Shape Analysis with Structural
Invariant Checkers

Bor-Yuh Evan Chang
Xavier Rival
George C. Necula

University of California, Berkeley

SAS 2007

Example: Typestate with shape analysis

Concrete Example

CEECEEESS > o red list”

cur = I;

Abstraction

program-specific predicate

while (cur = null) {

assert(cur iIs red)]

conitve

make_purple(cur),i make purple(-) could be

~EE-EE-EE-
cur

cur = cur—next;

e lock(")
e free(-)
e open(-)

Chang, Rival, Necula - Shape Analysis with Structural Invariant Checkers

Shape analysis Is not yet practical

Usability: Choosing the heap abstraction difficult

Space Invader
[Distefano et al.]

g°

- . red(n) A
red list” |5 n ¢ reach(l)
TVLA
[Sagiv et al.]
O
Our Proposal
developer a

Built-in high-level predicates
- Hard to extend
+ No additional user effort

Parametric in low-level,
analyzer-oriented predicates

+ Very general and expressive
Hard for non-expert

Parametric in high-level,
developer-oriented predicates

+ Extensible
+ Easier for developers

Chang, Rival, Necula - Shape Analysis with Structural Invariant Checkers

Shape analysis Is not yet practical

Scalability: Finding right level of abstraction difficult
=P Over-reliance on disjunction for precision

o “purple “red
%ﬂé list segment” | list”
[]
)
developer cur
? emp V O V O@ V ‘|O V ICC%:@ \/
OLONY O+O>© Vv O>©>O Vv O»@»O»b
shape analyzer I cur I cur cur cur

Chang, Rival, Necula - Shape Analysis with Structural Invariant Checkers 4

Hypothesis

The developer can describe the memory in a
compact manner at an abstraction level sufficient
for the properties of interest (at least informally).

e Good abstraction is program-specific

“purple “red
list segment™ | list”

A abstraction ideas
cur LU

L o F
f)

developer) shape analyzer

Chang, Rival, Necula - Shape Analysis with Structural Invariant Checkers

Observation

Checking code expresses a shape invariant and an
Intended usage pattern.

bool redlist(List* 1) {
If (1 == null)
return true;
else
return
| —»color ==red
&& redlist(l—next);

Chang, Rival, Necula - Shape Analysis with Structural Invariant Checkers

Proposal

An automated shape analysis with a memory
abstraction based on invariant checkers.

' bool redlist(List* I) {
i if (I == null)

1 return true; |

{I 1 else i

= | return !
] I::> i I—scolor ==red | I::>

; ' &&redlist(I—next);

D} '

developer checkers shape analyzer
e Extensible
- Abstraction based on the developer-supplied checkers

e Targeted for Usability
- Code-like global specification, local invariant inference

e Targeted for Scalability
- Based on the hypothesis

Chang, Rival, Necula - Shape Analysis with Structural Invariant Checkers

Outline

e Memory abstraction
- Restrictions on checkers
- Challenge: Intermediate invariants

e Analysis algorithm
- Strong updates
- Challenge: Ensuring termination

e Experimental results

Chang, Rival, Necula - Shape Analysis with Structural Invariant Checkers

Abstract memory using ch‘:‘s'o‘n;‘e‘number of

points-to edges that
Graphs satisfies checker c”

values L
© (address or null) () — checker run
points-to relation @C_>@ partial run

(memory cell)

Example
“Disjointly, a—next = 3, v—next = 3, and 3 is a list.”

disjoint memory regions

Chang, Rival, Necula - Shape Analysis with Structural Invariant Checkers

Checkers as inductive definitions

bool list(List* 1) {

else

if (I == null)
return true;

=)

return list(I—next);

Iistgg

Iist(:...)

