
Analysis of LowAnalysis of Low--Level Code Using Level Code Using
Cooperating Cooperating DecompilersDecompilers

Bor-Yuh Evan Chang
Matthew Harren
George C. Necula

University of California, Berkeley

SAS 2006

Chang, Harren, Necula - Analysis of Low-Level Code Using Cooperating Decompilers

Why Analyze LowWhy Analyze Low--Level Code?Level Code?

• Analyze what is executed
– Avoids issues with compiler bugs and

underspecified source-language semantics

• Analyze when source is unavailable
– Applications in mobile code safety assurance

asm
code

asm
code

source
code

source
code

compiler

Code ConsumerCode Producer

analyzer

Chang, Harren, Necula - Analysis of Low-Level Code Using Cooperating Decompilers

MotivationMotivation

class C extends P {
void m() { … }

}

P p = new P();
P c = … ? new C() : p;
…
c.m();

rrc := mm[rrsp]

if (rrc = 0) Lexc

rr1 := mm[rrc]

rr1 := mm[rr1+28]

rrsp := rrsp - 4

mm[rrsp] := mm[rrsp+4]

icall [rr1]

Analyzers for low-level code are more
difficult and tedious to build
Example: Java Type Analysis

hrrc : P, … i

hrrc : nonnull P, …i

hrr1 : disp(P), …i

hrr1 : meth(P,28), …i

hmm[rrsp] : nonnull P, …i

Type analysis intermixed
with low-level reasoning
• e.g., args on stack

UnsoundUnsound::
Dependencies must
be carefully trackedEqual

Chang, Harren, Necula - Analysis of Low-Level Code Using Cooperating Decompilers

ObservationsObservations

• Handling low-level implementation details is
common to many low-level analyzers
– call stack (provides “local variables”)
– register allocation
– dependencies across instructions

• Ad-hoc modularization attempts failed

GoalGoal:: Design a modular framework that makes it
easy to write high-level analyses

– for different architectures
– for the output of different compilers

Chang, Harren, Necula - Analysis of Low-Level Code Using Cooperating Decompilers

ObservationsObservations

• Intermediate languages abstract varying
levels of detail
– E.g., source language hides compiler details
– Provides well-specified interface between

(de)compiler phases

ProposalProposal:: Structure low-level analyses as
small, incremental decompilation
phases

Chang, Harren, Necula - Analysis of Low-Level Code Using Cooperating Decompilers

Basic IdeaBasic Idea static void f(C c) { c.m(); }

f:

…

rrc := mm[rrsp+12]

if (rrc = 0) Lexc

rr1 := mm[rrc]

rr1 := mm[rr1+28]

rrsp := rrsp - 4

mm[rrsp] :=
mm[rrsp+16]

icall [rr1]

…

f:

…

rrc := mm[rrsp+12]

if (rrc = 0) Lexc

rr1 := mm[rrc]

rr1 := mm[rr1+28]

rrsp := rrsp - 4

mm[rrsp] :=
mm[rrsp+16]

icall [rr1]

…

f(ttc):

rc := ttc

if (rrc = 0) Lexc

rr1 := mm[rrc]

rr1 := mm[rr1+28]

tt1 := ttc

icall [rr1](tt1)

f(ttc):

rc := ttc

if (rrc = 0) Lexc

rr1 := mm[rrc]

rr1 := mm[rr1+28]

tt1 := ttc

icall [rr1](tt1)

f(c):

if (c = 0) Lexc

icall
[mm[mm[c]+28]]
(c)

f(c):

if (c = 0) Lexc

icall
[mm[mm[c]+28]]
(c)

f(obj c):

if (c = 0) Lexc

invokevirtual
[c, 28]
()

f(obj c):

if (c = 0) Lexc

invokevirtual
[c, 28]
()

f(C c):

if (c = 0) Lexc

c.m()

Locals SymEval OO JavaTypes your analyzer

Symbolic
Evaluation

Dynamic
Dispatch

Local Variables

Chang, Harren, Necula - Analysis of Low-Level Code Using Cooperating Decompilers

DifficultiesDifficulties

• Unidirectional communication + analysis
is insufficient

icall [rr1](tt1) icall
[mm[mm[c]+28]]
(c)

invokevirtual
[c, 28]
()

c.m()icall [rr1]

Locals SymEval OO JavaTypes

Needs to knowNeeds to know
“call with 1 arg”

Can answerCan answer “method call to C.m()”
because knowsknows about the class table
but needsneeds previous instrs for analysis

Chang, Harren, Necula - Analysis of Low-Level Code Using Cooperating Decompilers

Overview of the FrameworkOverview of the Framework

• To enable bidirectional communication
– cannot decompile in stages
– decompile at all levels simultaneously

• Each decompiler analyzes the preceding
instructions before decompiling the next

• “Pipeline” “Reduced product”

Chang, Harren, Necula - Analysis of Low-Level Code Using Cooperating Decompilers

f:
…

rc := m[rsp+12]

if (rc = 0) Lexc

r1 := m[rc]

r1 := m[r1+28]

rsp := rsp - 4

m[rsp] :=
m[rsp+16]

icall [rr1]

