
Refuting Heap
Reachability

Bor-Yuh Evan Chang
University of Colorado Boulder

!

!

!
!

January 20, 2014
VMCAI 2014

Sam Blackshear
CU Boulder

Manu Sridharan
Samsung

At my first VMCAI
in 2005 (Paris)

!

as a young
PhD student

At my first VMCAI
in 2005 (Paris)

!

as a young
PhD student

“Spirit of VMCAI”
introduced in my

“formative
academic years”

A bug that manifests spectacularly …

A bug that manifests spectacularly …

A bug that manifests spectacularly …

A bug that manifests spectacularly …

Crash

Wow! Android memory leaks underly
rotation-based crashes.

Wow! Android memory leaks underly
rotation-based crashes. How?!?

Wow! Android memory leaks underly
rotation-based crashes.

Activity objects
encapsulate the UI

How?!?

Wow! Android memory leaks underly
rotation-based crashes.

of type Activity
Android

OS

Activity objects
encapsulate the UI

How?!?

Wow! Android memory leaks underly
rotation-based crashes.

of type Activity
Android

OS

Activity objects
encapsulate the UI

How?!?

Wow! Android memory leaks underly
rotation-based crashes.

of type Activity

of type Activity
Android

OS

Activity objects
encapsulate the UI

How?!?

Wow! Android memory leaks underly
rotation-based crashes.

of type Activity

of type Activity
Android

OS

a_static_field

program heap

Activity objects
encapsulate the UI

How?!?

Wow! Android memory leaks underly
rotation-based crashes.

of type Activity

of type Activity
Android

OS

a_static_field

program heap

Activity objects
encapsulate the UI

I
can’t collect

this dead
Activity!

How?!?

Wow! Android memory leaks underly
rotation-based crashes.

of type Activity

of type Activity
Android

OS

a_static_field

program heap

Activity objects
encapsulate the UI

I
can’t collect

this dead
Activity!

How?!?

Wow! Android memory leaks underly
rotation-based crashes.

of type Activity

of type Activity
Android

OS

a_static_field

program heap

Activity objects
encapsulate the UI

I
can’t collect

this dead
Activity!

Bug: Holding reference to “old” Activity

How?!?

Wow! Android memory leaks underly
rotation-based crashes.

of type Activity

of type Activity
Android

OS

a_static_field

program heap

Activity objects
encapsulate the UI

I
can’t collect

this dead
Activity!

Bug: Holding reference to “old” Activity

“an Activity leak”

How?!?

The expert recommendation ...

The expert recommendation ...

The expert recommendation ...

“Do not keep long-lived references to a context-activity”

The expert recommendation ...

“Do not keep long-lived references to a context-activity”

I don’t know how I
created a long-lived
reference to an Activity!

The expert recommendation ...

“Do not keep long-lived references to a context-activity”

I don’t know how I
created a long-lived
reference to an Activity!

Often: A
misunderstanding of
a library causes the
library to keep the
Activity reference.

The expert recommendation ...

The expert recommendation ...

The expert recommendation ...

“Do not keep long-lived references to a context-activity”

The expert recommendation ...

A Specific Property to Check:
!
No Activity is ever reachable from a static field.

“Do not keep long-lived references to a context-activity”

A candidate for statically answering,
“Is there an Activity leak?”

Is there a program
execution where at
some time
!

!

!

!

!

 ?

a_static_field

of type Activity

A candidate for statically answering,
“Is there an Activity leak?”

Is there a program
execution where at
some time
!

!

!

!

!

 ?

a_static_field

of type Activity

Can be answered with a
points-to analysis

A candidate for statically answering,
“Is there an Activity leak?”

Is there a program
execution where at
some time
!

!

!

!

!

 ?

a_static_field

of type Activity

Can be answered with a
points-to analysis

Compute a points-to
graph and look for such
points-to paths

A candidate for statically answering,
“Is there an Activity leak?”

Is there a program
execution where at
some time
!

!

!

!

!

 ?

a_static_field

of type Activity

Can be answered with a
points-to analysis

Compute a points-to
graph and look for such
points-to paths

This won’t work because …

The well-known false alarm problem!

The well-known false alarm problem!

Oh
Verifier, help
me prove my

program has no
bugs

The well-known false alarm problem!

Oh
Verifier, help
me prove my

program has no
bugs

On line 142,
there may be a

bug

The well-known false alarm problem!

And noisily
repeated over

and over!

Oh
Verifier, help
me prove my

program has no
bugs

On line 142,
there may be a

bug

Isn’t it obvious
this can’t

happen!?!?

The well-known false alarm problem!

And noisily
repeated over

and over!

Oh
Verifier, help
me prove my

program has no
bugs

On line 142,
there may be a

bug

Isn’t it obvious
this can’t

happen!?!?

The well-known false alarm problem!

And noisily
repeated over

and over!

Oh
Verifier, help
me prove my

program has no
bugs

On line 142,
there may be a

bug

Isn’t it obvious
this can’t

happen!?!?

Known: Precise points-to analysis challenging

The well-known false alarm problem!

And noisily
repeated over

and over!

Oh
Verifier, help
me prove my

program has no
bugs

On line 142,
there may be a

bug

Isn’t it obvious
this can’t

happen!?!?

Known: Precise points-to analysis challenging

Hind (2001). “Pointer Analysis: Haven’t We Solved This Problem Yet?”
‣ 75 papers, 9 PhD theses

The well-known false alarm problem!

And noisily
repeated over

and over!

Oh
Verifier, help
me prove my

program has no
bugs

On line 142,
there may be a

bug

Isn’t it obvious
this can’t

happen!?!?

Known: Precise points-to analysis challenging
impossible?enough^

Hind (2001). “Pointer Analysis: Haven’t We Solved This Problem Yet?”
‣ 75 papers, 9 PhD theses

Next: A perspective on VMCAI and false alarms

Perspective: The false alarm problem and VMCAI

Perspective: The false alarm problem and VMCAI

VMCAI Tool

Perspective: The false alarm problem and VMCAI

VMCAI Tool

A “union” of VMCAI
tools and techniques

Perspective: The false alarm problem and VMCAI

VMCAI ToolProgram

Spec-
ification

A “union” of VMCAI
tools and techniques

Perspective: The false alarm problem and VMCAI

VMCAI ToolProgram

Spec-
ification

✔
proof of no bug witness to a bug

or

A “union” of VMCAI
tools and techniques

Perspective: The false alarm problem and VMCAI

VMCAI ToolProgram

Spec-
ification

✔
proof of no bug witness to a bug

or

A “union” of VMCAI
tools and techniques Happy!

