Calling Context Abstraction
with Shapes

L

Xavier Rival Bor-Yuh Evan Chang 3R{% 3
INRIA/ENS Paris U of Colorado, Boulder

3

National Taiwan University - December 17, 2010
Work to Appear in POPL 2011

o MRl b g A : /
A 4 2
g LE w‘ "
;7 J, - .. l“ﬂ
¢y Dt) e

&.
s
1.

Progrémlﬁ‘mg Languages Research
at the University of Colorado,

Boulder

i M \V’ [k e r ‘:'
W \Q‘ \ﬂ\ V/~ \ \‘ | %

\

“Ds

Interprocedural analysis is important

int f(int x) { ... }
Procedures Central to

Programming

let f x = ...

function f(x) { ... }

Interprocedural Analysis Key
to Program Reasoning

Bor-Yuh Evan Chang 5&1%2, University of Colorado at Boulder

Two approaches to interprocedural analysis

Each procedure separately Whole program simulation

“build procedure “simulate inlined
summaries” procedures”
+
. analyze A
each deflmtlon VS. each call
b ccrer—or e
- al

infer abstractions of
pairs vs. individual
states

- C(
3

Bor-Yuh Evan Chang 5&1%2, University of Colorado at Boulder

Two approaches to interprocedural analysis

State of Practice: -~ This Talk: > inv

Almost all Using shape usual
interprocedural analysis iteration
analyses today techniques) i,
__~
tabulation -- --
pre, post,

Challenge: Frame Inference Challenge: Unbounded Calls

caller state “]nfln]te]nl]n]ng”

Bor-Yuh Evan Chang 5&1%2, University of Colorado at Boulder

Our approach is to ...

Apply inductive shape analysis to summarize
unbounded calling contexts in a whole program,
state-based interprocedural analysis.

%0 Parametric
interprocedural
Xisa shape analyzer analyzer

e “Very” context-sensitive
- Simultaneous summarization of the stack and heap

e Use simpler base domains with precision
- Need only abstract sets of states not relations

Bor-Yuh Evan Chang 5&1%2, University of Colorado at Boulder

Shape analysis is an abstract interpretation
on abstract memory descriptions with ...

Splitting of summaries

L= list

A
cur

To reflect up
Here,

— summarize
= 1% thecall stack of = |z >

doubly-linked

N
[

_)l
|l

N

l_é @

activation records ur
And summar With “shapes”

—
| — —
(—_LI//‘Q—

cur

> | —>

cur

Bor-Yuh Evan Chang 5&1%2, University of Colorado at Boulder

Challenge: Obtain stack inductives

Xisa is a shape analysis with an precise abstraction
based around user-supplied invariant checkers.

i h.dll(p) = .

' if (h = null) then i

i true i

i else :

: h—prev = prev and i

i h—next.dll(h) |
checkers Xisa

e Reasonable to expect user-supplied inductive
definitions for user-defined heap structures

e Unreasonable to expect inductive definitions
describing possible call stacks.

- Contribution: derived automatically

Bor-Yuh Evan Chang 5&1%2, University of Colorado at Boulder

Roadmap

e Background: Memory as graphs
e Abstracting calling contexts

e Deriving inductive cases for calling context
summarization

Bor-Yuh Evan Chang 5&1%2, University of Colorado at Boulder

Memory as separating shape graphs

Analogous to separation logic formulas

—
| —> N dll segment ; (__..__) 5 dll(9, ~)
K
cur
memory memory cell checker Some number of
address (value, (points-to: summary memory cells
not cell) ~y—next = 9) (inductive pred) (thin edges)
| segment summary cur

h.dli(p) =
" if (h = null) then
true
else
h—prev =p and
h—next.dll(h)

dll(null)

Bor-Yuh Evan Chang 5&1%2, University of Colorado at Boulder

Unfolding inductive summaries

: dil(s)

: dil(s)

unfold @ next 0 dll
prey,
B

unfold emp

Possible unfoldings give an
inductive definition

Bor-Yuh Evan Chang 5&1%2, University of Colorado at Boulder

()

11

Roadmap

e Abstracting calling contexts

e Deriving inductive cases for calling context
summarization

Bor-Yuh Evan Chang 5&1%2, University of Colorado at Boulder

12

Concrete view of a recursive example

complex
void main() { p
nain [E k_,\ relations
1 = fix(l, NULL); i i <
} fix | -— =l o | 1|2
// c is a singly-linked list L—/
dll* fix(dll* c, dllx* p) { I o~
dll* ret; 1 ;Et . t| %8
if (¢ !'= NULL® - r_/
>°‘>Pre" =P stack . a4]
c—>next = f b d d — m
if (check(c unbounded, hea
ret = c->1 needs P
remove(c) symmarization unbounded,
¥ needs
1 t = c; . .
, Lrev =c;) summarization
return c;
1 stack heap

