dataflow graph directly into functional
units and hard-wiring the connections between them. In
this way, the maximum parallelism can be obtained,
allowing the minimum clock rate and supply voltage to be
used, resulting in reduced energy per operation [2]. The
ability to exploit a high level of parallelism allows
computational rates that far exceed uniprocessors without
requiring high clock rates. This efficiency makes direct-
mapping attractive for many digital signal processing
(DSP) applications. DSP algorithms can be extremely
complex with very high processing rates but are highly
parallel. Consider the performance of direct-mapped
architectures compared to FPGA and programmable DSP
implementations of the FFT and Viterbi decoder
algorithms, two important parts of the IEEE 802.11a
wireless networking standard. Table 1 shows the
comparison between vendor-published benchmark data for
the industry-leading high-performance and low-power
programmable DSP’s and FPGA and post-layout
simulations of direct-mapped hardware [3]. The results
were calculated for constant throughput rates of 50 Ms/s for
the FFT and 100 Mbps for the Viterbi decoder and have
been scaled to a common technology (0.18 pm) to support
a meaningful architectural comparison. The table shows
roughly a 3 orders of magnitude energy penalty for the
high-performance programmable approach and more than 2
orders of magnitude for the low-power approaches.

In spite of the enommous advantage of direct-mapped
architectures, they are not commonly used unless the
application cannot be accomplished by any other means.

0-7803-7147-X/01/$10.00©2001 IEEE

Table 1: Architectural Comparison of Energy
Efficiency for Common Methods of Algorithm
implementation, Scaled to a 0.18 um Technology

64-point FFT 16-State Viterbi
Energy per Decoder
Transform (pJ) Energy per
Decoded bit (p])
Direct-Mapped Hardware 1.78 0.022
FPGA 683 5.5
Low-Power DSP 436 19.6
High-Performance DSP 1700 108

Direct-mapped architectures are seen as unattractive
primarily because the tremendous design effort involved is
not economically viable given the lack of flexibility of the
final hardware. We have developed a solution for
achieving the benefits of direct-mapping with drastically
reduced design effort. A description of the physical design
and software aspects of this flow has already been
presented [4]. This paper presents a system-level
perspective of our flow. The paper begins with a survey of
existing methodologies in the context of how they can help.
Then we present the user perspective that we want for our
tool and a design example of a TDMA baseband receiver.

2 Current Methods
for Algorithm Implementation

A standard design flow for hardware implementation of
algorithms has four phases which are typically handled by
four different designers. Algorithm designers conceive the
chip and deliver a specification to system designers, often
in the form of a floating-point simulation. This simulation
can be used to generate system characterizations such as a
bit-error-rate vs. signal-to-noise ratio (BER vs. SNR) curve
for a communications chip. The system or architecture
designers begin to add structure to this simulation,
partitioning the design into functional units. They must
also convert the data types from floating to fixed-point and
verify that finite word-length effects and pipeline depth do
not compromise the algorithm. The hardware (or front-
end) designers map the simulation to register-transfer level
(RTL) code (usually VHDL or Verilog) and verify that the
code matches the specified functionality and pipeline depth.
Physical designers take standard-cell netlists synthesized
from the RTL code and use place-and-route tools to
generate layout mask patterns for fabrication while
verifying that all timing constraints are met, commonly
referred to as reaching timing closure. This flow requires 3
translations of the design, expressing the functionality as
gradually less sequential and more structural with
requirements for re-verification at each stage.
Opportunities for algorithmic modifications to reduce
power and area are often lost due to the separation of
engineering decisions. Performance bottlenecks discovered
during the physical design phase are unknown to the
algorithm designer. Aggressive system requirements may
require new and unusual architectures, which can stall the
flow, leading to uncontrolied looping back to earlier stages

of the design process and extending the design time
indefinitely.

