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Abstract—With technology scaling in the nanometer regime
relative variability increases and becomes more complex, making
traditional statistical modeling insufficient. To optimize yield,
circuit designers need to determine effects of variations on
particular circuit designs, which requires statistical modeling.
This paper presents a methodology for simple, fast, design-
specific yield optimization that is accessible to the circuit designer.
The methodology utilizes backward propagation and convex
optimization techniques to customize existing statistical model
cards to a given design. The methodology is verified using
comparator offset measurements on a 28nm FDSOI technology.
The customized model achieves a mean absolute percentage error
of < 4% compared to a 30% error in the original models.

Keywords—statistical modeling; yield optimization; design cen-
tering; process variation; circuit design

I. INTRODUCTION

Dimensional and functional scaling of CMOS processes is
continuing to increase the analog circuit performance while
decreasing cost [1]. While achieving extreme performance is
now possible, it is often limited by an increase in variability
due to shrinking of dimensions into the deep submicron
regime. Both within-die and die-to-die relative variations are
shown to increase when scaling from 90nm to 45nm [2]
and are expected to increase even more as devices scale to
sub-10nm, causing both traditional sources of variation, like
random dopant fluctuations, to become more pronounced, and
new sources of variation, like fin geometry variations or line
edge roughness, to arise [3].

In response to the increase in variability, statistical model-
ing methods have been developed to help designers improve
yield and, therefore, decrease cost. This involves starting with
a large set of correlated model parameters and reducing to a
smaller and more manageable set of uncorrelated parameters,
typically using some variation of principal component analysis
(PCA) [4]. In newer models some parameter correlations may
be preserved in order to improve accuracy. Corner modeling
involves extracting variation data from devices, and assigning
values to the model parameters such that the device perfor-
mance that is being measured is pushed n standard deviations
away from its mean value. As variability rises, more corners
become necessary in new models, including corners for analog
design, based on device I-V curves, and corners for digital
design, typically based on delay-chain measurements. Corner
modeling is simple and computationally efficient, however
in newer technologies it can result in overly optimistic or
pessimistic results, as the nature of variability becomes more
complex. Fig. 1 illustrates how pessimistic some of the model
corners may be, comparing to a Monte-Carlo (MC) simulation
in a 28nm FDSOI technology.
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Fig. 1. Design space and corners derived from a 28nm FDSOI technology.

Another commonly used method for accounting for the
impact of random variations on yield is Monte-Carlo simu-
lation. Similarly, variation data are extracted from a set of
devices. The data are then used to assign variances to a
reduced set of model parameters, in order to represent the
measured distribution. Similar to corner modeling, I-V data
are typically used for this, and therefore topology-specific and
layout-induced effects are ignored.

II. RELATED WORK

Shortcomings of traditional variation modeling ap-
proaches have given rise to exploration of design-specific or
performance-aware modeling. The main concept is illustrated
in Fig. 2 and involves identifying the actual design space and
moving the design in order to increase the margin from failure.
In [5] the authors apply backpropagation of variance in order
to evaluate model parameter variances based on measurements.
Though a generally efficient model for simple systems, its
dependency on handpicked parameters and complexity when a
large number of parameters are needed limit its applicability.
Other approaches involve design-specific corner extraction
employing convex semi-definite programming [6] or using
simulation data to train accurate circuit-specific non-linear
models [7]. These represent design-specific variation more
accurately, but are far complex for practical designs.

In this paper, we present a methodology for optimizing
statistical models customized to a given class of designs. The
methodology builds on the existing body of modeling, employs
the backward propagation of variance technique to improve the
variation assigned to each model variable, performs automated
parameter selection and is adapted to include existing model
parameter correlations. We then formulate the problem as a
constrained convex optimization problem, including parameter
selection as well as the addition of physical, model-derived
constraints by the designer. This enables the creation of
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Fig. 2. Illustration of design centering

customized model cards for robust design of high-performance
circuit blocks and rapid yield ramp-up in highly scaled tech-
nologies. We validate the approach on a 28nm FDSOI technol-
ogy and demonstrate significant yield prediction improvement
when design-specific customized models are used.

III. CENTERING ALGORITHM
A. Mathematical Formulation

Given a set of device models, we can represent any circuit
output vector y = [y1,...,¥m|T as a function of the model
parameter vector p = [p1, ..., p,|T as y = f(p). In order to
incorporate variability to the models, each of the parameters
in p is treated as an independent random variable (RV) P;
and assigned a normal distribution with standard deviation o;,
i =1,...,n, and therefore we have:

Y = f(P) ()

Assuming small perturbations and taking the Taylor expan-
sion around the nominal point Pg of (1) we get:

Y = f(Po) +J- AP =
AY -AYT =J.- AP -APT . JT =
Ray =J -Rap - J7 )

where Ray, Rap the autocorrelation matrices of AY and
AP, respectively. Since P; are independent, the matrix Rap
is diagonal. Denoting the k*" unit vector uy, as a vector with all
zeros except a one on the k*" row, we can derive an expression
for the k' diagonal element of Ray by using (2):

oiy, =uj Ray wp=uj -J-Rap-J"-up (3

Let V;‘: = ug -J, where £k = 1,...,m. It is evident that

vg is the k' row of the Jacobian matrix J. From the above,
we can now transform the problem to a linear optimization
problem of the form b = A - x, relating the variances of the
outputs on the left-hand side to the squares of the sensitivities
and the input variances on the right-hand side.
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Fig. 3. Scatter plots of a subset of the parameters used.
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Fig. 4. Elastic net solution with p = 0.5 on artificially generated data.