Perspective: The false alarm problem and VMCAI

VMCAI ToolProgram

Spec-
ification

✔
proof of no bug witness to a bug

or

alarms
of

maybe
bugs

✘
timeout

“bound-out”

or

A “union” of VMCAI
tools and techniques Happy!

Perspective: The false alarm problem and VMCAI

VMCAI ToolProgram

Spec-
ification

✔
proof of no bug witness to a bug

or

alarms
of

maybe
bugs

✘
timeout

“bound-out”

or

A “union” of VMCAI
tools and techniques Happy!

Unhappy but inevitable. Research work to minimize

Perspective: The false alarm problem and VMCAI

VMCAI ToolProgram

Spec-
ification

✔
proof of no bug witness to a bug

or

alarms
of

maybe
bugs

✘
timeout

“bound-out”

or

A “union” of VMCAI
tools and techniques Happy!

Unhappy but inevitable. Research work to minimize

Spirit of VMCAI: Recognize strength in combining
V-MC-AI approaches

Perspective: The false alarm problem and VMCAI

VMCAI ToolProgram

Spec-
ification

✔
proof of no bug witness to a bug

or

alarms
of

maybe
bugs

✘
timeout

“bound-out”

or

A “union” of VMCAI
tools and techniques Happy!

Unhappy but inevitable. Research work to minimize

Spirit of VMCAI: Recognize strength in combining
V-MC-AI approaches

This talk:
Applied to heap

reachability

VMCAI: Make tradeoffs based on focus

VMCAI ToolProgram

Spec-
ification

✔
proof of no bug witness to a bug

or

alarms
of

maybe
bugs

✘
timeout

“bound-out”

or

Dijkstra, Floyd, Hoare, …
ESC, Spec#, Boogie, Caduceus, Havoc, Calysto, Jahob, VCC, Dryad, …

VMCAI: Make tradeoffs based on focus

VMCAI ToolProgram

Spec-
ification

✔
proof of no bug witness to a bug

or

alarms
of

maybe
bugs

✘
timeout

“bound-out”

or

Dijkstra, Floyd, Hoare, …
ESC, Spec#, Boogie, Caduceus, Havoc, Calysto, Jahob, VCC, Dryad, …

Avoid

VMCAI: Make tradeoffs based on focus

VMCAI ToolProgram

Spec-
ification

✔
proof of no bug witness to a

or

alarms
of

maybe
bugs

✘
timeout

“bound-out”

or

Tradeoff

Dijkstra, Floyd, Hoare, …
ESC, Spec#, Boogie, Caduceus, Havoc, Calysto, Jahob, VCC, Dryad, …

Avoid

VMCAI: Make tradeoffs based on focus

VMCAI ToolProgram

Spec-
ification

✔
proof of no bug witness to a

or

alarms
of

maybe
bugs

✘
timeout

“bound-out”

or

Tradeoff

Expressivity and Usability: Specification can
eliminate false alarms (the right loopinv)

Dijkstra, Floyd, Hoare, …
ESC, Spec#, Boogie, Caduceus, Havoc, Calysto, Jahob, VCC, Dryad, …

Avoid

VMCAI: Make tradeoffs based on focus

VMCAI ToolProgram

Spec-
ification

✔
proof of no bug witness to a bug

or

alarms
of

maybe
bugs

✘
timeout

“bound-out”

or

Clarke, Emerson, Sifakis, McMillan, …
BDDs (SMV, …), CEGAR (SLAM, Blast, …), Interpolation (Impact, …),
JPF, FSoft, CBMC, …

Tradeoff

VMCAI: Make tradeoffs based on focus

VMCAI ToolProgram

Spec-
ification

✔
proof of no bug witness to a bug

or

alarms
of

maybe
bugs

✘
timeout

“bound-out”

or

Clarke, Emerson, Sifakis, McMillan, …
BDDs (SMV, …), CEGAR (SLAM, Blast, …), Interpolation (Impact, …),
JPF, FSoft, CBMC, …

Tradeoff

VMCAI: Make tradeoffs based on focus

VMCAI ToolProgram

Spec-
ification

✔
proof of no bug witness to a bug

or

alarms
of

maybe
bugs

✘
timeout

“bound-out”

or

Avoid

Clarke, Emerson, Sifakis, McMillan, …
BDDs (SMV, …), CEGAR (SLAM, Blast, …), Interpolation (Impact, …),
JPF, FSoft, CBMC, …

Tradeoff

VMCAI: Make tradeoffs based on focus

VMCAI ToolProgram

Spec-
ification

✔
proof of no bug witness to a bug

or

alarms
of

maybe
bugs

✘
timeout

“bound-out”

or

Especially Desired!

Avoid

Clarke, Emerson, Sifakis, McMillan, …
BDDs (SMV, …), CEGAR (SLAM, Blast, …), Interpolation (Impact, …),
JPF, FSoft, CBMC, …

VMCAI: Make tradeoffs based on focus

VMCAI ToolProgram

Spec-
ification

✔
proof of no bug witness to a bug

or

alarms
of

maybe
bugs

✘
timeout

“bound-out”

or

Cousot, Cousot, …
Polyhedra/Octagons/… (Apron), Astrée, Polyspace, Fluctuat, Clousot,
SpaceInvader, Slayer, …

Avoid!

VMCAI: Make tradeoffs based on focus

VMCAI ToolProgram

Spec-
ification

✔
proof of no bug witness to a bug

or

alarms
of

maybe
bugs

✘
timeout

“bound-out”

or

Cousot, Cousot, …
Polyhedra/Octagons/… (Apron), Astrée, Polyspace, Fluctuat, Clousot,
SpaceInvader, Slayer, …

Avoid!

VMCAI: Make tradeoffs based on focus

VMCAI ToolProgram

Spec-
ification

✔
proof of no bug witness to a bug

or

alarms
of

maybe
bugs

✘
timeout

“bound-out”

or

Cousot, Cousot, …
Polyhedra/Octagons/… (Apron), Astrée, Polyspace, Fluctuat, Clousot,
SpaceInvader, Slayer, …

Tradeoff

Avoid!

