Analysisi el Low:Level Ceder Using
Coeperaung Decempliers

Bor-Yuh Evan Chang
Matthew Harren
George C. Necula

University of California, Berkeley

SAS 2006

Wiy AnalyzerlLew=Level Code?

source asm [E\
code | s e e 0 code [N < J/
. = /7

N

Code Producer + Code Consumer

e Analyze what Is executed

- Avoids issues with compiler bugs and
underspecified source-language semantics

e Analyze when source Is unavailable
- Applications in mobile code safety assurance

Vietivation

Analyzers for low-level code are more
difficult and tedious to build

Example: Java Type Analysis

class C extends P {

Fisp

rC = m [rSp]

(re - P, ...

Unsound: if (r; = 0) Loy _
DependeﬂCl rl g mlv 1 : <-rC . nonr-]u“ P’
be CarefuII\J Equal i Type analysis intermixed

J l e

with low-level reasoning

N e.g., args on stack
m[aﬁﬁ“]
(m[rg,] - nonnull P, ...

icall [r,]

)
)
)
)

)

OSER/atiens

e Handling low-level implementation details Is
common to many low-level analyzers
- call stack (provides “local variables™)
- register allocation
- dependencies across instructions

e Ad-hoc modularization attempts failed

Goal: Design a modular framework that makes it
easy to write high-level analyses
- for different architectures
- for the output of different compilers

OSER/atiens

e Intermediate languages abstract varying
levels of detail
- E.g., source language hides compiler details

- Provides well-specified interface between
(de)compiler phases

Proposal: Structure low-level analyses as
small, incremental decompilation
phases

Basic ldea

A R

ro := mlr,+12]
if (r.=0)L
r, := mfr.]
r, := mfr,;+28]
ep = ligp = 4
mlrg] =
mrg,+16]

icall [r]

exc

static void f(C c) { c.m(); }

?(tc): 0 ?(c): f(obj c): D ?(C C): N
r. .=t ¥;
if (r. = 0) L, |f(Local Variables|__ || ifc=0)L,.
r, == mlr]
= m[r,+28] / Syni Dynamic
// Evall Dispatch
icall [rl](tl/ icall invokevirtual c.m()
[m[m[]+28] [c, 28]
(c) 0

25

UL lamy

Difficulities

e Unidirectional communication + analysis
IS Insufficient

-

icall [r]

_

7

~

-

icall [r](t,)

Needs to know

“call with 1 arg”

~

i gy

4 4 N[

icall invokevirtual c.m()
[m[m[c]+28] [c, 28]
(c) 0

)

Can answer “method call to C.m()”

because knows about the class table
but needs previous instrs for analysis

OVERVIEW! of ther Eramework

e To enable bidirectional communication
- cannot decompile In stages
- decompile at all levels simultaneously

e Each decompiler analyzes the preceding
Instructions before decompiling the next

e “Rinelire™ “Reduced product”

QUERES

a N
f: f(t.):
r,:= m[rsp+12] r.:=t
if (rc = 0) I‘exc if (rc - O) I‘EXC
r, :=m[r] r, :==mfr]

r, := mfr+28]

o =l -4

m[rg,] =

r, := mlr +28]

m[r,

P

icall [r]

static void f(C c) { c.m(); }

an
f(obj c):

if (c=0)L

~

exc

c(C C): A

if(c=0)L

exc

Yes,
0 args

Communication SUmmeary,

e Low-to-High (Primary)
- Decompilation Stream
e High-to-Low
- Queries

e |[nitiated by lower-level
e Questions decompiled

- Reinterpretations
e |[nitiated by higher-level
e Answers decompiled

SEUNERESS off Decomplier PIpelines

e Operational semantics for each language
e Safety encoded as “not getting stuck”

SeUndRESs ofi Decomplier PIpelines

]
h—H__>h/

r :
> € y(2) ||_ ~

e Safe at high-level implies safe at low-level

EXPERMERLS

e Evaluate flexibility
e Evaluate modularity

e Evaluate applicability of existing source-
level tools

Elexibility

X86 E‘ga - ¢

) - E@a m— Java
g

40-50%

a—) Cool

55-60%

e For the output of gcc, gcj, and compilers for
Cool (a “mini-Java”)

e To Implement JavaTypes (no exns, interfaces)
- 3-4 hours, 500 lines

Viedulanty: Decompilers,vs: VIonelitaic
Type Checking Compiled Cool

Modularization

4000 -
220l OlLs
3000
8 @ Locals
8 2500 e
- ymEva
S 2000 3047
%) m OO
Q 1500
= 1000 m CoolTypes
500 @ Table Parsing

588

Decompilers Monolithic
Analyzer

e Modules approx. same size

e Compared on 10,339 tests
- 49 tests, 211 compilers
- 182 disagreements (pass/fail)

e Decompilers (new)
- 1 incompletenesses
- 0 soundness bugs

e Monolithic (used heavily)
- 5 incompletenesses
- 3 soundness bugs

- mishandling of run-time
library functions
e Calls uniform - Locals
e SSA - SymEval

Applicanilitys el Seurce-Icevel Iioo)S

e Experimental Setup

- Compiled 3 previously
reported benchmarks
for BLAST (B) and

Cqual (Q)

- Verified presence (or
absence) of bugs as In
the original

Code Size Decomp Verification

Test Case C x86 Orig Decomp

(kloc) (kloc) (s) (s) (9)

gomouse.c (B) 8.0 1.9 0.74 0.34 1.26

tlan.c (B) 10.9 10.7 8.16 41.20 94.30

gamma_dma.c (Q) 11.2 5.2 2.44 0.97 1.05

e [Limitations

- Source-level tools
needed types

- Recovered types from
debugging information

e On optimized code
(Qpmouse.c)

- gcc -02 except “merge
constants™

- reads byte in middle of
word-sized field

Conclusion: Lessons Learned

e Need types for existing source analyses
- E.g., BLAST on untyped C does not work

e Very useful low-level modules

- Locals: recover statically-scoped local
variables

- SymkEval: recover normalized expr. trees, SSA
e Defining output IL guides analysis impl.

- IL specifies what analysis should guarantee

- Leads to small and well-isolated modules

fRank You!

http://www.cs.berkeley.edu/~bec

HIgh-te-LLovw Communication: Exaniples

e Queries
- “Does e point to a function/method?”’
- “Does e point to an object?”

e Reinterpretations
- Exceptional successor for try-catch blocks