The main problem with this flow is that it attempts to avoid
feeding back information to algorithm designers. The
technique of reducing power through algorithmic
transformations to permit voltage reduction [2] is well
understood. However, today’s CAD environments do not
support this kind of design. The flow we need would allow
algorithm designers to explore the design space as
thoroughly as possible by creating mask layout and
obtaining performance estimates. This exploration should
allow refinement of fixed-point types, be constrained by
libraries of efficient hardware blocks and be carried out by
an automated design flow. This encourages feedback of
physical design issues to algorithm designers by allowing
them to maintain ownership of the design data at all times.
It also would encourage interaction with system, hardware
and physical designers by reducing the design process to a
single phase.

Recent efforts have identified the gaps between algorithm,
system, hardware and physical design but have yet to
encompass the complete problem. Some attempt to close
the gap between algorithm and hardware design by basing
synthesis tools on C/C++ descriptions [5]. However, these
solutions encourage a sequential description of the
algorithm and make it difficult to express the parallelism
that would allow lowering the supply voltage. Commercial
tools from design automation companies offer RTL code
generation solutions from block diagrams. However, these
tools are targeted mostly for hardware designers and
obscure the information about the algorithm and
architecture through the code generation process. A design
environment is needed which offers fast, automatic
generation of physical information from an algorithm-
exploration environment.

3 Chip-in-a-Day Design Flow

The goal of our flow is to make it possible to get mask
layout and performance estimates for an algorithm in less
than one day. The generation of the layout is automated
from a dataflow graph that defines a direct-mapped
architecture. In this section, we define the desired
perspective for users of our flow.

3.1 Essential Design Decisions
Commercial tools give designers many degrees of freedom,
~but it is this freedom that makes them hard to use.
Designers are often forced to make decisions that are
concerned more with running the tools than they are with
optimizing their algorithms.. For example, it would waste
algorithm designers’ time to force them to choose how
many passes a router attempts before failing. In order to
reduce design time, we limit the types of decisions that
designers are expected to make to the following: function,
signal, circuit, and floorplan decisions. ’

Function Decisions specify the basic input-output behavior
of a system. Because the interactions between units of
behavior are often complex, these decisions are typically
captured by tweaking and re-simulating the dataflow graph.
" Our flow considers the behavior of the dataflow graph with
a certain simulator to be the final specification of behavior
for the-system.

476

Signal Decisions specifying the types for physical signals
are captured as edge properties in the dataflow graph.
Typically a behavior is specified with floating point types.
Designers then seek to implement the same behavior with
as few bits as possible. To aid this exploration, the
designer is allowed to specify a signal as any 2’s-
complement or sign-magnitude fixed-point type. To
support mixed-signal design, a floating point type is
considered an analog signal.

The flow recognizes certain primitives as re-ordering of
wires to save power and area. For example, disabling a
block in the simulation corresponds to a gated clock in the
physical design. Simpler optimizations include
multiplication by a constant power of 2 (a hard-wired shift)
and comparison to zero (the sign bit).

Circuit Decisions specify the transistors used to implement
each block and are captured as node properties. Detailed
architectural control may be necessary to optimize a
massively parallel critical path. Through these decisions,
designers should be able to explore the energy/delay/area
trade-offs of different circuit topologies such ripple-carry
vs. carry-lookahead adders or SRAM’s vs. flip-flops as
storage elements. Other opportunities for exploration
include the use of 4-to-2 compressors to speed up addition
of many numbers or the substitution of CORDIC blocks for
multipliers. Designers are also allowed to specify the
supply voltage that they want for each block.

Floorplan Decisions specify the designer’s vision for the
chip’s physical structure. Our flow limits these decisions to
the drawing of standard-cell rows for placement and the
manual placement of certain instances and boundary pins.
Capturing these decisions in a dataflow graph is difficult,
and so a companion floorplan view is created with
commercial physical design tools.