VMCAI: Make tradeoffs based on focus

VMCAI ToolProgram

Spec-
ification

✔
proof of no bug witness to a bug

or

alarms
of

maybe
bugs

✘
timeout

“bound-out”

or

Cousot, Cousot, …
Polyhedra/Octagons/… (Apron), Astrée, Polyspace, Fluctuat, Clousot,
SpaceInvader, Slayer, …

Specificity: “Right” domains on can
reduce or eliminate false alarms

Tradeoff

Back to …

A candidate for statically answering,
“Is there an Activity leak?”

Is there a program
execution where at
some time
!

!

!

!

!

 ?

a_static_field

of type Activity

Can be answered with a
points-to analysis

Compute a points-to
graph and look for such
points-to paths

This won’t work because …

alarms
of

maybe
bugs

Thresher [SAS’11,PLDI’13] attacks alarm triage for
heap reachability properties

✘

Program

✔
proof of no bug witness to a bug

or

timeout
“bound-out”

or

!
!

Leak
Alarms

Tool

Thresher [SAS’11,PLDI’13] attacks alarm triage for
heap reachability properties

✘

Program
Points-To
Analyzer

Points-To
Facts

✔
proof of no bug witness to a bug

or

timeout
“bound-out”

or

!
!

Leak
Alarms

Tool

Thresher [SAS’11,PLDI’13] attacks alarm triage for
heap reachability properties

✘

Program
Points-To
Analyzer

Points-To
Facts

✔
proof of no bug witness to a

or

timeout
“bound-out”

or

!
!

Leak
Alarms

Tool

Thresher [SAS’11,PLDI’13] attacks alarm triage for
heap reachability properties

✘

Program
Points-To
Analyzer

Points-To
Facts

✔
proof of no bug witness to a

or

timeout
“bound-out”

or

!
!

Leak
Alarms

Tool

Thresher [SAS’11,PLDI’13] attacks alarm triage for
heap reachability properties

✘

Manual
Triaging

Program
Points-To
Analyzer

Points-To
Facts

✔
proof of no bug witness to a

or

timeout
“bound-out”

or

!
!

Leak
Alarms

Tool

Thresher [SAS’11,PLDI’13] attacks alarm triage for
heap reachability properties

✘

Manual
Triaging

Program
Points-To
Analyzer

Points-To
Facts

✔
proof of no bug witness to a

or

timeout
“bound-out”

or

witness to a bug

!
!

Leak
Alarms

Tool

Thresher [SAS’11,PLDI’13] attacks alarm triage for
heap reachability properties

✘

Manual
Triaging

Program
Points-To
Analyzer

Points-To
Facts

✔
proof of no bug

or

timeout
“bound-out”

or

witness to a bug

!
!

Leak
Alarms

Tool

Thresher [SAS’11,PLDI’13] attacks alarm triage for
heap reachability properties

✘

Manual
Triaging

Program
Points-To
Analyzer

Points-To
Facts

✔
proof of no bug

or

timeout
“bound-out”

or

Prove alarms false with a witness search

witness to a bug

!
!

Leak
Alarms

Tool

Thresher [SAS’11,PLDI’13] attacks alarm triage for
heap reachability properties

✘

Manual
Triaging

Program
Points-To
Analyzer

Points-To
Facts

✔
proof of no bug

or

timeout
“bound-out”

or

Prove alarms false with a witness search

Proof Obligation User-Query
[Dillig, Dillig, Aiken (2012)] !

Alarm Clustering
[Lee, Lee, Yi (VMCAI'12)]

Manual triage for heap reachability reports

Manual triage for heap reachability reports

Manual triage for heap reachability reports

MyClass1.java

allocated here

Manual triage for heap reachability reports

MyClass1.java

allocated here

LibraryClass1.java

Manual triage for heap reachability reports

MyClass1.java

allocated here

LibraryClass1.java

MyClass2.java

Manual triage for heap reachability reports

MyClass1.java

allocated here

LibraryClass1.java

MyClass2.java

Library2Class1.class

Manual triage for heap reachability reports

MyClass1.java

allocated here

LibraryClass1.java

MyClass2.java

Library2Class1.class

java.util.HashMap.class

Manual triage for heap reachability reports

MyClass1.java

allocated here

LibraryClass1.java

MyClass2.java

Library2Class1.class

java.util.HashMap.class

MyClass3.java

Manual triage for heap reachability reports

MyClass1.java

allocated here

LibraryClass1.java

MyClass2.java

Library2Class1.class

java.util.HashMap.class

MyClass3.javaGet abstract heap path + allocation sites

Assuming the user starts to triage an alarm …

Assuming the user starts to triage an alarm …

What does the user need to do? He starts at,
say, line 142 and traces back to see if a bug is
possible given what’s happening.

Assuming the user starts to triage an alarm …

What does the user need to do? He starts at,
say, line 142 and traces back to see if a bug is
possible given what’s happening.

We can do this with analysis (V+MC+AI)!

Assuming the user starts to triage an alarm …

What does the user need to do? He starts at,
say, line 142 and traces back to see if a bug is
possible given what’s happening.

If we filter most false alarms, the user can triage
more quickly and get to true bugs earlier
(without frustration).

We can do this with analysis (V+MC+AI)!

!
!

Leak
Alarms

Tool

Roadmap: Thresher filters out false alarms by
refuting them one-by-one.

✔

✘

Manual
Triaging

Program
Points-To
Analyzer

(off-the-shelf)

Points-To
Facts

!
!

Leak
Alarms

Tool

Roadmap: Thresher filters out false alarms by
refuting them one-by-one.

✔

✘

Manual
Triaging

Program
Points-To
Analyzer

(off-the-shelf)

Points-To
Facts

Filter with
Thresher

!
!

Leak
Alarms

Tool

Roadmap: Thresher filters out false alarms by
refuting them one-by-one.

✔

✘

Manual
Triaging

Program
Points-To
Analyzer

(off-the-shelf)

Points-To
Facts

Filter with
Thresher

!
!

Leak
Alarms

Tool

Roadmap: Thresher filters out false alarms by
refuting them one-by-one.

✔

✘

Manual
Triaging

Program
Points-To
Analyzer

(off-the-shelf)

Points-To
Facts

Filter with
Thresher

!
!

Leak
Alarms

Tool

Roadmap: Thresher filters out false alarms by
refuting them one-by-one.

