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of type Activity

of type Activity
Android 

OS

a_static_field

program heap

Activity objects 
encapsulate the UI

I 
can’t collect 

this dead 
Activity!

Bug: Holding reference to “old” Activity

“an Activity leak”

How?!?
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“Do not keep long-lived references to a context-activity”

I don’t know how I 
created a long-lived 
reference to an Activity!

Often: A 
misunderstanding of 
a library causes the 
library to keep the 
Activity reference.
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The expert recommendation ...

A Specific Property to Check: 
!
No Activity is ever reachable from a static field.

“Do not keep long-lived references to a context-activity”
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Compute a points-to 
graph and look for such 
points-to paths

This won’t work because …
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The well-known false alarm problem!

And noisily 
repeated over 

and over!

Oh 
Verifier, help 
me prove my 

program has no 
bugs

On line 142, 
there may be a 

bug

Isn’t it obvious 
this can’t 

happen!?!?

Known: Precise points-to analysis challenging
impossible?enough^

Hind (2001). “Pointer Analysis: Haven’t We Solved This Problem Yet?” 
‣ 75 papers, 9 PhD theses
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Spirit of VMCAI: Recognize strength in combining 
V-MC-AI approaches

This talk: 
Applied to heap 

reachability



VMCAI: Make tradeoffs based on focus

VMCAI ToolProgram

Spec-
ification

✔
proof of no bug witness to a bug

or

alarms 
of 

maybe 
bugs

✘
timeout  

“bound-out”

or

Dijkstra, Floyd, Hoare, … 
ESC, Spec#, Boogie, Caduceus, Havoc, Calysto, Jahob, VCC, Dryad, …



VMCAI: Make tradeoffs based on focus

VMCAI ToolProgram

Spec-
ification

✔
proof of no bug witness to a bug

or

alarms 
of 

maybe 
bugs

✘
timeout  

“bound-out”

or

Dijkstra, Floyd, Hoare, … 
ESC, Spec#, Boogie, Caduceus, Havoc, Calysto, Jahob, VCC, Dryad, …

Avoid



VMCAI: Make tradeoffs based on focus

VMCAI ToolProgram

Spec-
ification

✔
proof of no bug witness to a 

or

alarms 
of 

maybe 
bugs

✘
timeout  

“bound-out”

or

Tradeoff

Dijkstra, Floyd, Hoare, … 
ESC, Spec#, Boogie, Caduceus, Havoc, Calysto, Jahob, VCC, Dryad, …

Avoid



VMCAI: Make tradeoffs based on focus

VMCAI ToolProgram

Spec-
ification

✔
proof of no bug witness to a 

or

alarms 
of 

maybe 
bugs

✘
timeout  

“bound-out”

or

Tradeoff

Expressivity and Usability: Specification can 
eliminate false alarms (the right loopinv)

Dijkstra, Floyd, Hoare, … 
ESC, Spec#, Boogie, Caduceus, Havoc, Calysto, Jahob, VCC, Dryad, …

Avoid



VMCAI: Make tradeoffs based on focus

VMCAI ToolProgram

Spec-
ification

✔
proof of no bug witness to a bug

or

alarms 
of 

maybe 
bugs

✘
timeout  

“bound-out”

or

Clarke, Emerson, Sifakis, McMillan, … 
BDDs (SMV, …), CEGAR (SLAM, Blast, …), Interpolation (Impact, …), 
JPF, FSoft, CBMC, …



Tradeoff

VMCAI: Make tradeoffs based on focus

VMCAI ToolProgram

Spec-
ification

✔
proof of no bug witness to a bug

or

alarms 
of 

maybe 
bugs

✘
timeout  

“bound-out”

or

Clarke, Emerson, Sifakis, McMillan, … 
BDDs (SMV, …), CEGAR (SLAM, Blast, …), Interpolation (Impact, …), 
JPF, FSoft, CBMC, …



Tradeoff

VMCAI: Make tradeoffs based on focus

VMCAI ToolProgram

Spec-
ification

✔
proof of no bug witness to a bug

or

alarms 
of 

maybe 
bugs

✘
timeout  

“bound-out”

or

Avoid

Clarke, Emerson, Sifakis, McMillan, … 
BDDs (SMV, …), CEGAR (SLAM, Blast, …), Interpolation (Impact, …), 
JPF, FSoft, CBMC, …



Tradeoff

VMCAI: Make tradeoffs based on focus

VMCAI ToolProgram

Spec-
ification

✔
proof of no bug witness to a bug

or

alarms 
of 

maybe 
bugs

✘
timeout  

“bound-out”

or

Especially Desired!

