AN AGILE APPROACH TO BUILDING
RISC-V MICROPROCESSORS

Yunsup Lee
Andrew Waterman
Henry Cook

Brian Zimmer

Ben Keller

Alberto Puggelli
Jaehwa Kwak
Ruzica Jevtic
Stevo Bailey
Milovan Blagojevic
Pi-Feng Chiu
Rimas Avizienis
Brian Richards
Jonathan Bachrach
David Patterson
Elad Alon

Borivoje Nikolic
Krste Asanovic

THE AUTHORS ADOPTED AN AGILE HARDWARE DEVELOPMENT METHODOLOGY FOR 11

RISC-V MICROPROCESSOR TAPE-OUTS ON 28-NM AND 45-NM CMOS PROCESSES. THIS

ENABLED SMALL TEAMS TO QUICKLY BUILD ENERGY-EFFICIENT, COST-EFFECTIVE, AND

COMPETITIVE HIGH-PERFORMANCE MICROPROCESSORS. THE AUTHORS PRESENT A CASE

STUDY OF ONE PROTOTYPE FEATURING A RISC-V VECTOR MICROPROCESSOR INTEGRATED

WITH SWITCHED-CAPACITOR DC—DC CONVERTERS AND AN ADAPTIVE CLOCK GENERATOR

IN A 28-NM, FULLY DEPLETED SILICON-ON-INSULATOR PROCESS.

e oo e oo lhe era of rapid transistor per-
formance improvement is coming to an end,
increasing pressure on architects and circuit
designers to improve energy efficiency. Mod-
ern systems on chip (SoCs) incorporate a large
and growing number of specialized hardware
units to execute specific tasks efficiently, often
organized into multiple dynamic voltage and
clock frequency domains to further save
energy under varying computational loads.
This growing complexity has led to a design
productivity crisis, stimulating development
of new tools and methodologies to enable the
completion of complex chip designs on sched-
ule and within budget.

We propose leveraging lessons learned
from the software world by applying aspects
of the software agile development model to
hardware. Traditionally, software was devel-
oped via the waterfall development model, a
sequential process that consists of distinct
phases that rigidly follow one another, just as
is done for hardware design today. Over-
budget, late, and abandoned software projects
were commonplace, motivating a revolution

Published by the IEEE Computer Society

in software development, demarcated by the
publication of The Agile Manifesto in 2001."
The philosophy of agile software development
emphasizes individuals and interactions over
processes and tools, working software over
comprehensive documentation, customer col-
laboration over contract negotiation, and
responding to change over following a plan.
In practice, the agile approach leads to small
teams iteratively refining a set of working-but-
incomplete prototypes until the end result is
acceptable.

Inspired by the positve disruption of The
Agile Manifesto on software development, we
propose a set of principles to guide a new
agile hardware development methodology.
Our proposal is informed by our experiences
as a small group of researchers designing and
fabricating 11 processor chips in five years.
Lacking the massive resources of industrial
design teams, we were forced to abandon
standard industry practices and explore differ-
ent approaches to hardware design. We detail
this approach’s benefits with a case study of
one of these chips, Raven-3, which achieved

0272-1732/16/$33.00 © 2016 IEEE

groundbreaking energy efficiency by integrat-
ing a novel RISC-V vector architecture with
efficient on-chip DC-DC converters. Taken
together, our experiences developing these aca-
demic prototype chips make a powerful argu-
ment for the promise of agile hardware design
in the post-Moore’s law era.

An Agile Hardware Manifesto

Borrowing heavily from the agile software
development manifesto, we propose the fol-
lowing principles for hardware design:

o Incomplete, fabricatable prototypes
over fully featured models.

o Collaborative, flexible teams over rigid
silos.

o Improvement of tools and generators
over improvement of the instance.

o Response to change over following a

plan.

Here, we explain the importance of these
principles for building hardware and contrast
them with the original principles of agile soft-
ware development.

Incomplete, Fabricatable Prototypes over Fully
Featured Models

We believe the primary benefit of adopting
the agile model for hardware design is that it
lets us drastically reduce the cost of verifica-
tion and validatdon by iterating through
many working prototypes of our designs. In
this article, we use the standard definition of
verification as testing that determines whether
each component and the assembly of compo-
nents correctly meets its specification (“Are
we building the thing right?”). In hardware
design, the term walidation is usually nar-
rowly applied to postsilicon testing to ensure
that manufactured parts operate within
design parameters. We use the broader and,
to our minds, more useful definition of vali-
dation from the software world, in which val-
idation ensures that the product serves its
intended purposes (“Are we building the
right thing?”).

Figure 1 contrasts the agile hardware de-
velopment model with the waterfall model.
The waterfall model, shown in Figure la,
relies on Gantt charts, high-level architecture
models, rigid processes such as register-

transfer level (RTL) freezes, and CPU centu-
ries of simulations in an attempt to achieve a
single viable design point. In our agile hard-
ware methodology, we first push a trivial pro-
totype with a minimal working feature set all
the way through the toolflow to a point where
it could be taped out for fabrication. We refer
to this tape-out-ready design as a mpe-in.
Then we begin adding features iteratively,
moving from one fabricatable tape-in to the
next as we add features. The agile hardware
methodology will always have an available
tape-out candidate with some subset of fea-
tures for any tape-out deadline, whereas the
conventional waterfall approach is in danger
of grossly overshooting any tape-out deadline
because of issues at any stage of the process.