✔

✘

Manual
Triaging

Program
Points-To
Analyzer

(off-the-shelf)

Points-To
Facts

Filter with
Thresher

!
!

Leak
Alarms

Tool

Roadmap: Thresher filters out false alarms by
refuting them one-by-one.

✔

✘

Manual
Triaging

Program
Points-To
Analyzer

(off-the-shelf)

Points-To
Facts

Filter with
Thresher

Idea 1 : Refute points-to on-demand with second precise “filter” analysis

1

1

!
!

Leak
Alarms

Tool

Roadmap: Thresher filters out false alarms by
refuting them one-by-one.

✔

✘

Manual
Triaging

Program
Points-To
Analyzer

(off-the-shelf)

Points-To
Facts

Filter with
Thresher

Idea 1 : Refute points-to on-demand with second precise “filter” analysis

1

1

*-sensitive, strong updates (separation logic) but over-approximate

!
!

Leak
Alarms

Tool

Roadmap: Thresher filters out false alarms by
refuting them one-by-one.

✔

✘

Manual
Triaging

Program
Points-To
Analyzer

(off-the-shelf)

Points-To
Facts

Filter with
Thresher

Idea 1 : Refute points-to on-demand with second precise “filter” analysis

1

1

!
!

Leak
Alarms

Tool

Roadmap: Thresher filters out false alarms by
refuting them one-by-one.

✔

✘

Manual
Triaging

Program
Points-To
Analyzer

(off-the-shelf)

Points-To
Facts

Filter with
Thresher

Idea 1 : Refute points-to on-demand with second precise “filter” analysis

Idea 2 : Leverage the facts from the first analysis in the filter analysis to scale

1

2

1

2

!
!

Leak
Alarms

Tool

Roadmap: Thresher filters out false alarms by
refuting them one-by-one.

✔

✘

Manual
Triaging

Program
Points-To
Analyzer

(off-the-shelf)

Points-To
Facts

Filter with
Thresher

Idea 1 : Refute points-to on-demand with second precise “filter” analysis

Idea 2 : Leverage the facts from the first analysis in the filter analysis to scale

1

2

“from constraints” to reduce with the points-to domain
1

2

!
!

Leak
Alarms

Tool

Roadmap: Thresher filters out false alarms by
refuting them one-by-one.

✔

✘

Manual
Triaging

Program
Points-To
Analyzer

(off-the-shelf)

Points-To
Facts

Filter with
Thresher

Idea 1 : Refute points-to on-demand with second precise “filter” analysis

Idea 2 : Leverage the facts from the first analysis in the filter analysis to scale

1

2

1

2

!
!

Leak
Alarms

Tool

Roadmap: Thresher filters out false alarms by
refuting them one-by-one.

✔

✘

Manual
Triaging

Program
Points-To
Analyzer

(off-the-shelf)

Points-To
Facts

Filter with
Thresher

Idea 1 : Refute points-to on-demand with second precise “filter” analysis

Idea 2 : Leverage the facts from the first analysis in the filter analysis to scale

1

2

1

2

refinement

!
!

Leak
Alarms

Tool

Roadmap: Thresher filters out false alarms by
refuting them one-by-one.

✔

✘

Manual
Triaging

Program
Points-To
Analyzer

(off-the-shelf)

Points-To
Facts

Filter with
Thresher

Idea 1 : Refute points-to on-demand with second precise “filter” analysis

Idea 2 : Leverage the facts from the first analysis in the filter analysis to scale

1

2

1

2

Related: Staged analysis
[Fink, Yahav, Dor, Ramalingam, Geay (2006)]

refinement

A top-level filter:
Filter leak alarms by refuting points-to edges

1

Is there a program
execution where at
some time
!

!

!

!

!

 ?

a_static_field

of type Activity

A top-level filter:
Filter leak alarms by refuting points-to edges

1

Is there a program
execution where at
some time
!

!

!

!

!

 ?

a_static_field

of type Activity

Select a points-to
edge in the path

A top-level filter:
Filter leak alarms by refuting points-to edges

1

Is there a program
execution where at
some time
!

!

!

!

!

 ?

a_static_field

of type Activity

Select a points-to
edge in the path

Try to refute the
edge with a
symbolic analysis

A top-level filter:
Filter leak alarms by refuting points-to edges

1

Is there a program
execution where at
some time
!

!

!

!

!

 ?

a_static_field

of type Activity

Select a points-to
edge in the path

Try to refute the
edge with a
symbolic analysis

✔
Refuted

A top-level filter:
Filter leak alarms by refuting points-to edges

1

Is there a program
execution where at
some time
!

!

!

!

!

 ?

a_static_field

of type Activity

Select a points-to
edge in the path

Try to refute the
edge with a
symbolic analysis

✔
Refuted

False Alarm
Soundly Filtered

A top-level filter:
Filter leak alarms by refuting points-to edges

1

Is there a program
execution where at
some time
!

!

!

!

!

 ?

a_static_field

of type Activity

Select a points-to
edge in the path

Try to refute the
edge with a
symbolic analysis

✔
Refuted ✘

Not RefutedFalse Alarm
Soundly Filtered

A top-level filter:
Filter leak alarms by refuting points-to edges

1

Is there a program
execution where at
some time
!

!

!

!

!

 ?

a_static_field

of type Activity

Select a points-to
edge in the path

Try to refute the
edge with a
symbolic analysis

✔
Refuted ✘

Not Refuted

Repeat

False Alarm
Soundly Filtered

A top-level filter:
Filter leak alarms by refuting points-to edges

1

Is there a program
execution where at
some time
!

!

!

!

!

 ?

a_static_field

of type Activity

Select a points-to
edge in the path

Try to refute the
edge with a
symbolic analysis

✔
Refuted ✘

Not Refuted

Repeat

False Alarm
Soundly Filtered

Refutation: Derive a contradiction, that a points-to
relation can’t actually hold

Refuting a points-to edge:
What are we up against?

1

Refuting a points-to edge:
What are we up against?

1

Null object pattern: Should never be written to

Refuting a points-to edge:
What are we up against?

1

Null object pattern: Should never be written to

Refuting a points-to edge:
What are we up against?

1

Null object pattern: Should never be written to

arr0 act0: Activity

Refuting a points-to edge:
What are we up against?

1

Null object pattern: Should never be written to

arr0 act0: Activity

Refuting a points-to edge:
What are we up against?