Avoid

Clarke, Emerson, Sifakis, McMillan, … 
BDDs (SMV, …), CEGAR (SLAM, Blast, …), Interpolation (Impact, …), 
JPF, FSoft, CBMC, …



VMCAI: Make tradeoffs based on focus

VMCAI ToolProgram

Spec-
ification

✔
proof of no bug witness to a bug

or

alarms 
of 

maybe 
bugs

✘
timeout  

“bound-out”

or

Cousot, Cousot, … 
Polyhedra/Octagons/… (Apron), Astrée, Polyspace, Fluctuat, Clousot, 
SpaceInvader, Slayer, …



Avoid!

VMCAI: Make tradeoffs based on focus

VMCAI ToolProgram

Spec-
ification

✔
proof of no bug witness to a bug

or

alarms 
of 

maybe 
bugs

✘
timeout  

“bound-out”

or

Cousot, Cousot, … 
Polyhedra/Octagons/… (Apron), Astrée, Polyspace, Fluctuat, Clousot, 
SpaceInvader, Slayer, …



Avoid!

VMCAI: Make tradeoffs based on focus

VMCAI ToolProgram

Spec-
ification

✔
proof of no bug witness to a bug

or

alarms 
of 

maybe 
bugs

✘
timeout  

“bound-out”

or

Cousot, Cousot, … 
Polyhedra/Octagons/… (Apron), Astrée, Polyspace, Fluctuat, Clousot, 
SpaceInvader, Slayer, …

Tradeoff



Avoid!

VMCAI: Make tradeoffs based on focus

VMCAI ToolProgram

Spec-
ification

✔
proof of no bug witness to a bug

or

alarms 
of 

maybe 
bugs

✘
timeout  

“bound-out”

or

Cousot, Cousot, … 
Polyhedra/Octagons/… (Apron), Astrée, Polyspace, Fluctuat, Clousot, 
SpaceInvader, Slayer, …

Specificity: “Right” domains on can 
reduce or eliminate false alarms

Tradeoff



Back to …



A candidate for statically answering, 
“Is there an Activity leak?”

Is there a program 
execution where at 
some time 
!

!

!

!

!

 ?

a_static_field

of type Activity

Can be answered with a 
points-to analysis

Compute a points-to 
graph and look for such 
points-to paths

This won’t work because …



alarms 
of 

maybe 
bugs

Thresher [SAS’11,PLDI’13] attacks alarm triage for 
heap reachability properties

✘

Program

✔
proof of no bug witness to a bug

or

timeout  
“bound-out”

or



!
!

Leak 
Alarms

Tool

Thresher [SAS’11,PLDI’13] attacks alarm triage for 
heap reachability properties

✘

Program
Points-To 
Analyzer

Points-To 
Facts

✔
proof of no bug witness to a bug

or

timeout  
“bound-out”

or



!
!

Leak 
Alarms

Tool

Thresher [SAS’11,PLDI’13] attacks alarm triage for 
heap reachability properties

✘

Program
Points-To 
Analyzer

Points-To 
Facts

✔
proof of no bug witness to a 

or

timeout  
“bound-out”

or



!
!

Leak 
Alarms

Tool

Thresher [SAS’11,PLDI’13] attacks alarm triage for 
heap reachability properties

✘

Program
Points-To 
Analyzer

Points-To 
Facts

✔
proof of no bug witness to a 

or

timeout  
“bound-out”

or



!
!