Based on these decisions, the designer may request
performance estimates from the automated flow. The
method used for estimation should depend on how many
decisions have been made and how much time and disk-
space the designer is willing to spend. Once function and
signal decisions have been made, quick block-level
estimates can be made, or the designer can request that an
RTL estimation tool be launched. Once circuit decisions
have been made, gate-, switch-, and transistor-level
analyses are possible. After floorplan decisions have been
captured, mask-layout can be generated, and parasitic wire
capacitances can improve these estimates.

3.2 “Push-Button” Automation

Once the essential design decisions have been made, we
want to deliver layout and estimates with “push-button”
ease. This means that we want to provide automation
similar to what is obtained with the programming tool
MAKE. Our flow is described as a dependency graph, and

_tools are executed incrementally to update the desired

targets. This means that no decisions can be made after the

_ button is pushed.

“Push-button” automation further implies that there is no
translation of design data. A well-automated flow does not
force a designer to express a decision more than once.
Doing so constitutes a translation of one decision into
another, which is essentially what we are trying to avoid.

For example, an early version of our flow created a pad for
every top-level port in the dataflow graph. However, in
order to view a signal inside a dataflow graph, it was
necessary to create an output port for the signal. As a
result, designers would maintain two copies of the dataflow
graph, one for simulation and one for generating layout
with the flow. This required continual translation between
the graphs, which slowed the design process considerably.
Today, the flow allows the tagging of certain signals and
blocks as “simulation-only” so that no translation is
required.

3.3 Dataflow Graph Description

We would ideally like our dataflow graph to be used for
algorithm exploration as well as for mapping to hardware.
We would like to support the generation of BER vs. SNR
characteristics, for example, which often requires
simulation for many millions of cycles. In order to support
fast simulation, our dataflow graph description needs to
model hardware as abstractly as possible.

Conversely, if we want to eliminate translation of design
decisions from our flow, then we must be able to verify the
final hardware using the dataflow graph. The verification
process must be defined in a way that is easily and robustly
automated, since manual verification is prone to error. The
verification requirement drives us towards less abstraction
of the hardware.

To balance the needs for simulation speed and verifiability,
we chose a discrete time computation model {6] for our
dataflow graph simulator. We define our verification
strategy as shown in Figure 1. The discrete cycle-
boundaries model the rising edge of the clock. The
behavior of a discrete-time system can be described with a
series state-updates and output-updates. The state of the
system models the outputs of rising-edge triggered flip-
flops. The outputs of the system model the outputs of a
network of combinational logic that follows the flip-flops,
which settle to a final value after some circuit delay and
glitching. Thus, the discrete states must match over the
entire cycle, and the outputs must match at the instant
before the cycle-boundary. This verification strategy
requires that the dataflow-graph be cycle-accurate and bit-
true with respect to the hardware.

Cycle | 1 | 2 | 3 |

Clock /" _/ \ ./ ./

(Dataflow Graph)State | X1 | X2 | x3 |

(Hardware) State X X1_X_X2 X _X3 X
(Dataflow Graph) Output

(Hardware) Output
Figure 1: Dataflow-graph-to-hardware verification

A discrete-time dataflow graph uses arithmetic primitives
such as add and multiply and state-primitives such as unit-
delay blocks. Using such primitives, it is easy to model
datapath logic. However, datapath logic generaily requires
a certain amount of control, which is difficult to model with
dataflow primitives. Therefore, our dataflow graph needs a
finite state-machine primitive that can be verified with the
same strategy used for the datapath logic. We use an
extended finite state machine based on the StateCharts

language [7], which allows referencing and assigning
variables inside the states. Input and output variables in the
state-machine are input and output ports in the dataflow
graph. Internal variables are part of the state.

Lastly, because designs can become huge and complex, we
need the dataflow graphs to be hierarchical. There are two
main aspects of hierarchy that we want to capture: the
grouping and referencing aspects. The grouping aspect is
simply that certain parts of the dataflow graph should be
grouped together so that the entire design need not be
viewed at once. The referencing aspect is that a group can
be referenced multiple times. This means that changes to
the group need not be replicated to all of the references.