Bor-Yuh Evan Chang 5&1%2, University of Colorado at Boulder

13

Putting calling contexts into shape graphs

activation
record base

S

e K |] | 3 |
“frame pointer”
- Vol

R

UL
Need
summarization

NEE i eliding
local variables data

are fields of field
activation
records

heap
summary

{21

Bor-Yuh Evan Chang 5&1%2, University of Colorado at Boulder 14

Calling context is a list

Inductive o
structure N
. P-.'
always a “list” T
fixs 07
Summarize calling oy
context using an Figh 01 F
inductive predicate fp:

stack whose definition LT
is derived “on-the-fly”

“Node” kinds
program-specific

Bor-Yuh Evan Chang 5&1%2, University of Colorado at Boulder

15

Calling context summarization

Example instance (with all fields)

A call stack summary

Any number of
recursive calls

fix™

:'r
stack (32, G3) stack(]

Fo, F1) e \ ret

..... hst

Call to fix
Top activation from main

Bor-Yuh Evan Chang 5&1%2, University of Colorado at Boulder

16

Roadmap

e Deriving inductive cases for calling context
summarization

Bor-Yuh Evan Chang 3&{#2, University of Colorado at Boulder

17

Deriving the stack inductive definition

Intuition

- At a call, new activation record added

- Need to widen to obtain summaries with stack
instances (but need the definition of stack)

- Compare a few iterations to augment the
definition of stack, then apply widening.

e Subtraction

Bor-Yuh Evan Chang 5&1%2, University of Colorado at Boulder 18

Subtraction

void main() {

walk(1l);

}
void walk(list* x) { Diff
if (x != NULL) .
walk (x->next) : yields one-
} Step main,

unfolding

n 111'111,, Wa”f!
Wi 111{,. > TOp wal ;

1

next

D)

Match et

walkh@?’ walk : list

Iteration 1 Iteration 2

|M]

Bor-Yuh Evan Chang 3&{#2, University of Colorado at Boulder

19

Preliminary Experience

lis

lis
lis

- Case Study:

lis:

lis
lis:

Discussing precision with this approach
versus the modular approach.

lis

[see paper]

points per recursion (call site and return site)

Bor-Yuh Evan Chang 5&1%2, University of Colorado at Boulder

4
4
6
1
4
3
5

20

Conclusion

e Xisa applied straightforwardly
- folding at call sites
- unfolding at return sites
- widening applied on recursion
- core analysis algorithms remain
- evidence for flexibility of the framework

« New option for interprocedural analysis
- “very” context-sensitive

- no need to abstract relations = simpler base
domains

Bor-Yuh Evan Chang 5&1%2, University of Colorado at Boulder

http://www.cs.colorado.edu/~bec/

Programming Languages Research
at the University of Colorado

‘}i‘"?-

vy
Boulder " &
ﬂ,x'z |

S5 Amer Dlwan . Jeremy Slek Bor-Yuh Evan Chang Srlram Sankaranarayanan

A . '. ‘
NN

PL research at CU has breadth!

How do we effectively

express computation?
language design, type
systems, logic

How do we assist

reasoning about programs?
program analysis,
development tools

g '}

How do we make programs

run efficiently?
performance analysis,
compilation

How do we get reliable,

secure software?
verification, model checking

af

Bor-Yuh Evan Chang 3§1#2, University of Colorado at Boulder 24

PL researchers at CU collaborate!

language design performa

nce analysis

- ¥

program analysis verification

Bor-Yuh Evan Chang 3&{#2, University of Colorado at Boulder 25

Formal methods connections

Prof. Aaron Bradley (ECEE)
Prof. Fabio Somenzi (ECEE)

Bor-Yuh Evan Chang 3&1%2, University of Colorado at Boulder

26

The PL group has fun together!

————

e ————r (-g’m&%

e 37 Gt
T T S
“ ™

-

e meetins “ Travel to confe
5o . —t
s at the e
gr%\cgerp'?::&%use (Todd at 00PS| /05
0
once/twice a month

es

)

Successes: 2 papers at each of
POPL’11, PLDI’10, and POPL’10

Bor-Yuh Evan Chang 3&1%2, University of Colorado at Boulder

27

Our group

a
Amer Jeremy

Sam Jonathan

Faculty

Q

Evan Sriram
Bor-Yuh Evan Chang 3&{#2, University of Colorado at Boulder 28

o MRl b g A : /
A 4 2
g LE w‘ "
;7 J, - .. l“ﬂ
¢y Dt) e

&.
s
1.

Progrémlﬁ‘mg Languages Research
at the University of Colorado,

Boulder

i M \V’ [k e r ‘:'
W \Q‘ \ﬂ\ V/~ \ \‘ | %

\

“Ds

Applying to Colorado

« Computer Science Department information
http://www.cs.colorado.edu/grad/admission/

e Deadlines
Jan 2 for Fall (Oct 1 for Spring)

e Graduate Advisor: Jackie DeBoard
jacqueline.deboard@colorado.edu

e Talk to me about application fee waiver

http://www.cs.colorado.edu/~bec/

Bor-Yuh Evan Chang 5&1%2, University of Colorado at Boulder 30