Leak 
Alarms

Tool

Thresher [SAS’11,PLDI’13] attacks alarm triage for 
heap reachability properties

✘

Manual 
Triaging

Program
Points-To 
Analyzer

Points-To 
Facts

✔
proof of no bug witness to a 

or

timeout  
“bound-out”

or



!
!

Leak 
Alarms

Tool

Thresher [SAS’11,PLDI’13] attacks alarm triage for 
heap reachability properties

✘

Manual 
Triaging

Program
Points-To 
Analyzer

Points-To 
Facts

✔
proof of no bug witness to a 

or

timeout  
“bound-out”

or



witness to a bug

!
!

Leak 
Alarms

Tool

Thresher [SAS’11,PLDI’13] attacks alarm triage for 
heap reachability properties

✘

Manual 
Triaging

Program
Points-To 
Analyzer

Points-To 
Facts

✔
proof of no bug

or

timeout  
“bound-out”

or



witness to a bug

!
!

Leak 
Alarms

Tool

Thresher [SAS’11,PLDI’13] attacks alarm triage for 
heap reachability properties

✘

Manual 
Triaging

Program
Points-To 
Analyzer

Points-To 
Facts

✔
proof of no bug

or

timeout  
“bound-out”

or

Prove alarms false with a witness search



witness to a bug

!
!

Leak 
Alarms

Tool

Thresher [SAS’11,PLDI’13] attacks alarm triage for 
heap reachability properties

✘

Manual 
Triaging

Program
Points-To 
Analyzer

Points-To 
Facts

✔
proof of no bug

or

timeout  
“bound-out”

or

Prove alarms false with a witness search

Proof Obligation User-Query 
[Dillig, Dillig, Aiken (2012)]  !

Alarm Clustering 
[Lee, Lee, Yi (VMCAI'12)] 



Manual triage for heap reachability reports



Manual triage for heap reachability reports



Manual triage for heap reachability reports

MyClass1.java

allocated here



Manual triage for heap reachability reports

MyClass1.java

allocated here

LibraryClass1.java



Manual triage for heap reachability reports

MyClass1.java

allocated here

LibraryClass1.java

MyClass2.java



Manual triage for heap reachability reports

MyClass1.java

allocated here

LibraryClass1.java

MyClass2.java

Library2Class1.class



Manual triage for heap reachability reports

MyClass1.java

allocated here

LibraryClass1.java

MyClass2.java

Library2Class1.class

java.util.HashMap.class



Manual triage for heap reachability reports

MyClass1.java

allocated here

LibraryClass1.java

MyClass2.java

Library2Class1.class

java.util.HashMap.class

MyClass3.java



Manual triage for heap reachability reports

MyClass1.java

allocated here

LibraryClass1.java

MyClass2.java

Library2Class1.class

java.util.HashMap.class

MyClass3.javaGet abstract heap path + allocation sites
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Assuming the user starts to triage an alarm …

What does the user need to do? He starts at, 
say, line 142 and traces back to see if a bug is 
possible given what’s happening.

If we filter most false alarms, the user can triage 
more quickly and get to true bugs earlier 
(without frustration).

We can do this with analysis (V+MC+AI)!
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Related: Staged analysis 
[Fink, Yahav, Dor, Ramalingam, Geay (2006)] 

refinement



A top-level filter: 
Filter leak alarms by refuting points-to edges

1

Is there a program 
execution where at 
some time 
!

!

!

!

!

 ?

a_static_field

of type Activity



A top-level filter: 
Filter leak alarms by refuting points-to edges

1

Is there a program 
execution where at 
some time 
!

!

!

!

!

 ?

a_static_field

of type Activity

Select a points-to 
edge in the path



A top-level filter: 
Filter leak alarms by refuting points-to edges

1

Is there a program 
execution where at 
some time 
!

!

!

!

!

 ?

a_static_field

of type Activity

Select a points-to 
edge in the path

Try to refute the 
edge with a 
symbolic analysis



A top-level filter: 
Filter leak alarms by refuting points-to edges

1

Is there a program 
execution where at 
some time 
!