Disjointness

Checker run can
dereference any
object field only
once

g
emp }V

a = null

/' ' i
@ next @ list }

a #= null

next next

Chang, Rival, Necula - Shape Analysis with Structural Invariant Checkers 10

What can a checker do?

e |n this talk, a checker ...
- 1S a pure, recursive function
- dereferences any object field only once during a run
- only one argun Traniers] Eereferenced (traversal arg)

‘ool skipl (Skip+ Iy { Lrgument

if (I == null) return true; |
else {

Only fields

SKip* s = |-
return skin0 from traversal
P argument

&& skiplsr,

Chang, Rival, Necula - Shape Analysis with Structural Invariant Checkers

back to the abstract domain ...

i bool redlist(List* I) {
v if (1==null)
| return true;
1 else
return
|—color == red
i && redlist(l—snext);

checkers shape analyzer

Challenge: Intermediate invariants

assert(redlist(l)); O_red.ist I

|
cur = |;

while (cur !'= null) {

: : redlist

purplelist

I cur
i ﬂ
make_purple(cur); |Prefix Segment Suffix
_ i Described Described
Cur = cur—next; by ? by checkers
}
assert(purplelist(l)); ourplelist

Chang, Rival, Necula - Shape Analysis with Structural Invariant Checkers 13

Prefix segments as partial checker runs

Abstraction (O

rpleli
| burple st cur

Checker Run

purplelist(cur)

Chang, Rival, Necula - Shape Analysis with Structural Invariant Checkers 14

Outline

e Memory abstraction
- Restrictions on checkers
- Challenge: Intermediate invariants

e Analysis algorithm
- Strong updates
- Challenge: Ensuring termination

e Experimental results

Chang, Rival, Necula - Shape Analysis with Structural Invariant Checkers

15

Flow function: Unfold and update edges

~ X—next—next; | x " ot

: : M
Unfold inductive materialize: x—next, x—next—next
definition {}

::: next ::: \/ ::: next ::: next ::: list
X X

-
Strong updates update: x—next = x—next—next

using disjointness {}
next list
X

of regions
Chang, Rival, Necula - Shape Analysis with Structural Invariant Checkers 16

Challenge: Termination and precision

last =) i (j—)O—
5 : — next list

. § Observation |, last cur

[g Previous iterates

are “less unfolded” O O O N
../ TaoC — our, next next list

| I last cur
cur = cur— next; g

Cnext Cnext C next C list |

I last cur
Fold into _ o
checker edges widen (canonicalize, blur)

But where and CHO—)CHO‘
list next list list

how much? I last cur

Chang, Rival, Necula - Shape Analysis with Structural Invariant Checkers 17

. . _ last = I;
History-guided folding our = I-snext;
;ghlle (cur !=null) {
§ if (...) last = cur;
cur = cur— next;

e Match edges to | |
Identify where

I, las cur
= Apply local :
folding rules : W
| | last cur
ne ' o .
| 1, last last ° -
C list : : :

?

I last !
?7 Yes C list | Cnext C list I

| last cur

Chang, Rival, Necula - Shape Analysis with Structural Invariant Checkers 18

Summary:
Enabling checker-based shape analysis

e Built-in disjointness of memory regions
- As In separation logic
- Checkers read any object field only once in a run

e Generalized segment abstraction
- Based on partial checker runs

C

e Generalized folding into inductive predicates
- Based on iteration history (i.e., a widening operator)

C list | W Cnext C list E C Iis;I C list
I, cur | cur I cur

Chang, Rival, Necula - Shape Analysis with Structural Invariant Checkers 19

Outline

e Memory abstraction
- Restrictions on checkers
- Challenge: Intermediate invariants

e Analysis algorithm
- Strong updates
- Challenge: Ensuring termination

e Experimental results

Chang, Rival, Necula - Shape Analysis with Structural Invariant Checkers

20

Experimental results

Benchmark Lines of Analysis Max. Num. Max. Num
Code Time Graphs at a Iterations at a
Program Point | Program Point
list reverse 19 0.007s 1 3
list remove element 27 0.016s 4 6
list insertion sort 56 0.021s 4 7
search tree find 23 0.010s 2 4
skip list rebalance 33 0.087s 6 7
scull driver 894 9.710s 4 16

e Verified structural invariants as given by checkers are
preserved across data structure manipulation

e Limitations (in scull driver)
- Arrays not handled (rewrote as linked list), char arrays ignored

e Promising as far as number of disjuncts

Chang, Rival, Necula - Shape Analysis with Structural Invariant Checkers

21

Conclusion

e |[nvariant checkers can form the basis of a
memory abstraction that

- Is easily extensible on a per-program basis

- Expresses developer intent
e Critical for usability
e Prerequisite for scalability

e Start with usability
e Work towards expressivity

Chang, Rival, Necula - Shape Analysis with Structural Invariant Checkers

22

What can checker-based
shape analysis do for you?