There are 2 number of dataflow graph editors that support
the discrete-time model, and we chose MathWorks’
Simulink™ [8] because of its familiarity to al&orithm
designers, due to its close integration with Matlab'™. It is
important to make it as easy as possible for algorithm
developers to approach the design environment in order to
ease the use of hardware dependent optimization early in
the design process. Figure 2 illustrates a cycle-accurate
dataflow graph example of a time-multiplexed FIR filter.
Figure 2(a) shows a multiply-accumulate block being fed

@—fo
TAP_COEF

=¥ A Q
WEN
addr SRAM
A
la}] wen CGO—s z—(D
X Y
reset_acc RESET
CONTROL MAC
@
o—
t——b] + 1
A @ Xa z
B wocr [LB Z
s12 ADD REG
s18
L
RESET B
MuUXx
CONST
s18
®
init
entry: addr=0;
wen=1;

[addr==15]

incr
during: addr++;
reset_acc=0;

©
Figure 2: (a) Dataflow graphs of a time-multiplexed FIR
Filter with (b) a detail of the multiply-accumulate block
and (c) detail of the control logic finite state-machine.

by an input data stream, tap coefficients from an SRAM
and some control logic. Figure 2(b) shows a detail of the
multiply-accumulate designed with datapath primitives.
Figure 2(c)shows the address generator and MAC reset
control state-machine. This chart has an initial loop to load
tap coefficients, with successive loops reading the
coefficients and resetting the accumulator.

3.4 Translating Structure and Semantics

The structure of the dataflow graph hierarchy is mapped
into hardware automatically. The leafcells of this structure
are called “macros”. A macro is a unit of hierarchy with a
“generator” specified, which determines how the semantics
of the underlying system are to be used. For example,
control blocks are specified as state-machine macros,
causing them to be translated into synthesizable VHDL by
a tool we developed. For datapath blocks, our flow
provides a fundamental library of datapath primitives
which are mapped directly to RTL code for synthesis.
However, this library does not permit the kind of datapath
architecture exploration that we want to provide.
Therefore, we use a datapath generator [9] tool for this kind
of exploration. This generator uses primitives that are very
similar to dataflow graph primitives, and ultimately we
want to translate synthesizable code from the dataflow
graph automatically, as we do with state-machines, At the
present, this translation is done manually.

4 Design Example

This section describes the experience of one designer who
used our flow to build a low-power, spread-spectrum
TDMA receiver. The designer spent one year learning
about communication theory while working with others to
define a wireless system for sensor networks [10]. She had
assembled floating-point simulations in a matrix math
package for the digital baseband portion of the system and
then decided to use our flow to implement her chip.

4.1 System Overview

The chip was intended for a TDMA system with a length
31 direct-sequence code to spread the spectrum and provide
resistance to narrow-band fading. The chip-rate of 25 MHz
gives a symbol rate of 806 kHz, which translates to 1.6
Mb/s data rate with QPSK modulation. In-phase and
quadrature (I and Q) samples from an A/D Converter are
fed into the chip as 7-bit streams at 200 MHz,
corresponding to 8 samples per chip, each offset by one-
eighth of a chip. The job of the baseband receiver is to
provide coherent timing recovery for the input stream.

The task for this chip is to lock frequency, phase, and
timing. Frequency offsets between the transmitter and

receiver RF oscillators appear as a gradual rotation of the
QPSK constellation. When the frequency is locked, a
phase offset of the constellation is caused by phase-noise in
the oscillators as well as the time-varying channel. Timing
offsets appear as a gradual change to which of the 8 input
streams is the best, caused by offsets in the frequency of the
transmitter and receiver baseband clocks as well as time-~
varying delay through the channel. Each of these quantities
(frequency, phase, and timing) must be estimated,
corrected, and tracked for the system to work.

