
Shape Analysis with Structural Shape Analysis with Structural
Invariant CheckersInvariant Checkers

BorBor--YuhYuh Evan ChangEvan Chang
Xavier Rival

George C. Necula

University of California, Berkeley

SAS 2007

Chang, Rival, Necula - Shape Analysis with Structural Invariant Checkers 2

Example: Example: TypestateTypestate with shape analysiswith shape analysis

cur = l;
while (cur != null) {

assert(cur is red);
make_purple(cur);

cur = cur→next;
}

l

cur

l

Concrete ExampleConcrete Example AbstractionAbstraction

“red list”l

“purple
list segment”

“red
list”

l

cur

program-specific predicate

heap abstraction flow-sensitive
make_purple(·) could be
• lock(·)
• free(·)
• open(·)
• …

Chang, Rival, Necula - Shape Analysis with Structural Invariant Checkers 3

Shape analysis is not yet practicalShape analysis is not yet practical

UsabilityUsability: Choosing the heap abstraction difficult

TVLA
[Sagiv et al.]

“red list”
red(n) ∧
n ∈ reach(l)

“red list”

Space Invader
[Distefano et al.]

developer

“red list”

Our Proposal

Built-in high-level predicates
-- Hard to extend
++ No additional user effort

Parametric in low-level,
analyzer-oriented predicates
++ Very general and expressive
-- Hard for non-expert

Parametric in high-level,
developer-oriented predicates
++ Extensible
++ Easier for developers

Chang, Rival, Necula - Shape Analysis with Structural Invariant Checkers 4

Shape analysis is not yet practicalShape analysis is not yet practical

ScalabilityScalability: Finding right level of abstraction difficult
Over-reliance on disjunction for precision

“purple
list segment”

“red
list”

l

cur
developer

curl curlcurl curl

l,cur l, curl l
emp

∨ ∨ ∨

∨ ∨ ∨ ∨ ∨

shape analyzer

Chang, Rival, Necula - Shape Analysis with Structural Invariant Checkers 5

HypothesisHypothesis

The developerdeveloper can describe the memory in a
compactcompact manner at an abstraction level sufficient
for the properties of interest (at least informally).

• Good abstraction is program-specific

shape analyzerdeveloper

“purple
list segment”

“red
list”

l

cur

??

abstraction ideas

Chang, Rival, Necula - Shape Analysis with Structural Invariant Checkers 6

ObservationObservation

bool redlist(List* l) {
if (l == null)

return true;
else

return
l→color == red

&& redlist(l→next);
}

Checking codeChecking code expresses a shape invariant and an
intended usage pattern.

l

l

l

l

Chang, Rival, Necula - Shape Analysis with Structural Invariant Checkers 7

ProposalProposal

• Extensible
– Abstraction based on the developer-supplied checkers

• Targeted for Usability
– Code-like global specification, local invariant inference

• Targeted for Scalability
– Based on the hypothesis

An automated shape analysisshape analysis with a memory
abstraction based on invariant checkersinvariant checkers.

developer shape analyzer

bool redlist(List* l) {
if (l == null)
return true;

else
return

l→color == red
&& redlist(l→next);

}

checkers

Chang, Rival, Necula - Shape Analysis with Structural Invariant Checkers 8

OutlineOutline

• Memory abstraction
– Restrictions on checkers
– Challenge: Intermediate invariants

• Analysis algorithm
– Strong updates
– Challenge: Ensuring termination

• Experimental results

Chang, Rival, Necula - Shape Analysis with Structural Invariant Checkers 9

Abstract memory using checkersAbstract memory using checkers

α values
(address or null)

points-to relation
(memory cell)

α β
f

checker runα
c

partial runα β
c

GraphsGraphs

ExampleExample
“Disjointly, α→next = β, γ→next = β, and β is a list.”

list
β

next
α

γ

“Some number of
points-to edges that
satisfies checker c”

next

disjointdisjoint memory regions

Chang, Rival, Necula - Shape Analysis with Structural Invariant Checkers 10

Checkers as inductive definitionsCheckers as inductive definitions

bool list(List* l) {
if (l == null)

return true;
else

return list(l→next);
}

:= ∃β.α
list

α = null

α β
next list

α ≠ null

∨emp

list(l)

list(…)

DisjointnessDisjointness
Checker run can
dereference any
object field only
once

emp (α = null)

…

next
α null

next
α

next
null

Chang, Rival, Necula - Shape Analysis with Structural Invariant Checkers 11

What can a checker do?What can a checker do?