Although the agile methodology provides
some benefits in terms of verification effort, it
particularly shines at validation; agile designs
are more likely to meet energy and perform-
ance expectations using the iterative process.
Unlike conventional approaches that use
high-level architectural models of the whole
design for validation with the intent to later
refine these models into an implementation,
we emphasize validation using a full RTL
implementation of each incomplete prototype
with the intent to add features if there is time.
Unlike high-level architectural models, the
actual RTL is guaranteed to be cycle accurate.
Furthermore, the actual RTL design can be
pushed through the entire very large-scale
integration (VLSI) toolflow to give early feed-
back on back-end physical design issues that
will affect the quality of results (QoR), includ-
ing cycle time, area, and power. For example,
Figure 1b shows a feature F1 being reworked
into feature F1’ after validation showed that it
would not meet performance or QoR goals,
whereas feature F3 was dropped after valida-
tion showed that it exceeded physical design
budgets or did not add sufficient value to the
end system. These decisions on F1 and F3 can
be informed by the results of the attempted
physical design before completing the final
feature F4.

Figure 1c illustrates our iterative approach
to validation of a single prototype. Each
circle’s circumference represents the relative
time and effort it takes to begin validating a
design using a particular methodology.
Although the latency and cost of these

MARCH/APRIL 2016 g

HOT CHIPS

1

T m|mm
SN

Specification
Design

Verification

_

a)

ASIC flow
FPGA

C++

Specification

+ design

()

+ implementation

Figure 1. Contrasting the agile and waterfall models of hardware design. The labels FN represent various desired features of
the design. (a) The waterfall model steps all features through each activity sequentially, producing a tape-out candidate only
when all features are complete. (b) The agile model adds features incrementally, resulting in incremental tape-out candidates
as individual features are completed, reworked, or abandoned. (c) As validation progresses, designs are subjected to lengthier
and more accurate evaluation methodologies.

] ” IEEE MICRO

prototype-modeling efforts increase toward
the outer circles, our confidence in the valida-
tion results produced increases in tandem.
Using fabricatable prototypes increases valida-
ton bandwidth, because a complete RTL
design can be mapped to field-programmable
gate arrays (FPGAs) to run end-application
software stacks orders of magnitude faster
than with software simulators. In agile hard-
ware development, the FPGA models of itera-
tive prototype RTL designs (together with
accompanying QoR numbers from the VLSI
toolflow) fulfill the same function as working
prototypes in agile software development, pro-
viding a way for customers to give early and
frequent feedback to validate design choices.
This enables customer collaboration as envi-
sioned in the original agile software manifesto.

Collaborative, Flexible Teams over Rigid Silos

Traditional hardware design teams usually
are organized around the waterfall model,
with engineers assigned to particular func-
tions, such as architecture specification,
microarchitecture design, RTL design, veri-
fication, physical design, and validation.
This specialization of skills is more extreme
than for pure software development, as
reflected in the specificity of designers’ job
titles (architect, hardware engineer, or veri-
fication engineer). Sometimes, entire func-
tions, such as back-end physical design, are
even outsourced to different companies. As
the design progresses through these func-
tional stages, extensive effort is required
to communicate design intent for each
block, and consequently to understand the

documentation received from the preceding
stage. Misunderstandings can lead to subtle
errors that require extensive verification to
prevent, and QoR suffers because no engi-
neer views the whole flow. End-to-end
design iterations are too expensive to con-
template. Considerable effort is required
to push high-level changes down through
the implementation hierarchy, particularly
across company boundaries. This leads to
innovation-stunting practices such as the
RTL freeze, in which only show-stopping
bugs are allowed to unfreeze a design. In
addition, balancing the workload across the
different stages is difficult because engineers
focused in one functional area often lack
the training and experience to be effective
in other roles.

In the agile hardware model, engineers
work in collaborative, flexible teams that can
drive a feature through all implementation
stages, avoiding most of the documentation
overhead required to map a feature to the
hardware. Each team can iterate on the high-
level architectural design with full visibility
into low-level physical implementation and
can validate system-level software impacts on
an intermediate prototype. Figure 1b shows
how multiple teams can work on different
features in a pipelined fashion, each iterating
through multiple levels of abstraction (as
shown in Figure 1c). A given tape-in will
accumulate some small number of feature
updates and integrate these for whole-system
validation. Engineers naturally develop a
complete vertical skill set, and the focus of
project management is on prioritizing fea-
tures for implementation, not communica-
tion between silos.

Improvement of Tools and Generators over
Improvement of the Instance

Modern software systems could not be built
economically without the extreme reuse
enabled by extensive software libraries writ-
ten in modern programming languages, or
without functioning compilers and an auto-
mated build process. In contrast, most com-
mercial hardware design flows rely on rather
primitive languages to describe hardware,
and frequent manual intervention on tool
outputs to work around tool bugs and long
tool runtimes. The poor languages and buggy

tools hinder development of truly reusable
hardware components and lead to a focus on
building a single instance instead of design-
ing components that can be easily reused in
future designs.