Although typically PCA is used in order to get an indepen-
dent model parameter set, in some cases parameter correlations
may be preserved by the models, which is the case with some
of the models used in this work (Fig. 3). As long as the covari-
ance of the correlated parameters can be calculated using the
given model, the above function can be altered to incorporate
correlations. If, for example, two parameters with indices u
and v are correlated, a term 2 - Jyy - Jgy - cov(Apy, Apvg
is added to the right-hand side of the equation for the k'"
output variance. From here, given a set of observations of the
output vector extracted by test structures, we can calculate the
variances of the parameters by solving (4).

B. System solution

The resulting m x n system of equations has, in the general
case, more inputs than outputs (m < n), therefore it is an
underdetermined system with an infinite number of solutions.
Commercial solvers typically return a minimum norm solution
to such problems. However, in circuit design there is only
a limited set of solutions that are physically acceptable, and
a minimum norm solution may not be one of them. Model
parameters typically need to be constrained in order to fit
the given model specifications. Additionally, we can exploit
the fact that the sensitivity matrix will have some degree of
sparseness, depending on the given design, which means that
some parameters may be eliminated without significant loss of
accuracy.

In order to achieve both parameter shrinkage and selection,
we use regularization via the elastic net [8]. The elastic net
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Fig. 5. Die photo of the designed testchip.

formulation is shown in Eq. 5.

minimize |b — A - x|
subject to (1 — p)||x|l1 + pl|x|l2 < t Q)

This type of regularization constraints the lp-norm of
the solution, like ridge regression, which helps shrink large
coefficients to reduce overfitting, and also constraints the [;-
norm both for shrinkage and parameter selection. Fig. 4 shows
the magnitude of the coefficients for different values of t. We
observe that as a stricter constraint is applied to ¢, more and
more coefficients are forced to zero, while the magnitude of
the non-zero coefficients converges for higher values of t.

IV. CUSTOMIZED MODELS

In order to validate the methodology for AMS circuit
design data-extraction test structures were implemented in a
28nm FDSOI technology (Fig. 5). The test structure of choice
is a strong-arm comparator, one of the most widely used
mixed-signal circuits. The performance chosen was comparator
offset, which was measured after noise averaging from 224
comparators per die, organized in a compact array structure
(Fig. 6). Statistical parameters were assigned to all devices
except the pre-charge devices (Fig. 7) for simulation speedup,
as they do not affect offset. Measurement acquisition, circuit
simulation and model customization were controlled entirely
by Python.

The Jacobian matrix was extracted from the given simula-
tion model using finite differences. Table I shows the extracted
percent sensitivities of the output with respect to various model
parameters assigned to each device, and therefore contains the
elements of matrix J. The resulting optimization problem of
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Fig. 6. Offset characterization array.

TABLE 1. COMPARATOR OFFSET SENSITIVITY TO STATISTICAL

PARAMETERS
Instance: H Nin1  Nin2 Nee1 Neea Pee1 Peea

P1 -1.018 1.018 -0.491 0.491 0.107 -0.107
P2 1.890 -1.890 0.810 -0.777 | -0.864 0.799

Eq. 5 is then solved using a commercially available convex
programming package. Parameter p is set to 0.5 and parameter
t is selected such that the root-mean-square error remains
small. An explicit constraint of x > 0 is added, since the
unknowns represented parameter variances (Eq. 4).

Fig. 8 shows a comparison of the histograms extracted by
simulation using both the original and customized models at
two different supply voltages and Fig. 9 shows the correspond-
ing quantile-quantile plots. It is evident that for the customized
model the predicted distribution matches more accurately both
the body and the tails of the measured data, comparing to the
original models. The measured standard deviation of the offset

I

Fig. 7. Strong-arm latch used for design centering. The greyed-out devices
were not assigned statistical parameters.
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Fig. 8. Comparison of histograms predicted by the original and customized
models at nominal and scaled supply voltage.
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Fig. 9. Comparison of QQ plots predicted by the original and customized
models at nominal and scaled supply voltage.
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Fig. 10. Comparison of offset standard deviation across supply voltage, when
the customized model is calibrated at each voltage step.

across different supplies is shown in Fig. 10, where design
centering is applied at each step of the supply voltage, showing
superior performance of the customized models. The presented
methodology allows design centering at various supplies and
biases, however it may be more practical for the designer to
select a few supply/bias points to use. Fig. 11 shows the same
as Fig. 10, but in this case the model are customized using
only one supply point. We observe that although at scaled
supplies the offset prediction deviates from the measured data,
the customized model still remains superior to the original
one. Table II summarizes the mean absolute percentage error
of each model.

TABLE II. MEAN ABSOLUTE PERCENTAGE ERROR COMPARISON
Original model ~ Customized model ~ Customized model
(all supplies) (nominal supply)
Vpp =1V ][ -30.1% 3.96 % 3.96 %
Vop =0.7V || -287% -4.79 % 114 %
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Fig. 11. Comparison of offset standard deviation across supply voltage, when
the customized model is calibrated only at nominal supply.

V. CONCLUSION

This paper presented a methodology for centering of
mixed-signal integrated circuits by customizing models to a
specific design. The goal is to shorten the design manufactur-
ing process by designing dedicated test structures to enable
model customization and yield optimization at an early design
stage.

The methodology uses backward propagation of variance
and formulates the problem as a regularization problem that
is easily and robustly solvable by commercial convex pro-
gramming tools. The system solution consists of the parameter
variances needed to customize the models. We demonstrate the
methodology’s capability of improving accuracy of the output
distributions and reducing the error. This methodology enables
the designer to utilize data from test structures in order to
create performance-aware models to account for variability,
including topology and layout-specific effects.
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