A block-diagram of the system is shown in Figure 3. The
purpose of each block can be understood in terms of the
role it fulfills in the locking sequence. Re-synchronization
is performed at the beginning of every packet, which is at
least 512 symbols long.

o The coarse timing acquisition block correlates three
of the eight streams with the known spreading code
until one of them passes a threshold. The control
block then selects this stream through a bank of
multiplexers. This estimates timing to within 3/8 of
a chip and needs at least two symbols (62 chips) to
complete.

* The frequency estimation and fine-timing block uses
the chosen stream and its two nearest neighbors to
estimate the frequency and further estimate the
timing to the best of the three streams. This block
requires 15 symbols to complete.

e The rotate-and-correlate blocks multiply the three
input streams by a rotating phasor using the
frequency estimate from the previous block,
correcting the frequency mismatch. This block also
correlates each stream with the spreading code and
monitors them to track timing by changing the
current stream if necessary.

e The best stream is passed to the PLL which takes at
most 19 symbols to estimate the phase, at which
point it corrects the phase and starts to track
frequency and phase offsets.

The entire system was drawn as a dataflow graph and
implemented with dedicated logic. The two largest blocks
in this system are the coarse timing block, which is active
less than 1% of the time, and frequency estimation block,
which is active 3% of the time. These blocks are therefore
disabled (clocks are gated) by the controller when not in
use to save power.

4.2 Design Effort

The first 8 months of the design process were spent
implementing data-path macros. This involved design of
13 datapath generator macros described in 2000 lines of
code. The system designer created all macros by herself

B 8 ! 3
—* MUX [
Input 13
A
1 Hard
Coarse ! Frequency Rotate 1 ‘
Timing Estimation > G and PLL ———> Symbols
isiti i late
Acagisition and ane orre cof
Timing — Symbols

L Control

]

Figure 3: Block Diagram of the Baseband Receiver

except for the primary Coarse Timing and Acquisition
macro (500 lines), which was designed by another team
member in 3 months. Most of this time was spent
developing dataflow graphs along with datapath generator
code and co-simulating to ensure equivalency. One state-
machine with 20 states was designed at the same time to
control the entire system.

After the macros were complete, another 3 months were
spent incorporating a series of changes:

e RF Front-end was changed, necessitating early-
late correlators and tripling the size of the roate-
and-correlate blocks as already shown in Figure
3. No new library blocks were designed.

e Interface spec to protocol chip and RF Front end
were changed: 2 new datapath macros (100 lines
of code), 1 new state-machine (4 states)

e Spreading codes were made programmable: 1
new datapath macro (60 lines of code), 1 new
state-machine (8 states)

¢ Transmitter was added to the same design: 1 new
datapath macro (300 lines of code), 1 new state-
machine (8 states)

e Additional testing capability was added: 1 new
datapath macro (80 lines of code)

These changes were incorporated by modifying the
dataflow graph only. No modification to existing library
elements was required. This means that design was done at
a level higher than RTL. The designer said that the
dataflow graph editor provided much more sophistication
for analyzing the output of the system than an RTL
simulator. Outputs could be easily interpreted as rotating
phasors, complex vectors, or power spectra instead of
simply bit vectors, accelerating her analysis of the system.

Routing passes and performance characterization for the
macros began after 2 months into the project and were
repeated periodically until the design was completed.
These passes were initially done to determine critical-path
delays, power consumption, and routed area of the design.
As months progressed and the top-level floorplan became
more definite, they were used to help determine the
routability of the design and were repeated whenever a
block changed size significantly. The designer estimates
that each part of the design was re-routed between 5 and 15
times over the life of the project.

After the functionality of the dataflow graph was finalized,
one month was spent running functional simulations to
verify that the flow was working properly. Switch-level
simulation was used because transistor netlists for the entire
system were provided as a by-product of the flow. Several
bugs in the flow were fixed, but no modification to the
dataflow graph design data was required. This means that
complete system simulations below the dataflow-graph
level were a part of the flow development process, not a
part of the chip design process.