1

Null object pattern: Should never be written to

arr0 act0: Activity

Refuting a points-to edge:
What are we up against?

1

Null object pattern: Should never be written to

Need interprocedural path-sensitivity

arr0 act0: Activity

Refuting a points-to edge:
What are we up against?

1

Null object pattern: Should never be written to

Need interprocedural path-sensitivity

arr0 act0: Activity

Refuting a points-to edge:
What are we up against?

1

Null object pattern: Should never be written to

Need interprocedural path-sensitivity

arr0 act0: Activity

Need strong updates

A refutation analysis: Try to derive a
contradiction with a backwards symbolic analysis

1

arr0 act0: Activity

A refutation analysis: Try to derive a
contradiction with a backwards symbolic analysis

1

arr0·[-] ↦ act0 * true

A refutation analysis: Try to derive a
contradiction with a backwards symbolic analysis

1

arr0·[-] ↦ act0 * true

A refutation analysis: Try to derive a
contradiction with a backwards symbolic analysis

1

Derive a contradiction
along all “backwards”  
path programs
[Beyer, Henzinger, Majumdar, Rybalchenko (2007)]

arr0·[-] ↦ act0 * true

A refutation analysis: Try to derive a
contradiction with a backwards symbolic analysis

1

Derive a contradiction
along all “backwards”  
path programs
[Beyer, Henzinger, Majumdar, Rybalchenko (2007)]

false false falsefalse
false

arr0·[-] ↦ act0 * true

A refutation analysis: Try to derive a
contradiction with a backwards symbolic analysis

1

Derive a contradiction
along all “backwards”  
path programs
[Beyer, Henzinger, Majumdar, Rybalchenko (2007)]

false false falsefalse
false

Derive refutations by trying to find witnesses

arr0·[-] ↦ act0 * true

Roadmap: Precise but with scalability challenges 1

Roadmap: Precise but with scalability challenges 1

Q1 _ Q2

x . f

Q

Alias path explosion for strong updates
(On write, case split for each possible alias in Q to
maintain separation)

Roadmap: Precise but with scalability challenges 1

Q1 _ Q2

x . f

Q

Alias path explosion for strong updates
(On write, case split for each possible alias in Q to
maintain separation)

Points-To
Facts

2

Roadmap: Precise but with scalability challenges 1

Q1 _ Q2

x . f

Q

Q1 _ Q2

i f (. . .) {} else {}

Q

Alias path explosion for strong updates
(On write, case split for each possible alias in Q to
maintain separation)

Points-To
Facts

2

Control-flow path explosion:
Ignore for now, reasonable if number of guards
relevant to Q is small (e.g., [Das et al. (2002)])

Roadmap: Precise but with scalability challenges 1

Q1 _ Q2

x . f

Q

Q1 _ Q2

i f (. . .) {} else {}

Q

Alias path explosion for strong updates
(On write, case split for each possible alias in Q to
maintain separation)

Points-To
Facts

2

Control-flow path explosion:
Ignore for now, reasonable if number of guards
relevant to Q is small (e.g., [Das et al. (2002)])

Roadmap: Precise but with scalability challenges 1

Q1 _ Q2

x . f

Q

Q1 _ Q2

i f (. . .) {} else {}

Q

while Qinv (. . .) {}

Q

Alias path explosion for strong updates
(On write, case split for each possible alias in Q to
maintain separation)

Points-To
Facts

2

Control-flow path explosion:
Ignore for now, reasonable if number of guards
relevant to Q is small (e.g., [Das et al. (2002)])

Loops:
Simple loop invariant inference sufficient so far but
more sophisticated techniques possible if needed

Roadmap: Precise but with scalability challenges 1

Q1 _ Q2

x . f

Q

Q1 _ Q2

i f (. . .) {} else {}

Q

while Qinv (. . .) {}

Q

Alias path explosion for strong updates
(On write, case split for each possible alias in Q to
maintain separation)

Points-To
Facts

2

Control-flow path explosion:
Ignore for now, reasonable if number of guards
relevant to Q is small (e.g., [Das et al. (2002)])

Loops:
Simple loop invariant inference sufficient so far but
more sophisticated techniques possible if needed

Roadmap: Precise but with scalability challenges 1

Q1 _ Q2

x . f

Q

Q1 _ Q2

i f (. . .) {} else {}

Q

while Qinv (. . .) {}

Q

Alias path explosion for strong updates
(On write, case split for each possible alias in Q to
maintain separation)

Points-To
Facts

2

Control-flow path explosion:
Ignore for now, reasonable if number of guards
relevant to Q is small (e.g., [Das et al. (2002)])

Loops:
Simple loop invariant inference sufficient so far but
more sophisticated techniques possible if needed

Over-approximate what?

Soundness Criteria 1

Soundness Criteria 1

Concrete
Evaluation

Soundness Criteria 1

Concrete
Evaluation

Soundness Criteria 1

Concrete
Evaluation

Abstract
Analysis

Soundness Criteria 1

Concrete
Evaluation

Abstract
Analysis

Soundness Criteria 1

Concrete
Evaluation

Abstract
Analysis

If such that ,
then for some .

Standard Total Correctness Soundness Criteria

Soundness Criteria 1

Concrete
Evaluation

Abstract
Analysis

If such that ,
then for some .

Soundness Criteria 1

Concrete
Evaluation

Abstract
Analysis

If such that ,
then for some .

Soundness Criteria 1

Concrete
Evaluation

Abstract
Analysis

If such that ,
then for some .

Post: Goal

Soundness Criteria 1

Concrete
Evaluation

Abstract
Analysis

If such that ,
then for some .

“Total” Witness Soundness Criteria Post: Goal

Soundness Criteria 1

Concrete
Evaluation

Abstract
Analysis

If such that ,
then for some .

“Total” Witness Soundness Criteria Post: Goal

 ?

Soundness Criteria 1

Concrete
Evaluation

Abstract
Analysis

If such that ,
then for some .

“Total” Witness Soundness Criteria Post: Goal

Soundness Criteria 1

Concrete
Evaluation

Abstract
Analysis

If such that ,
then for some .

“Total” Witness Soundness Criteria Post: Goal

Ball, Kupferman, and Yorsh (2005)

Soundness Criteria 1

Concrete
Evaluation

Abstract
Analysis

If such that ,
then for some .