An agile hardware methodology relies on
better hardware description languages (HDLs)
to enable reuse. Instead of constructing an
optimized instance, engineers develop highly
parameterized generators that can be used to
automatically explore a design space or to
support future use in a different design.
Better reuse is also the primary way in which
an agile hardware methodology can reduce
verification costs, because the verification
infrastructure of these generators is also port-
able across designs.

An agile hardware methodology also strives
to eliminate manual intervention in the chip’s
build process. Replacing or fixing the many
commercial CAD tools required to complete
a chip design is not practical, but most of
a chips flow can be effectively automated
with sufficient effort. Perhaps the most
labor-intensive part of a modern chip flow is
dealing with physical design issues for a new
technology node. However, most new chip
designs are in older technologies, because
only a few products can justify the cost of
using an advanced node. Also, as technology
scaling continues to slow, back-end flows
and CAD tools will have time to mature
and should become more automatable, even
for the most advanced nodes. The end of
scaling will also coincide with a greater
need for a variety of specialized designs,
where the agile model should show greater
benefit.

Our emphasis on tools and generators is
not at odds with the agile software develop-
ment manifesto, which emphasizes collabora-
tion over tools. Our proposed methodology
also values collaboration more than specific
tools, but we feel that modern hardware
design is far less automated and exhibits far
less reuse than modern software development
(or even software development in 2001).
Accordingly, there is a need to emphasize the
importance of reuse and automation enabled
by new tools in the hardware design sphere,
because few modern hardware design teams
emphasize these universally accepted software
principles.

MARCH/APRIL 2016]]

HOT CHIPS

IEEE MICRO

Response to Change over Following a Plan

This principle mirrors the original manifesto.
Unlike software, a chip design will ultimately
be frozen into a mask set and mass-manufac-
tured, with no scope for frequent updates.
However, even over the timeframe of a single
chip’s development, requirements will change
owing to market shifts, customer feature
additions, or standards-body deliberations.
In agile design, change can result from valida-
tion testing (as opposed to the waterfall
model, in which designs will only change in
response to verification problems).

An agile hardware development process
embraces continual change in chip specifica-
tions as a means to enhance competitiveness.
Every incremental fabricatable prototype, not
only the most recent, becomes a starting
point for the changed set of design require-
ments, with any change treated as a reprioriti-
zation of features to implement, drop, or
rework. By first implementing features that
are unlikely to change, designers minimize
the effort lost to late changes.

Implementing the Agile Hardware
Methodology

Here, we describe the steps we took toward
implementing an agile hardware design proc-
ess. All of our processors, both general pur-
pose and specialized, were built on the free
and open RISC-V instruction architecture
(ISA). We developed our RTL source code
using Chisel (Constructing Hardware in a
Scala-Embedded Language), an open-source
hardware construction language, and ex-
pressed the code as libraries of highly parame-
terized hardware generators. We developed a
highly automated back-end design flow to
reduce manual effort in pushing designs
through to layout. Finally, we present the
resulting chips from our agile hardware design
process.

RISC-V

RISC-V is a free, open, and extensible ISA
that forms the basis of all of our program-
mable processor designs.” Unlike many earlier
efforts that designed open processor cores,
RISC-V is an ISA specification, intended to
allow many different hardware implementa-
tions to leverage common software develop-

ment. RISC-V is a modular architecture, with
variants covering 32-, 64-, and 128-bit address
spaces. The base integer instruction set is lean,
requiring fewer than 50 user-level hardware
instructions to support a full modern software
stack, which enables microprocessor designers
to quickly bring up fully functional prototypes
and add additional features incrementally. In
addition to simplifying the implementation of
new microarchitectures, the RISC-V design
provides an ideal base for custom accelerators.
Not only can accelerators reuse common con-
trol-processor implementations, they can share
a single software stack, including the compiler
toolchain and operating system binaries. This
dramatically reduces the cost of designing and
bringing up custom accelerators.

Further information on RISC-V is avail-
able from the nonprofit RISC-V Foundation,
which was incorporated in August 2015 to
help coordinate, standardize, protect, and pro-
mote the RISC-V ecosystem.” A free and open
ISA is a critical ingredient in an agile hardware
methodology, because having an active and
diverse community of open-source contribu-
tors amortizes the overhead of maintaining
and updating the software ecosystem, which
makes it possible for smaller teams to focus on
developing custom hardware.* A free ISA is
also a prerequisite for shared open-source pro-
cessor implementations, which can act as a

base for further customization.’