…

f(tc):

rc := tc

if (rc = 0) Lexc

r1 := m[rc]

r1 := m[r1+28]

t1 := tc

icall [rr1](tt1)

f(c):

if (c = 0) Lexc

icall
[mm[mm[c]+28]]
(c)

f(obj c):

if (c = 0) Lexc

invokevirtual
[c, 28]
()

f(C c):

if (c = 0) Lexc

c.m()

QueriesQueries static void f(C c) { c.m(); }

Locals SymEval OO JavaTypes

rsp : sp(-12) r1 = m[m[c]+28]]
t1 = c

c : nonnull obj c : C

isFunc(r1)?isFunc(m[m[c]+28]])?isMethod(c,28)?
Yes,

0 args
Yes,
1 arg

Yes,
1 arg

Chang, Harren, Necula - Analysis of Low-Level Code Using Cooperating Decompilers

Communication SummaryCommunication Summary

• Low-to-High (Primary)
– Decompilation Stream

• High-to-Low
– Queries

• Initiated by lower-level
• Questions decompiled

– Reinterpretations
• Initiated by higher-level
• Answers decompiled

Chang, Harren, Necula - Analysis of Low-Level Code Using Cooperating Decompilers

Soundness of Soundness of DecompilerDecompiler PipelinesPipelines

• Operational semantics for each language
• Safety encoded as “not getting stuck”

IL

IH

l l0

h h0

Chang, Harren, Necula - Analysis of Low-Level Code Using Cooperating Decompilers

Soundness of Soundness of DecompilerDecompiler PipelinesPipelines

• Safe at high-level implies safe at low-level

a a0

IL

IH

l l0

h h0

l ∈ γ(a)

Chang, Harren, Necula - Analysis of Low-Level Code Using Cooperating Decompilers

ExperimentsExperiments

• Evaluate flexibility

• Evaluate modularity

• Evaluate applicability of existing source-
level tools

Chang, Harren, Necula - Analysis of Low-Level Code Using Cooperating Decompilers

FlexibilityFlexibility

• For the output of gcc, gcj, and compilers for
Cool (a “mini-Java”)

• To implement JavaTypes (no exns, interfaces)
– 3-4 hours, 500 lines

Locals SymEval JavaTypes

CoolTypes

OO

CTypes

MIPSMIPS

x86x86
C

Cool

Java

40-50%

55-60%

Chang, Harren, Necula - Analysis of Low-Level Code Using Cooperating Decompilers

Modularization

646 588

1060

3047497

660

358
644

0
500

1000
1500
2000

2500
3000
3500
4000

Decompilers Monolithic
Analyzer

Li
ne

s
of

 C
od

e

ILs

Locals

SymEval

OO

CoolTypes

Table Parsing

Modularity: Modularity: DecompilersDecompilers vs. Monolithicvs. Monolithic

• Compared on 10,339 tests
– 49 tests, 211 compilers
– 182 disagreements (pass/fail)

• Decompilers (new)
– 1 incompletenesses
– 0 soundness bugs

• Monolithic (used heavily)
– 5 incompletenesses
– 3 soundness bugs
– mishandling of run-time

library functions
• Calls uniform - Locals
• SSA - SymEval

Type Checking Compiled CoolType Checking Compiled Cool

• Modules approx. same size

Chang, Harren, Necula - Analysis of Low-Level Code Using Cooperating Decompilers

Applicability of SourceApplicability of Source--Level ToolsLevel Tools

• Experimental Setup
– Compiled 3 previously

reported benchmarks
for BLAST (B) and
Cqual (Q)

– Verified presence (or
absence) of bugs as in
the original

1.050.972.445.211.2(Q)gamma_dma.c

94.3041.208.1610.710.9(B)tlan.c

1.260.340.741.98.0(B)qpmouse.c

Decomp
(s)

Orig
(s)(s)

x86
(kloc)

C
(kloc)

VerificationDecompCode Size

Test Case

• Limitations
– Source-level tools

needed types
– Recovered types from

debugging information

• On optimized code
(qpmouse.c)
– gcc –O2 except “merge

constants”
– reads byte in middle of

word-sized field

Chang, Harren, Necula - Analysis of Low-Level Code Using Cooperating Decompilers

Conclusion: Lessons LearnedConclusion: Lessons Learned

• Need types for existing source analyses
– E.g., BLAST on untyped C does not work

• Very useful low-level modules
– Locals: recover statically-scoped local

variables
– SymEval: recover normalized expr. trees, SSA

• Defining output IL guides analysis impl.
– IL specifies what analysis should guarantee
– Leads to small and well-isolated modules

Thank You!Thank You!

http://www.cs.berkeley.edu/~bec

Chang, Harren, Necula - Analysis of Low-Level Code Using Cooperating Decompilers

HighHigh--toto--Low Communication ExamplesLow Communication Examples

• Queries
– “Does e point to a function/method?”
– “Does e point to an object?”

• Reinterpretations
– Exceptional successor for try-catch blocks