“Total” Witness Soundness Criteria Post: Goal

Ball, Kupferman, and Yorsh (2005)

Snugglebug, Alter, DART, … are under-approximate

Soundness Criteria 1

Concrete
Evaluation

Abstract
Analysis

If such that ,
then for some .

Soundness Criteria 1

Concrete
Evaluation

Abstract
Analysis

If such that and ,
then .

Soundness Criteria 1

Concrete
Evaluation

Abstract
Analysis

If such that and ,
then .

Refutation Soundness Criteria

Soundness Criteria 1

Concrete
Evaluation

Abstract
Analysis

If such that and ,
then .

Refutation Soundness Criteria

If a loop may “produce” a conjunct of the query, we can
“assume it does” (weaken the query) only at the cost of
precision.

Soundness Criteria 1

Concrete
Evaluation

Abstract
Analysis

If such that and ,
then .

Refutation Soundness Criteria

Refutations: Prove alarms false with “partial” witnesses,
an “easier condition” for loops

If a loop may “produce” a conjunct of the query, we can
“assume it does” (weaken the query) only at the cost of
precision.

Soundness Criteria 1

Concrete
Evaluation

Abstract
Analysis

If such that and ,
then .

Soundness Criteria 1

Concrete
Evaluation

Abstract
Analysis

If such that and ,
then .

Soundness Criteria 1

Concrete
Evaluation

Abstract
Analysis

If such that and ,
then .

Necessary Precondition Soundness Criteria

Cousot, Cousot, Fähndrich, Logozzo (VMCAI’13)

Roadmap: Precise but with scalability challenges 1

Q1 _ Q2

x . f

Q

Q1 _ Q2

i f (. . .) {} else {}

Q

while Qinv (. . .) {}

Q

Alias path explosion for strong updates
(On write, case split for each possible alias in Q to
maintain separation)

Points-To
Facts

2

Control-flow path explosion:
Ignore for now, reasonable if number of guards
relevant to Q is small (e.g., [Das et al. (2002)])

Loops:
Simple loop invariant inference sufficient so far but
more sophisticated techniques possible if needed

Roadmap: Precise but with scalability challenges 1

Q1 _ Q2

x . f

Q

Q1 _ Q2

i f (. . .) {} else {}

Q

while Qinv (. . .) {}

Q

Alias path explosion for strong updates
(On write, case split for each possible alias in Q to
maintain separation)

Points-To
Facts

2

Control-flow path explosion:
Ignore for now, reasonable if number of guards
relevant to Q is small (e.g., [Das et al. (2002)])

Loops:
Simple loop invariant inference sufficient so far but
more sophisticated techniques possible if needed

Roadmap: Precise but with scalability challenges 1

Q1 _ Q2

x . f

Q

Q1 _ Q2

i f (. . .) {} else {}

Q

while Qinv (. . .) {}

Q

Alias path explosion for strong updates
(On write, case split for each possible alias in Q to
maintain separation)

Points-To
Facts

2

Control-flow path explosion:
Ignore for now, reasonable if number of guards
relevant to Q is small (e.g., [Das et al. (2002)])

Loops:
Simple loop invariant inference sufficient so far but
more sophisticated techniques possible if needed

from constraints: Reducing separation constraints
with points-to facts

Points-To
Facts

2

from constraints: Reducing separation constraints
with points-to facts

Points-To
Facts

2

!o from { …, ,… }ai

from constraints: Reducing separation constraints
with points-to facts

Points-To
Facts

2

!o from { …, ,… }ai

symbolic object
instance (an address)

from constraints: Reducing separation constraints
with points-to facts

Points-To
Facts

2

!o from { …, ,… }ai

symbolic object
instance (an address)

abstract loc in points-to
(set of addresses)

from constraints: Reducing separation constraints
with points-to facts

Points-To
Facts

2

!o from { …, ,… }ai

symbolic object
instance (an address)

abstract loc in points-to
(set of addresses)

Refute (derive false) if:

from constraints: Reducing separation constraints
with points-to facts

Points-To
Facts

2

!o from { …, ,… }ai

symbolic object
instance (an address)

abstract loc in points-to
(set of addresses)

Refute (derive false) if:
i > j ∧ i < j

from constraints: Reducing separation constraints
with points-to facts

Points-To
Facts

2

!o from { …, ,… }ai

symbolic object
instance (an address)

abstract loc in points-to
(set of addresses)

Refute (derive false) if:
i > j ∧ i < j
or o·f↦p * o·f↦q ∧ p≠q

from constraints: Reducing separation constraints
with points-to facts

Points-To
Facts

2

!o from { …, ,… }ai

symbolic object
instance (an address)

abstract loc in points-to
(set of addresses)

Refute (derive false) if:
i > j ∧ i < j
or o·f↦p * o·f↦q ∧ p≠q
or o from ∅

from constraints: Reducing separation constraints
with points-to facts

Points-To
Facts

2

!o from { …, ,… }ai

symbolic object
instance (an address)

abstract loc in points-to
(set of addresses)

Refute (derive false) if:
i > j ∧ i < j
or o·f↦p * o·f↦q ∧ p≠q
or o from ∅

from constraints: Reducing separation constraints
with points-to facts

Points-To
Facts

2

!o from { …, ,… }ai

symbolic object
instance (an address)

abstract loc in points-to
(set of addresses)

Refute (derive false) if:
i > j ∧ i < j
or o·f↦p * o·f↦q ∧ p≠q
or o from ∅

from constraints: Reducing separation constraints
with points-to facts

Points-To
Facts

2

!o from { …, ,… }ai

symbolic object
instance (an address)

abstract loc in points-to
(set of addresses)

Refute (derive false) if:
i > j ∧ i < j
or o·f↦p * o·f↦q ∧ p≠q
or o from ∅

from constraints: Reducing separation constraints
with points-to facts

Points-To
Facts

2

!o from { …, ,… }ai

symbolic object
instance (an address)

abstract loc in points-to
(set of addresses)

Refute (derive false) if:
i > j ∧ i < j
or o·f↦p * o·f↦q ∧ p≠q
or o from ∅

Generalized disalias check:
pt(x) ∩ pt(y) = ∅

from constraints: Reducing separation constraints
with points-to facts

Points-To
Facts

2

!o from { …, ,… }ai

symbolic object
instance (an address)

abstract loc in points-to
(set of addresses)

Refute (derive false) if:
i > j ∧ i < j
or o·f↦p * o·f↦q ∧ p≠q
or o from ∅

Generalized disalias check:
pt(x) ∩ pt(y) = ∅

Restriction on possible abstract
locations based on flow in the

backwards analysis

!
!