Chisel

To facilitate agile hardware development by
improving designer productivity, we devel-
oped Chisel® as a domain-specific extension to
the Scala programming language. Chisel is
not a high-level synthesis tool in which hard-
ware is inferred from Scala code. Rather,
Chisel is intended to be a substrate that pro-
vides a Scala abstraction of primitive hardware
components, such as registers, muxes, and
wires. Any Scala program whose execution
generates a graph of such hardware compo-
nents provides a blueprint to fabricate hard-
ware designs; the Chisel compiler translates a
graph of hardware components into a fast,
cycle-accurate, bit-accurate C++ software
simulator, or low-level synthesizable Verilog
that maps to standard FPGA or ASIC flows.
Because Chisel is embedded in Scala, hard-

ware developers can tap into Scala’s modern

masters(0)

A A

masters(1)

AHB-Lite crossbar

masters(0,1) master
A AHB-Lite bus AHB-Lite bus AHB-Lite bus
A\ A\ A
AHB-Lite A A A A A A A A
crossbar \/ \/ \/ \/ \/ \/ \/ \
slaves(0,1,2)
ins(0,1) A A A A A
slaves(0,1,2) A A v Yy Vv Yy Vv
v v Arbiter Arbiter
slave mux
A slave mux slave mux slave mux
v
\/ \/ \
out slaves(0) slaves(1) slaves(2)
(@)
A class AHBXbar (nMasters: Int, nSlaves: Int) extends Module
B {
C val io = new Bundle {
D val masters = Vec (new AHBMasterIO, nMasters) .flip
E val slaves = Vec (new AHBSlaveIO, nSlaves).flip
F }
G
H val buses = List.fill (nMasters) {Module (new AHBBus (nSlaves)) }
I val muxes = List.fill (nSlaves) {Module (new AHBSlaveMux (nMasters)) }
J
K (buses.map (b => b.io.master) zip io.masters) foreach {
case (b, m) => b <> m }
L (muxes.map (m => m.io.out) zip io.slaves) foreach ({
case (x, s) => x <> s }
M for (m <- 0 until nMasters; s <- 0 until nSlaves) yield {
N buses (m) .io.slaves (s) <> muxes(s).io.ins (m)
0 }
12

(b)

Figure 2. Using functional programming to write a parameterized AHB-Lite crossbar switch in Chisel. (a) Block diagrams. (b)

Chisel source code. The code is short and easy to verify by inspection, but can support arbitrary numbers of masters and slave

ports.

programming language features—such as
object-oriented programming, functional pro-
gramming, parameterized types, abstract data
types, operator overloading, and type infer-
ence—to improve designer productivity by
raising the abstraction level and increasing
code reuse. Furthermore, metaprogramming,
code generation, and hardware design tasks are
all expressed in the same source language,
which encourages developers to write parame-

terized hardware generators rather than dis-
crete instances of individual blocks. This in
turn improves code reuse within a given design
and across generations of design iterations.

To see how these language features inter-
act in real designs, we describe a crossbar that
connects two AHB-Lite master ports to three
AHB-Lite slave ports in Figure 2a. In the fig-
ure, the high-level block diagram is on the
left, the two building blocks (AHB-Lite buses

MARCH/APRIL 2016

HOT CHIPS

H O Qw

idiom result

(1,2,3) map { n =>n + 1 } (2,3,4)

(1,2,3) zip (a,b,c) ((1,a),(2,b), (3,0))
((1,a),(2,b),(3,c)) map { case (left,right) => left } (1,2,3)

(1,2,3) foreach { n => print(n) } 123

for (x <- 1 to 3; y <- 1 to 3) yield (x,y) (@RI EEEEN) (L) (2, 0h) , (21, 2) , (2, 3) ,

(G, (8,2) ; (3,3)

Figure 3. Generic functional programming idioms to help understand the crossbar example.

IEEE MICRO

and AHB-Lite slave muxes) are in the mid-
dle, and the final design is shown on the
right. To help understand the Chisel code,
Figure 3 shows some generic functional pro-
gramming idioms. Idiom A maps a list of
numbers to an expression that adds 1 to
them. Idiom B zips two lists together. Idiom
C iterates over a list of tuples, uses Scala’s case
statement to provide names of elements, and
then operates on those names. Idiom D iter-
ates over a list when the output values are not
collected. Idiom E is a for-comprehension with
ayield statement.

Figure 2b shows the Chisel code that
builds the crossbar. Line A declares the
AHBXbar module with two parameters:
number of master ports (nMasters) and
slave ports (nSlaves). Lines C through F
declare the module’s I/O ports. Lines H and 1
instantiate collections of AHB-Lite buses and
AHB-Lite slave muxes. Lines K through N
connect the building blocks together. Note
that the Chisel operator <> connects mod-
ule I/O ports together. Line K extracts the
master I/O port of each bus, zips it to the cor-
responding master 1/O port of the crossbar
itself, and then connects them together. Line
L does the same thing for each slave mux out-
put and each slave I/O port of the crossbar.
Lines M and N use for-comprehension to
generate the cross-product of all port combi-
nations, and use each pair to connect a spe-
cific slave I/O port of a specific bus to the
matching input of the corresponding mux.

This code’s brevity ensures that it is easily
verified by inspection. Although the example
shows two buses and three slave muxes, these
10 lines of code would be identical for any
number of buses and slave muxes. In contrast,
implementations of this crossbar module writ-
ten in traditional HDLs, such as Verilog or

VHDL, would be difficult to generalize into a
parameterizable crossbar generator. This is just
a small example of Chisel’s power to bring
modern programming language constructs to
hardware development, increasing code main-
tainability, facilitating reuse, and enhancing
designer productivity.