!

!

!

!

 ?

a_static_field

of type Activity

Select a points-to 
edge in the path

Try to refute the 
edge with a 
symbolic analysis

✔
Refuted



A top-level filter: 
Filter leak alarms by refuting points-to edges

1

Is there a program 
execution where at 
some time 
!

!

!

!

!

 ?

a_static_field

of type Activity

Select a points-to 
edge in the path

Try to refute the 
edge with a 
symbolic analysis

✔
Refuted

False Alarm 
Soundly Filtered



A top-level filter: 
Filter leak alarms by refuting points-to edges

1

Is there a program 
execution where at 
some time 
!

!

!

!

!

 ?

a_static_field

of type Activity

Select a points-to 
edge in the path

Try to refute the 
edge with a 
symbolic analysis

✔
Refuted ✘

Not RefutedFalse Alarm 
Soundly Filtered



A top-level filter: 
Filter leak alarms by refuting points-to edges

1

Is there a program 
execution where at 
some time 
!

!

!

!

!

 ?

a_static_field

of type Activity

Select a points-to 
edge in the path

Try to refute the 
edge with a 
symbolic analysis

✔
Refuted ✘

Not Refuted

Repeat

False Alarm 
Soundly Filtered



A top-level filter: 
Filter leak alarms by refuting points-to edges

1

Is there a program 
execution where at 
some time 
!

!

!

!

!

 ?

a_static_field
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edge with a 
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✔
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Refutation: Derive a contradiction, that a points-to 
relation can’t actually hold
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Null object pattern: Should never be written to

Need interprocedural path-sensitivity
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Need strong updates
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A refutation analysis: Try to derive a 
contradiction with a backwards symbolic analysis

1

Derive a contradiction 
along all “backwards”  
path programs 
[Beyer, Henzinger, Majumdar, Rybalchenko (2007)] 

false false falsefalse
false

Derive refutations by trying to find witnesses

arr0·[-] ↦ act0 * true
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Soundness Criteria 1

Concrete 
Evaluation

Abstract 
Analysis

If                   such that               and              , 
then            .

Necessary Precondition Soundness Criteria

Cousot, Cousot, Fähndrich, Logozzo (VMCAI’13)
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Facts
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!o from { …,        ,… }ai

symbolic object 
instance (an address)

abstract loc in points-to 
(set of addresses)

Refute (derive false) if:
i > j ∧ i < j
or o·f↦p * o·f↦q ∧ p≠q
or o from ∅

Generalized disalias check: 
pt(x) ∩ pt(y) = ∅

Restriction on possible abstract 
locations based on flow in the 

backwards analysis



!
!

Leak 
Alarms

Tool

Roadmap: Thresher filters out false alarms by 
refuting them one-by-one.

✔

✘

Manual 
Triaging

Program
Points-To 
Analyzer 

(off-the-shelf)

Points-To 
Facts

Filter with 
Thresher

Idea  1 : Refute points-to on-demand with second precise “filter” analysis

Idea  2 : Leverage the facts from the first analysis in the filter analysis to scale

1

2

1

2



Is Thresher effective at filtering?

Thresher analyzes Java VM bytecode 

!

7 Android app benchmarks 

2,000 to 40,000 source lines of code 

+ 880,000 sources lines of Android 
framework code 

!

Off-the-shelf, state-of-the-art points-to 
analysis from WALA

1
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False alarms down to 17% from 63% (points-to analysis only) 
!

Thresher filters 88% of false alarms from points-to analysis
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Some Highlights

Thresher: Precise Refutations for Heap Reachability 

Assist in triage of queries about heap relations 

‣ Assume alarms false, prove them so (refute) automatically with a 
“partial” witness search 

‣ Reduced separation constraints with points-to facts 

‣ Filters out ∼90% of false alarms to expose true bugs 

‣ Application: Find memory leaks and eliminate crashes in Android

!
!

Leak 
Alarms

Filter with 
Thresher
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We reported this, Google fixed it 
https://android-review.googlesource.com/#/c/52183/
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