• In this talk, a checker …
– is a pure, recursive function
– dereferences any object field only once during a run
– only one argument can be dereferenced (traversal arg)

bool skip1(Skip* l) {
if (l == null) return true;
else {

Skip* s = l→skip;
return skip0(l→next,s)

&& skip1(s); }
}

:= ∃β,γ.α
skip1

∨
α = null

emp

α ≠ null

α
skip1

γ
next skip0(γ)

β

skip

Traversal
argument

Only fields
from traversal
argument

back to the abstract domain back to the abstract domain ……

shape analyzer

bool redlist(List* l) {
if (l == null)
return true;

else
return

l→color == red
&& redlist(l→next);

}

checkers

Chang, Rival, Necula - Shape Analysis with Structural Invariant Checkers 13

Challenge: Intermediate invariantsChallenge: Intermediate invariants

assert(redlist(l));

cur = l;

while (cur != null) {

make_purple(cur);

cur = cur→next;

}

assert(purplelist(l));

l
redlist

cur
purplelist

l
redlist

l
purplelist

Prefix SegmentPrefix Segment
Described
by ?

SuffixSuffix
Described
by checkers

Chang, Rival, Necula - Shape Analysis with Structural Invariant Checkers 14

Prefix segments as partial checker runsPrefix segments as partial checker runs

c(…) c(…)

l cur
purplelist

purplelist(l)

purplelist(…)

purplelist(cur)

AbstractionAbstraction

Checker RunChecker Run

α β
c

c(α)

c(…) c(…)

c(…) c(β)

Chang, Rival, Necula - Shape Analysis with Structural Invariant Checkers 15

OutlineOutline

• Memory abstraction
– Restrictions on checkers
– Challenge: Intermediate invariants

• Analysis algorithm
– Strong updates
– Challenge: Ensuring termination

• Experimental results

Chang, Rival, Necula - Shape Analysis with Structural Invariant Checkers 16

Flow function: Unfold and update edgesFlow function: Unfold and update edges

listnext next
x

materialize: x→next, x→next→next

update: x→next = x→next→next

list

next

next
x

x→next =
x→next→next;

UnfoldUnfold inductive
definition

Strong updates
using disjointnessdisjointness
of regions

listx
next

next
x

∨

Chang, Rival, Necula - Shape Analysis with Structural Invariant Checkers 17

Challenge: Termination and precisionChallenge: Termination and precision

last = l;
cur = l→next;
while (cur != null) {

// … cur, last …
if (…) last = cur;
cur = cur→ next;

}

list
l, last

next
cur

list
l

next next
curlast

list
l

next next next
curlast

widen (canonicalize, blur)

list list list
l

next
curlast

ObservationObservation
Previous iterates
are “less unfolded”

FoldFold into
checker edges

But where and
how much?

Chang, Rival, Necula - Shape Analysis with Structural Invariant Checkers 18

HistoryHistory--guided foldingguided folding

listnext

listnext next

listnextlist

l, last

last

cur

cur

l

l

last cur

l,

list ?

v

?

list

Yes

last = l;
cur = l→next;
while (cur != null) {

if (…) last = cur;
cur = cur→ next;

}
• Match edges to

identify where
to fold

• Apply local
folding rules

next
l last

l last

l, last

Chang, Rival, Necula - Shape Analysis with Structural Invariant Checkers 19

Summary:Summary:
Enabling checkerEnabling checker--based shape analysisbased shape analysis

• Built-in disjointness of memory regions
– As in separation logic
– Checkers read any object field only once in a run

• Generalized segment abstraction
– Based on partial checker runs

• Generalized folding into inductive predicates
– Based on iteration history (i.e., a widening operator)

α β
c

next list
l cur

list
l, cur

list list
l cur

Chang, Rival, Necula - Shape Analysis with Structural Invariant Checkers 20

OutlineOutline

• Memory abstraction
– Restrictions on checkers
– Challenge: Intermediate invariants

• Analysis algorithm
– Strong updates
– Challenge: Ensuring termination

• Experimental results

Chang, Rival, Necula - Shape Analysis with Structural Invariant Checkers 21

Experimental resultsExperimental results

0420.010s023search tree find

0640.016s027list remove element

1649.710s894scull driver

0760.087s033skip list rebalance

0740.021s056list insertion sort

0310.007s019list reverse

Max. Num
Iterations at a
Program Point

Max. Num.
Graphs at a

Program Point

Analysis
Time

Lines of
Code

Benchmark

• Verified structural invariants as given by checkers are
preserved across data structure manipulation

• Limitations (in scull driver)
– Arrays not handled (rewrote as linked list), char arrays ignored

• Promising as far as number of disjuncts

Chang, Rival, Necula - Shape Analysis with Structural Invariant Checkers 22

ConclusionConclusion

• Invariant checkers can form the basis of a
memory abstraction that
– Is easily extensible on a per-program basis
– Expresses developer intent

• Critical for usability
• Prerequisite for scalability

• Start with usability
• Work towards expressivity

What can checker-based
shape analysis do for you?