Rocket Chip Generator

Chisel’s first-class support for object orienta-
tion and metaprogramming lets hardware
designers write generators, rather than indi-
vidual instances of designs, which in turn
encourages the development of families of
customizable designs. By encoding micro-
architectural and domain knowledge in these
generators, we can quickly create different
chip instances customized for particular
design goals and constraints.” Construction
of hardware generators requires support for
reconfiguring individual components based
on the context in which they are deployed;
thus, a particular focus with Chisel is to
improve on the limited module parameter-
ization facilities of traditional HDLs.

The Rocket chip generator is written in
Chisel and constructs a RISC-V-based plat-
form. The generator consists of a collection
of parameterized chip-building libraries that
we can use to generate different SoC variants.
By standardizing the interfaces used to con-
nect different libraries’ generators to one
another, we have created a plug-and-play
environment in which it is trivial to swap out
substantial components of the design simply
by changing configuration files, leaving the
hardware source code untouched. We can
also test the output of individual generators
and perform integration tests on the whole
design, where the tests are also parameterized,
so as to exercise the entire design under test.

Figure 4 presents the collection of library
generators and their interfaces within the
Rocket chip generator. These generators can
be parameterized and composed into many
various SoC designs. Their current capabil-
ities include the following:

o Core: the Rocket scalar core generator
with an optional floating-point unit,
configurable pipelining of functional
units, and customizable branch-
prediction structures.

o Caches: a family of cache and transla-
tion look-aside buffer generators with
configurable sizes, associativities, and
replacement policies.

o Rocket Custom Coprocessor: the RoCC
interface, a template for application-
specific coprocessors that can expose
their own parameters.

o Tile: a tile-generator template for
cache-coherent tiles. The number
and type of cores and accelerators are
configurable, as is the organization of
private caches.

o TileLink: a generator for networks of
cache-coherent agents and the associ-
ated cache controllers. Configuration
options include the number of tiles,
coherence policy, presence of shared
backing storage, and implementation
of underlying physical networks.

o Peripherals: generators for AXI4-/
AHB-Lite-/APB-compatible buses and

various converters and controllers.

Physical Design Flow
We frequently translate Chisel’s Verilog output
into a physical design through an ASIC CAD
toolflow. We have automated this flow and opti-
mized it to generate industry-standard GDS-
format mask files without designer intervention.
Automatic nightly regressions provide the
designer with regular feedback on cycle time,
area, and energy consumption, and they also
detect physical design problems early in the
design cycle. Automatic verification and report-
ing on the quality of results allow more points in
the design space to be evaluated, and reduce the
barrier toimplementing moresignificantchanges
atlaterstagesin the development process.

One major hindrance to agile methodol-
ogy for hardware design is CAD tool run-

RocketTile RocketTile
RoCC RoCC
Rocket|l L1IS floc oyl | | [Rocketf] LTS Ji2 ey
UYL wios [TV I Lios =)
‘ ‘ [
| L1 network | -
¢ A A4 B
|
Esileas
L2$ bank —— | b
T3 .
[: L2 network] F
TileLink/AXI4
N Ry - J
bridge

v

| AXIl4 crossbar

v v i

DRAM High- | | AHB and APB
controller S peripherals
1/O device

Figure 4. The Rocket chip generator comprises the following
subcomponents: (a) a core generator, (b) cache generator, (c) Rocket
Custom Coprocessor-compatible coprocessor generator, (d) tile generator,
(e) TileLink generator, and (f) peripherals. These generators can be
parameterized and composed into many various system-on-chip designs.

time. The deployment process for hardware
is significantly more time-consuming than
for software. Using an initial hardware
description to generate a GDS that is electri-
cally and logically correct can require many
iterations. Because each iteration can take
many hours to run to completion, the process
could require weeks or months for larger
designs. To avoid the productivity loss of
these long-latency iterations, we initally
focus on smaller designs, from which GDS
can be generated more rapidly. Iterating on
these smaller-scale tape-ins has proven valua-
ble, because major problems are uncovered
much earlier in the design process, and even
more so when we target a new process tech-
nology. Additionally, the parameterizable
nature of hardware generators reduces the

MARCH/APRIL 2016] 5

HOT CHIPS

EOS16

EOS18

Swerve

EOS20

Figure 5. Recent UC Berkeley tape-outs using RISC-V processors for three lines of research. The Raven series investigated
low-voltage reliable operation with on-chip DC-DC converters, the EOS series developed monolithically integrated silicon
photonic links, and Swerve experimented with dynamic redundancy techniques to handle low-voltage faults.