Once the functionality of the hardware was verified, one
month was spent inserting the clock tree, routing, and
physically verifying the blocks. This process was delayed
because the clock-tree insertion portion of the flow was still
being developed. For each pass of the flow, the execution
time and disk space required are given in the Table 2,
shown for a 400 MHz UltraSPARC-II system with 2MB of

479

L2 cache, 4GB of RAM, 8GB of swap, and a NetApp F630
filer available over Gigabit Ethemet.

Table 2: Automated flow execution statistics

Execution Time Disk Space
Synthesis 1 hour 11 MB
Routing 13 hours 330 MB
DRC & LVS 3 hours 480 MB
Clock Tree Verif. { 13 hours 1.2GB
Other 11 minutes 350 MB
Total 30 hours 2.4 GB

Total design time was 13 months. However, given these
execution times, we see that the “chip-in-a-day” goal is not
far from being possible. If the flow had not been under
development, we project that the design time could have
been reduced by several months. Furthermore, if library
development had not been necessary, many more months of
effort could have been eliminated. However, we have not
yet used a library element on more than one chip without
modification. This is due to the fact that the flow was
being built and little time has been available for library
support. Reuse of these complex blocks will be necessary
to meet the “chip-in-a-day” goal.

Even though reuse on separate chips has not yet been
demonstrated, reuse inside the chip has accelerated the
design process. The CORDIC-slice macro shown in Figure
4 was parameterized in terms of the bit-widths of inputs X,
Y and A, the constant shift value G and the constant
arctangent value T. The slice was then used 27 times with
different parameters to implement CORDIC angle rotation
and polar-to-rectangular conversion blocks. Once the
CORDIC function was debugged and verified, no further
debugging at the RTL level was necessary.

[+]
—
seineg ™ shift +
{g=
C——
TEnTplic
D— selneg — shit —f +
—®
+
— L]
n:uﬁ(?‘)} I# ;
1
selneg 3
B +

Figure 4: Reusable CORDIC slice
4.3 Verification by Simulation

Even though complete system simulations below the
dataflow-graph level were not part of the design process,
there were a number of difficulties that had to be overcome
to ensure that the dataflow graph descriptions are cycle-
accurate and bit-true.

One problem was bit errors with constant shifts. Figure 5
shows what we expect in hardware and what the dataflow
graph simulator produced. This error appeared for negative
numbers only and was therefore difficult to find. To fix
this problem, we created our own dataflow graph primitive
which gave us the correct behavior.

Hardware Behavior - Correct

[To[1]
-3 -2
Dataflow Graph Behavior - Incorrect

> @ > EIEIEY
-3 -1
Figure 5: Constant-shift bit error problem

Another problem was a discrepancy between the behavior
of a gated clock and the dataflow-graph enable function.
This discrepancy was due to the fact that in the dataflow-
graph simulator, the output is not updated until the cycle
after the state is updated. Thus, if a block’s state changes
and is then disabled on the next cycle, the output will not
be updated until the block is re-enabled. This differs from
hardware, because the output is always updated when the
state changes.

Figure 6 and Table 3 illustrate this problem for the case of
an enabled unit-delay (register) block and a toggling enable
signal. Note that the output in the dataflow-graph matches
the output in the hardware only when the enable signal is
high. To circumvent this problem, the designer made sure
that the system was insensitive to this kind of mismatch and
specified the behavior of certain signals on certain cycles to
be “don’t cares” for verification purposes.

enable

|
T

i) e— e QUL

1
z

Figure 6: Enabled / clock-gated register model

Table 3: Discrepancies between hardware
and dataflow-graph behaviors

Cycle | 1 2 3 4 5 6
enable | 0 1 0 1 0 1
in| D1 | D2 D3| D4|D5] D6
(Hardware) out | - - | D2 D2 | D4 D4
(Dataflow Graph) out | - - - | D21 D2| D4
“Don’t Care” Cycles X X