Leak
Alarms

Tool

Roadmap: Thresher filters out false alarms by
refuting them one-by-one.

✔

✘

Manual
Triaging

Program
Points-To
Analyzer

(off-the-shelf)

Points-To
Facts

Filter with
Thresher

Idea 1 : Refute points-to on-demand with second precise “filter” analysis

Idea 2 : Leverage the facts from the first analysis in the filter analysis to scale

1

2

1

2

Is Thresher effective at filtering?

Thresher analyzes Java VM bytecode

!

7 Android app benchmarks

2,000 to 40,000 source lines of code

+ 880,000 sources lines of Android
framework code

!

Off-the-shelf, state-of-the-art points-to
analysis from WALA

1

Is Thresher effective at filtering?

Program

PulsePoint

StandupTimer

DroidLife

SMSPopUp

aMetro

K9Mail

Total

LOC

unknown

2K

3K

7K

20K

40K

72K

Points-To
Alarms

16

25

3

5

54

208

311

1

Is Thresher effective at filtering?

Program

PulsePoint

StandupTimer

DroidLife

SMSPopUp

aMetro

K9Mail

Total

LOC

unknown

2K

3K

7K

20K

40K

72K

Points-To
Alarms

16

25

3

5

54

208

311

staticfield-
Activity pairs

1

Is Thresher effective at filtering?

Program

PulsePoint

StandupTimer

DroidLife

SMSPopUp

aMetro

K9Mail

Total

LOC

unknown

2K

3K

7K

20K

40K

72K

Points-To
Alarms

16

25

3

5

54

208

311

Thresher
Refuted

8

15

0

1

18

130

172

Filteredstaticfield-
Activity pairs

1

Is Thresher effective at filtering?

Program

PulsePoint

StandupTimer

DroidLife

SMSPopUp

aMetro

K9Mail

Total

LOC

unknown

2K

3K

7K

20K

40K

72K

Points-To
Alarms

16

25

3

5

54

208

311

Thresher
Refuted

8

15

0

1

18

130

172

True
Bugs

8

0

3

4

36

64

115

Filteredstaticfield-
Activity pairs

1

Manual

Is Thresher effective at filtering?

Program

PulsePoint

StandupTimer

DroidLife

SMSPopUp

aMetro

K9Mail

Total

LOC

unknown

2K

3K

7K

20K

40K

72K

Points-To
Alarms

16

25

3

5

54

208

311

Thresher
Refuted

8

15

0

1

18

130

172

True
Bugs

8

0

3

4

36

64

115

1

Is Thresher effective at filtering?

Program

PulsePoint

StandupTimer

DroidLife

SMSPopUp

aMetro

K9Mail

Total

LOC

unknown

2K

3K

7K

20K

40K

72K

Points-To
Alarms

16

25

3

5

54

208

311

Thresher
Refuted

8

15

0

1

18

130

172

True
Bugs

8

0

3

4

36

64

115

Thresher
Time (s)

95

1068

1

46

18

374

1602

1

Is Thresher effective at filtering?

Program

PulsePoint

StandupTimer

DroidLife

SMSPopUp

aMetro

K9Mail

Total

LOC

unknown

2K

3K

7K

20K

40K

72K

Points-To
Alarms

16

25

3

5

54

208

311

Thresher
Refuted

8

15

0

1

18

130

172

True
Bugs

8

0

3

4

36

64

115

Thresher
Time (s)

95

1068

1

46

18

374

1602

1

< ∼coffee to
lunch break

Is Thresher effective at filtering?

Program

PulsePoint

StandupTimer

DroidLife

SMSPopUp

aMetro

K9Mail

Total

LOC

unknown

2K

3K

7K

20K

40K

72K

Points-To
Alarms

16

25

3

5

54

208

311

Thresher
Refuted

8

15

0

1

18

130

172

True
Bugs

8

0

3

4

36

64

115

Thresher
Time (s)

95

1068

1

46

18

374

1602

1

Is Thresher effective at filtering?

Program

PulsePoint

StandupTimer

DroidLife

SMSPopUp

aMetro

K9Mail

Total

LOC

unknown

2K

3K

7K

20K

40K

72K

Points-To
Alarms

16

25

3

5

54

208

311

Thresher
Refuted

8

15

0

1

18

130

172

True
Bugs

8

0

3

4

36

64

115

Thresher
Time (s)

95

1068

1

46

18

374

1602

False
Alarm %

0

100

0

0

0

18

17

% after
filtering

1

Is Thresher effective at filtering?

Program

PulsePoint

StandupTimer

DroidLife

SMSPopUp

aMetro

K9Mail

Total

LOC

unknown

2K

3K

7K

20K

40K

72K

Points-To
Alarms

16

25

3

5

54

208

311

Thresher
Refuted

8

15

0

1

18

130

172

True
Bugs

8

0

3

4

36

64

115

Thresher
Time (s)

95

1068

1

46

18

374

1602

False
Alarm %

0

100

0

0

0

18

17

Filtered
%

100

60

-

100

100

90

88

% after
filtering

1

Is Thresher effective at filtering?

Program

PulsePoint

StandupTimer

DroidLife

SMSPopUp

aMetro

K9Mail

Total

LOC

unknown

2K

3K

7K

20K

40K

72K

Points-To
Alarms

16

25

3

5

54

208

311

Thresher
Refuted

8

15

0

1

18

130

172

True
Bugs

8

0

3

4

36

64

115

Thresher
Time (s)

95

1068

1

46

18

374

1602

False
Alarm %

0

100

0

0

0

18

17

Filtered
%

100

60

-

100

100

90

88

1

False alarms down to 17% from 63% (points-to analysis only)
!

Thresher filters 88% of false alarms from points-to analysis

Is Thresher effective at filtering?

Program

PulsePoint

StandupTimer

DroidLife

SMSPopUp

aMetro

K9Mail

Total

LOC

unknown

2K

3K

7K

20K

40K

72K

Points-To
Alarms

16

25

3

5

54

208

311

Thresher
Refuted

8

15

0

1

18

130

172

True
Bugs

8

0

3

4

36

64

115

Thresher
Time (s)

95

1068

1

46

18

374

1602

False
Alarm %

0

100

0

0

0

18

17

Filtered
%

100

60

-

100

100

90

88

1

Some Highlights

Thresher: Precise Refutations for Heap Reachability

Assist in triage of queries about heap relations

‣ Assume alarms false, prove them so (refute) automatically with a
“partial” witness search

‣ Reduced separation constraints with points-to facts

‣ Filters out ∼90% of false alarms to expose true bugs

‣ Application: Find memory leaks and eliminate crashes in Android

!
!