IEEE MICRO

effort to scale up to larger designs later in the
design process. Regardless of design size, we
ensure that each tape-in passes static timing
analysis, is functionally equivalent to the
RTL model, and has only a small number of
design-rule violations. Together, these prop-
erties ensure that the design is indeed tape-

out ready.
As a particular tape-out deadline ap-

proaches, we evaluate whether to tape out the
most recently taped-in design, usually on the
basis of whether the set of new features vali-
dated by the tape-in is sufficiently large. If we
decide to tape out, we clean up the remaining
design-rule violations and run final checks on
the resulting GDS. The full cycle of taping
out the GDS and testing the resulting chip is
more involved than a tape-in, but qualita-
tively it is just another, longer, iteration in the
agile methodology. Thus, we focus on pro-
ducing lineages of increasingly complicated
functioning chips, incorporating feedback
from the previous chip into the next in the
series. We believe that this rapid iterative
process is essential to improve the productiv-
ity of hardware designers and enable iterative
design-space exploration of alternative system
microarchitectures.

Silicon Results

Figure 5 presents a timeline of UC Berkeley
RISC-V microprocessor tape-outs that we
created using earlier versions of the Rocket
chip generator. The 28-nm Raven chips com-

bine a 64-bit RISC-V vector microprocessor
with on-chip switched-capacitor DC-DC
converters and adaptive clocking. The 45-nm
chips integrate a 64-bit dual-core RISC-V
vector processor with monolithically inte-
grated silicon photonic links.*” In total, we
taped out four Raven chips on STMicroelec-
tronics 28-nm fully depleted silicon-on-
insulator (FD-SOI) process, six photonics
chips on IBM’s 45-nm SOI process, and one
Swerve chip on TSMC’s 28-nm process. The
Rocket chip generator forms the shared code
base for these 11 distinct systems; we incor-
porated the best ideas from each design back
into the code base, ensuring maximal reuse
even though the three distinct families of
chips were specialized differently to test out
distinct research ideas.

Case Study: RISC-V Vector Microprocessor

with On-chip DC—DC Converters

We applied our agile design methodology to
Raven-3, a 28-nm microprocessor that
integrates switched-capacitor DC-DC con-
verters, adaptive clocking circuitry, and low-
voltage static RAM macros with a RISC-V
vector processor instantiated by the Rocket
chip generator.'® The successful development
of the Raven-3 prototype demonstrates how
architecture and circuit research was sup-
ported by the combination of the freely
extensible RISC-V ISA, the parameterizable
Chisel-based hardware implementation, and

To off-chip oscilloscope

RISC-V scalar core CORE (1.19 mm?)
1.8V Scalar Vector accelerator
Vv, RF
i out FPU | Lo | Vector issue unit |
4 \ e
. nt i I
>| | | 1 l * | ? (16-Kbye vector RF uses eight
—_— Y custom 8T SRAM macros)
24 switched-capacitor Shared || || || | |
DC-DC unit cells functional units
(O]
\g 64-bit integer multiplier - wwww W
iS) Single-precision FMA | Crossbar |
Double-precision FMA | Vector memory unit |
+ 0V,
Fsm| ref vl vl I i1
16-Kbyte scalar 32-Kbyte shared 8-Kbyte vector
DC-DC controller I-cache D-cache I-cache
(Custom 8T (Custom 8T (Custom 8T
b SRAM macros) SRAM macros) SRAM macros)
oy Db B L T 2 2
clk | Arbiter
Adaptive clock Eﬂ E Asynchronous FIFO
i.o0v generator between domains

Wire-bonded chip-on-board

Uncore

To/from off-chip FPGA FSB and DRAM

Figure 6. Raven-3 system-level block diagram. A RISC-V processor core with a vector coprocessor runs with varying voltage

and frequency generated by on-chip switched-capacitor DC-DC converters and an adaptive clock generator.

fast feedback via iteration and automation as
part of the agile methodology.

Figure 6 shows the Raven-3 system-level
block diagram. The Raven-3 microprocessor
instantiates the left RocketTile in Figure 4
with the Hwacha vector unit implemented as
a RoCC accelerator. We did not include an
L2 cache in this design iteration, leaving this
feature for implementation in future tape-ins
and tape-outs. The chip consists of two volt-
age domains: the varying core domain and
the fixed uncore domain. The core domain
connects to the output of fully integrated
noninterleaved switched-capacitor DC-DC
converters'' and powers the processor and its
L1 caches. The fixed 1-V domain powers the
uncore. The DC-DC converters generate
four voltage modes between 0.5 and 1 V
from 1 and 1.8 V supplies; they achieve bet-
ter than 80 percent conversion efficiency,

while requiring no off-chip passives, which
greatly simplifies package design.'® The clock
generator selects clock edges from a tunable
replica circuit powered by the rippling core
voltage that mimics the processor’s critical
path delay, and it adapts the clock frequency
to the instantaneous voltage."

The design of Raven-3 benefitted greatly
from the agile hardware design methodology.
By aspiring to build an incomplete prototype
(rather than, for instance, a many-core design
implementing these technologies), we dra-
matically improved the odds of project suc-
cess. The unique integration of the power
delivery, clocking, and processor systems was
only possible because the design team
broadly shared expertise about all aspects of
the project. The processor RTL could largely
be reused from previous tape-outs, with only
incremental improvements and configuration

MARCH/APRIL 2016

Figure 7. Raven-3 implementation: the (a) floorplan,

board, and (d) test setup.