The behavior discrepancy could disallow clock-gating in
some cases. Certain systems may not be made insensitive
to this kind of mismatch. If “don’t care™ outputs are
propagated back through the system, then every cycle could
end up being a “don’t care”, meaning that nothing can be
verified. In this case, special circuits may need to be added
to the outputs of these blocks to hold the output until the
next enable signal comes. On the other hand, this approach
demonstrates that verification of the system is still feasible

with certain types of mismatch between the dataflow graph |

and hardware behaviors. This would be desirable to speed-
up the simulation time of the dataflow-graph. On the
UNIX system mentioned earlier, the dataflow-graph
simulation speed is roughly 250 cycles/minute, which
would take more than a month perform a 10° BER
simulation. However, specifying low-order bits as “don’t
cares” could have eliminated the constant-shift problem
mentioned above. Also, by specifying “don’t care

480

(41

windows” as illustrated in Figure 7, we may be able to
relax the constraint that the pipleline depth of the hardware
and dataflow graph match. These simplifications could
speed up simulations considerably.

Cycle 1 2 3 4 5 6

012 || o3 ‘{{‘ D6
i~
D2 [D2 D2| D3 D4

Figure 7: Don’t-care windows to relax cycle-accuracy

Dataflow Graph D1

Hardware D1

5 Conclusion

The success of the baseband receiver chip demonstrates
that design above the RTL level is feasible. The execution
time of the flow on this design demonstrates that achieving
a one-day tumaround time for direct-mapped architectures
is possible. However, reuse of datapath macros on a much
larger scale will be necessary.

The verification flow limits the level of abstraction
permitted for hardware. Moving beyond bit- and cycle-
accuracy would speed up simulations and make this flow
more attractive to algorithm developers. However, these
requirements must be relaxed in a way that still permits the
hardware to be easily verified.

Acknowledgements
We would like to acknowledge the support of DARPA and
the member companies of the Berkeley Wireless Research
Center, ST Microelectronics for fabrication of our chips,
Hayden So, Fred Chen, Ben Coates, Dave Wang, Paul
Husted, and Mike Sheets for their help developing and
using the flow.

References
[11 R. Brodersen, “The network computer and its future,”
ISSCC Dig. Tech. Papers, pp. 32-6, Feb. 1997.
A. P. Chandrakasan and R. W. Brodersen,
“Minimizing Power Consumption in Digital CMOS
Circuits,” Proc. of the IEEE, vol. 83. pp. 498-523,
April 1995,
N. Zhang and R. W. Brodersen, “Architectural
evaluation of flexible digital signal processing for
wireless receivers,” Proc. of the Asilomar Conf. on
Signals, Systems and Computers, Oct. 2000,
W. R. Davis, et al, “A Design Environment for High-
Throughput, Low-Power Dedicated Signal Processing
Systems,” to appear in IEEE Journal of Solid-State
Cireuits, vol. 37, March 2002.
http://www.systemc.org
E. A. Lee and A. Sangiovanni-Vincentelli, “A
framework for comparing models of computation,”
IEEE Trans. on CAD of Integrated Circuits and
Systems, vol. 17, pp. 1217-29, Dec. 1998.
D. Harel, “StateCharts: A Visual Formalism for
Complex Systems,” Sci. Comput. Programs, 8:231-
274. 1987.
[8] Simulink and Stateflow, from the MathWorks, Inc.,
see http://www.mathworks.com
[9] Module Compiler, from Synopsys, Inc., see
http://www.synopsys.com
[10] J. L. da Silva, et al, “Design methodology for
PicoRadio networks,” Proc. of the Design, Automation
and Test in Europe, pp. 314-23, March 2001.

[2}

B3]

(51
(6]

7