Leak
Alarms

Filter with
Thresher

Final Commentary: Design and apply analyses to the whole
bug mitigation process!

Facts

alarms
of

maybe
bugs

Tool
✔

✘

Manual
Triaging

Program Analyzer

Final Commentary: Design and apply analyses to the whole
bug mitigation process!

Facts

alarms
of

maybe
bugs

Tool
✔

✘

Manual
Triaging

Program Analyzer

Final Commentary: Design and apply analyses to the whole
bug mitigation process!

Facts

alarms
of

maybe
bugs

Tool
✔

✘

Manual
Triaging

Program Analyzer

Refuter

Final Commentary: Design and apply analyses to the whole
bug mitigation process!

Facts

alarms
of

maybe
bugs

Tool
✔

✘

Manual
Triaging

Program Analyzer

Refuter

Final Commentary: Design and apply analyses to the whole
bug mitigation process!

Facts

alarms
of

maybe
bugs

Tool
✔

✘

Manual
Triaging

Program Analyzer

Refuter

Spec-
ification

Final Commentary: Design and apply analyses to the whole
bug mitigation process!

Facts

alarms
of

maybe
bugs

Tool
✔

✘

Manual
Triaging

Program Analyzer

Refuter

Spec-
ification

Wed
11:45am

Fissile Types:
Checking
Almost

Everywhere
Invariants

[Coughlin+ POPL’14]

Final Commentary: Design and apply analyses to the whole
bug mitigation process!

Facts

alarms
of

maybe
bugs

Tool
✔

✘

Manual
Triaging

Program Analyzer

Refuter

Spec-
ification

Wed
11:45am

Fissile Types:
Checking
Almost

Everywhere
Invariants

[Coughlin+ POPL’14]

Final Commentary: Design and apply analyses to the whole
bug mitigation process!

Facts

alarms
of

maybe
bugs

Tool
✔

✘

Manual
Triaging

Program Analyzer

Refuter

Spec-
ification

www.cs.colorado.edu/~bec
pl.cs.colorado.edu

Thank You!

Android
OS

Android
OS

... in the process of finding leaks in apps

Find Android’s HashMap bug ...

class HashMap {
static Object[] EMPTY = new Object[2]; . . .
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {
if (need capacity) {
this.tbl = new Object[more capacity];
copy from old table

}
this.tbl[bucket using hash of key] = val;

}

HashMap(Map m) {
if (m.size() < 1) { this.tbl = EMPTY; }
else { this.tbl = new Object[at least m.size()]; }
copy from m

}
}

Find Android’s HashMap bug ...

class HashMap {
static Object[] EMPTY = new Object[2]; . . .
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {
if (need capacity) {
this.tbl = new Object[more capacity];
copy from old table

}
this.tbl[bucket using hash of key] = val;

}

HashMap(Map m) {
if (m.size() < 1) { this.tbl = EMPTY; }
else { this.tbl = new Object[at least m.size()]; }
copy from m

}
}

Null object pattern: Should never be written to

Find Android’s HashMap bug ...

class HashMap {
static Object[] EMPTY = new Object[2]; . . .
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {
if (need capacity) {
this.tbl = new Object[more capacity];
copy from old table

}
this.tbl[bucket using hash of key] = val;

}

HashMap(Map m) {
if (m.size() < 1) { this.tbl = EMPTY; }
else { this.tbl = new Object[at least m.size()]; }
copy from m

}
}

allocate new
backing array
on first write

Null object pattern: Should never be written to

Find Android’s HashMap bug ...

class HashMap {
static Object[] EMPTY = new Object[2]; . . .
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {
if (need capacity) {
this.tbl = new Object[more capacity];
copy from old table

}
this.tbl[bucket using hash of key] = val;

}

HashMap(Map m) {
if (m.size() < 1) { this.tbl = EMPTY; }
else { this.tbl = new Object[at least m.size()]; }
copy from m

}
}

allocate new
backing array
on first write

Null object pattern: Should never be written to

Find Android’s HashMap bug ...

class HashMap {
static Object[] EMPTY = new Object[2]; . . .
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {
if (need capacity) {
this.tbl = new Object[more capacity];
copy from old table

}
this.tbl[bucket using hash of key] = val;

}

HashMap(Map m) {
if (m.size() < 1) { this.tbl = EMPTY; }
else { this.tbl = new Object[at least m.size()]; }
copy from m

}
}

allocate new
backing array
on first write

An “evil” implementation of the Map interface
can corrupt EMPTY. Then, all HashMaps created

in the future will be corrupted.

Null object pattern: Should never be written to

Find Android’s HashMap bug ...

class HashMap {
static Object[] EMPTY = new Object[2]; . . .
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {
if (need capacity) {
this.tbl = new Object[more capacity];
copy from old table

}
this.tbl[bucket using hash of key] = val;

}

HashMap(Map m) {
if (m.size() < 1) { this.tbl = EMPTY; }
else { this.tbl = new Object[at least m.size()]; }
copy from m

}
}

allocate new
backing array
on first write

An “evil” implementation of the Map interface
can corrupt EMPTY. Then, all HashMaps created

in the future will be corrupted.

return 0

return “evil” content

Null object pattern: Should never be written to

Find Android’s HashMap bug ...

class HashMap {
static Object[] EMPTY = new Object[2]; . . .
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {
if (need capacity) {
this.tbl = new Object[more capacity];
copy from old table

}
this.tbl[bucket using hash of key] = val;

}

HashMap(Map m) {
if (m.size() < 1) { this.tbl = EMPTY; }
else { this.tbl = new Object[at least m.size()]; }
copy from m

}
}

allocate new
backing array
on first write

An “evil” implementation of the Map interface
can corrupt EMPTY. Then, all HashMaps created

in the future will be corrupted.

return 0

return “evil” content

We reported this, Google fixed it
https://android-review.googlesource.com/#/c/52183/

Null object pattern: Should never be written to

https://android-review.googlesource.com/#/c/52183/