(b)

IEEE MICRO

ORI S

(c)

changes required to validate it for the particu-
lar feature set desired. As physical design on
partial feature sets gave incremental results,
we were able to adjust design features to
improve feasibility and QoR.

The agile hardware design methodology
was especially important in this design due to
the complexity and risk introduced by the
custom voltage conversion and clocking, as
illustrated by the following example. Tape-
ins of a simple digital system with a single
DC-DC unit cell were small enough to sim-
ulate at the transistor level, and these simula-
tions found a critical bug in the DC-DC
controller. These transistor-level simulations
showed that a large current event could cause
the output voltage to remain below the
lower-bound reference voltage even after the
converter switched. A bug in the controller
would cause the converter to stop switching
and drop the processor voltage to zero for
this case. We believe this bug, which was
fixed early in the design process by the addi-
tion of a simple state machine in the lower-
bound controller, would have been found
very late (if ac all) with waterfall design
approaches.

Figure 7 shows the floorplan and micro-
graph of the resulting chip, the wire-bonded
chip on the package board, and the test setup.
The resulting 2.37-mm? Raven chip is fully
functional and boots Linux and executes
compiled scalar and vector application code
with the adaptive clock generator at all oper-
ating modes, while the DC-DC converter
can transition between voltage modes in less

SEERRAONT BRRRRRRA N

(d)

(b) micrograph of the resulting chip, (c) wire-bonded chip on the package

than 20 ns. Raven-3 runs at a maximum
clock frequency of 961 MHz at 1 V, consum-
ing 173 mW, and at a minimum voltage of
0.45 V at 93 MHz, consuming 8 mW.
Raven-3 achieves a maximum energy effi-
ciency of 27 and 34 Gflops per watt while
running a double-precision matrix-multipli-
cation kernel on the vector accelerator with
and without the switched-capacitor DC-DC
converters, respectively. These results validate
the agile approach to hardware design.

O ur agile hardware development meth-
odology played an important role in
successfully taping out 11 RISC-V micro-
processors in five years at UC Berkeley. With
a combination of our agile methodology,
Chisel, RISC-V, and the Rocket chip genera-
tor, a small team of graduate students at UC
Berkeley was able to design multiple micro-
processors that are competitive with indus-
trial designs. Although there is much work
left to do to show that this approach can scale
up to the largest SoCs, we hope these projects
serve as an opportunity to shed some light on
inefficiencies in the current design process, to
rethink how modern SoCs are built, and to
revitalize hardware design. NICRO

Acknowledgments

We thank Tom Burd, James Dunn, Olivier
Thomas, and Andrei Vladimirescu for their
contributions and STMicroelectronics for
the fabrication donation. This work was
funded in part by BWRC, ASPIRE, DARPA
PERFECT Award number HR0011-12-2-

0016, STARnet C-FAR, Intel ARO, AMD,
SRC/TxACE, Marie Curie FP7, NSF
GRFP, and an Nvidia graduate fellowship.

References
1. K. Beck et al., The Agile Manifesto, tech.
report, Agile Alliance, 2001.

2. A. Waterman et al., The RISC-V Instruction
Set Manual, Volume I: User-Level ISA, Version
2.0, tech. report UCB/EECS-2014-54, EECS
Dept., Univ. California, Berkeley, May 2014.

3. R. Merritt, “Google, HP, Oracle Join RISC-
V," EE Times, 28 Dec. 2015.

4. V. Patil et al., “Out of Order Floating Point
Coprocessor for RISC-V ISA,” Proc. 19th
Int’l Symp. VLS| Design and Test, 2015;
doi:10.1109/ISVDAT.2015.7208116.

5. K. Asanovi¢ and D. Patterson, “The Case for
Open Instruction Sets,”
Report, Aug. 2014.

Microprocessor

6. J. Bachrach et al., “Chisel: Constructing
Hardware in a Scala Embedded Language,”
Proc. Design Automation Conf., 2012, pp.
1216-1225.

7. 0. Shacham et al., “Rethinking Digital Design:
Why Design Must Change,"” IEEE Micro, vol.
30, no. 6, 2010, pp. 9-24.

8. Y.Leeetal, “"A45nm 1.3GHz 16.7 Double-
Precision GFLOPS/W RISC-V Processor
with Vector Accelerators,” Proc. 40th Euro-
pean Solid-State Circuits Conf., 2014, pp.
199-202.

9. C. Sun et al., “Single-Chip Microprocessor
that Communicates Directly Using Light,”
Nature, vol. 528, 2015, pp. 534-538.

10. B. Zimmer et al., “A RISC-V Vector Pro-
cessor with Tightly-Integrated Switched-
Capacitor DC-DC Converters in 28nm
FDSOI,” Proc. IEEE Symp. VLSI Circuits,
2015, pp. C316-C317.

11. H.-P. Le, S. Sanders, and E. Alon, “Design
Techniques for Fully Integrated Switched-
Capacitor DC-DC Converters,” [EEE J.
Solid-State Circuits, vol. 46, no. 9, 2011, pp.
2120-2131.

12. J. Kwak and B. Nikoli¢, “A 550-2260MHz Self-
Adjustable Clock Generator in 28nm FDSOI,”
Proc. IEEE Asian Solid-State Circuits Conf.,
2015; doi:10.1109/ASSCC.2015.7387471.

Yunsup Lee is a PhD candidate in the
Department of Electrical Engineering and
Computer Sciences at the University of
California, Berkeley. He received an MS in
computer science from the University of
California, him at

yunsup@eecs.berkeley.edu.

Berkeley. Contact

Andrew Waterman is a PhD candidate in
the Department of Electrical Engineering
and Computer Sciences at the University of
California, Berkeley. He received an MS in
computer science from the University of
Berkeley. Contact
waterman@eecs.berkeley.edu.

California, him at

Henry Cook is a PhD candidate in the
Department of Electrical Engineering and
Computer Sciences at the University of
California, Berkeley. He received an MS in
computer science from the University of

California, Berkeley. Contact him at
hcook@eecs.berkeley.edu.

Brian Zimmer is a research scientist in the
Circuits Research Group at Nvidia. He
received a PhD in electrical engineering and
computer science from the University of
California, Berkeley, where he performed
the research for this article. Contact him at
brianzimmer@gmail.com.

Ben Keller is a PhD student in the
Department of Electrical Engineering and
Computer Sciences at the University of
California, Berkeley. He received an MS in
electrical engineering from the University of

California, Berkeley. Contact
bkeller@eecs.berkeley.edu.

him at

Alberto Puggelli is the director of technol-
ogy at Lion Semiconductor. He received a
PhD in electrical engineering from the Uni-
versity of California, Berkeley, where he
performed the research for this article.
Contact him at alberto.puggelli@gmail.
com.

Jaehwa Kwak is a PhD candidate in the
Department of Electrical Engineering and
Computer Science at the University of
California, Berkeley. He received an MS in
electrical engineering and computer sciences

MARCH/APRIL 2016] H

HOT CHIPS

IEEE MICRO

from Seoul National University. Contact

him at jhkwak@eecs.berkeley.edu.

Ruzica Jevti¢ is an assistant professor at the
Universidad de Antonio de Nebrija in
Madrid. She received a PhD in electrical
engineering from Technical University of
Madrid and was a postdoctoral fellow at the
University of California, Berkeley, where
she performed the research for this article.
Contact her at rjevtic21@gmail.com.

Stevo Bailey is a PhD student in the
Department of Electrical Engineering and
Computer Science at the University of
California, Berkeley. He received an MS from
the University of California, Berkeley. Con-
tact him at stevo.bailey@eecs.berkeley.edu.

Milovan Blagojevic¢ is a PhD student in a
CIFRE program at the Berkeley Wireless
Research Center, STMicroelectronics, and
Institut Supérieur d’Electronique de Paris.
He received an MSc in electrical engineering
from the University of Belgrade, Serbia.
Contact him at milovan.blagojevic@st.com.

Pi-Feng Chiu is a PhD student in the
Department of Electrical Engineering and
Computer Sciences at the University of
California, Berkeley. She received an MS in
electrical engineering from the National
Tsing Hua University. Contact her at
pfchiu@eecs.berkeley.edu.

Rimas Avizienis is a PhD candidate in the
Department of Electrical Engineering and
Computer Sciences at the University of
California, Berkeley. He received an MS in
computer science from the University of
California, Berkeley. Contact him at
rimas@eecs.berkeley.edu.

Brian Richards is a research staff engineer
at the University of California, Berkeley,
and a founding member of the Berkeley
Wireless Research Center. He received an
MS in electrical engineering and computer

science from the University of California,
Berkeley. Contact him at richards@eecs.
berkeley.edu.

Jonathan Bachrach is an adjunct assistant
professor in the Department of Electrical
Engineering and Computer Sciences at the
University of California, Berkeley. He
received a PhD in computer science from
the University of Massachusetts, Ambherst.
Contact him at jrb@pobox.com.

David Patterson is the Pardee Professor of
Computer Science at the University of Cali-
fornia, Berkeley. He received a PhD in com-
puter science from the University of Califor-
nia, Los Angeles. Contact him at pattrsn@
eecs.berkeley.edu.

Elad Alon is an associate professor in the
Department of Electrical Engineering and
Computer Sciences at the University of
California, Berkeley, and a codirector of the
Berkeley Wireless Research Center. He
received a PhD in electrical engineering
from Stanford University. Contact him at
elad@eecs.berkeley.edu.

Borivoje Nikoli¢ is the National Semicon-
ductor Distinguished Professor of Engineer-
ing at the University of California, Berkeley.
He received a PhD in electrical and com-
puter engineering from the University of
California, Davis. Contact him at bora@
eecs.berkeley.edu.

Krste Asanovic is a professor in the Depart-
ment of Electrical Engineering and Com-
puter Sciences at the University of California,
Berkeley. He received a PhD in computer
science from the University of California,
Berkeley. Contact him at krste@berkeley.edu.

. Selected CS articles and columns are also
Cn available for free at http;//ComputingNozw.

computer.org.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

