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Avoiding memory leaks

Android applications are, at least on the T-Mobile G1, limited to 16 MB of heap. It's both a lot of memory for a phone and yet
very little for what some developers want to achieve. Even if you do not plan on using all of this memory, you should use as
little as possible to let other applications run without getting them killed. The more applications Android can keep in memory,
the faster it will be for the user to switch between his apps. As part of my job, I ran into memory leaks issues in Android
applications and they are most of the time due to the same mistake: keeping a long-lived reference to a Context.

On Android, a Context is used for many operations but mostly to load and access resources. This is why all the widgets
receive a Context parameter in their constructor. In a regular Android application, you usually have two kinds of Context,
Activity and Application. It's usually the first one that the developer passes to classes and methods that need a Context:

@0verride
protected void onCreate(Bundle state) {
super.onCreate(state);

TextView label = new TextView(this);
label.setText("Leaks are bad");
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What does the user need to do? He starts at,
say, line 142 and traces back to see if a bug is
possible given what’s happening.

If we filter most false alarms, the user can triage
more quickly and get to true bugs earlier
(without frustration).
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Related: Staged analysis
[Fink, Yahav, Dor, Ramalingam, Geay (2006)]
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A top-level filter:

Filter leak alarms by refuting points-to edges
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Refuting a points-to edge:
What are we up against?

Null object pattern: Should never be written to

class Vec
static Object[] EMPTY = new,y, Objectl[1];
Vec() { this.tbl = EMPTY; capacity inttially empty }

void push(Object Need mterprocedural path-sensmwty

if (need capacity) 1

this.tbl = new,,, Object[more capacity];
copy from old table

}
this.tbl[next slot] = val;

} arro —>{ acte: Activity

Need strong updates

__‘:-_‘d

}
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A refutation analysis: Try to derive a
contradiction with a backwards symbolic analysis

Derive a contradiction
along all “backwards”
path programs

[Beyer, Henzinger, Majumdar, Rybalchenko (2007)]
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A refutation analysis: Try to derive a
contradiction with a backwards symbolic analysis
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this.tbl[next slot] =

false falsefalse

Derive a contradiction
along all “backwards”
path programs

[Beyer, Henzinger, Majumdar, Rybalchenko (2007)]
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A refutation analysis: Try to derive a
contradiction with a backwards symbolic analysis

false falsetalse
X Derive a contradiction

along all “backwards”
path programs

[Beyer, Henzinger, Majumdar, Rybalchenko (2007)]

this.tbl [next slot] = val:
<

arre -1 —» acty, * true

{
{

Derive refutations by trying to find witnesses |

e
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Roadmap: Precise but with scalability challenges

Alias path explosion for strong updates

(On write, case split for each possible alias in Q to
maintain separation)

Control-flow path explosion:

Ignore for now, reasonable if number of guards
relevant to Q is small (e.g., [Das et al. (2002)])

Over-approximate what?

Q1 V Qo] _
Q
Q1 V Qs .
Q
WhTe Q) 1] _
Q

Loops: Y

Simple loop invariant inference sufficient so far but
more sophisticated techniques possible if needed
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If - {5} s{c’} such that ¢/ € (5,
then (0,s) || o/ for some o €~(7) .

Ball, Kupferman, and Yorsh (2005)

Snugglebug, Alter, DART, ... are under-approximate
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If a loop may “produce” a conjunct of the query, we can
“assume it does” (weaken the query) only at the cost of
precision.
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If a loop may “produce” a conjunct of the query, we can
“assume it does” (weaken the query) only at the cost of
precision.

Refutation Soundness Criteria

If {5} s {5’} such that ¢/ € ~(3') and (o,s) | ¢,
then o € 7(5).

III

Refutations: Prove alarms false with “partial” witnesses,

an “easier condition” for loops
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Concrefe (o,5) | o o € State s € Statement
Evaluation

Abstract

Analysis - {6} s {6’} G e State 7 :State — p(State)

Necessary Precondition Soundness Criteria

If - {c} s fault such that o ¢~(@) and (o,s) | o,
then error(o’).

Cousot, Cousot, Fahndrich, Logozzo (VMCAI'13)



Q1 V & < Alias path explosion for strong updates

x.f (On write, case split for each possible alias in Q to
maintain separation)

(1 V Q2 < Controlflow path explosion:
if (...) {} else {} Ignore for now, reasonable if number of guards

relevant to Q is small (e.g., [Das et al. (2002)])
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more sophisticated techniques possible if needed




Q1 V & < Alias path explosion for strong updates

x.f (On write, case split for each possible alias in Q to
maintain separation)

(1 V Q2 < Controlflow path explosion:
if (...) {} else {} Ignore for now, reasonable if number of guards

relevant to Q is small (e.g., [Das et al. (2002)])
@

s

hil inoll ...
WhTTe Wil ) 1) J o

Q Simple loop invariant inference sufficient so far but
more sophisticated techniques possible if needed




Roadmap: Precise but with scalability challenges

Q1 V Qo < Alias path explosion for strong updates
< f (On write, case split for each possible alias in Q to
maintain separation) i
: )
Q1 V Qo < Controlflow path explosion:

if (...) {} else {} Ignore for now, reasonable if number of guards

relevant to Q is small (e.g., [Das et al. (2002)])
@

Qinv
< Loops:

9 Simple loop invariant inference sufficient so far but
more sophisticated techniques possible if needed







from constraints: Reducing separation constraints
with points-to facts
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from constraints: Reducing separation constraints

with points-to facts

o from{ ...,

o e}

-
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from

o from { veey | W, } Refute (derive false) if:
. i>3Ai<j
symbolic object abstract loc in points-to
instance (an address) (set of addresses) or o- fl—)p X O- f|—>q N\ p#q

or o from @
Restriction on possible abstract
locations based on flow in the
backwards analysis

y from pt (X) M pt (Y) A X =Y | < Generalized disalias check:
pt(x) n pt(y) = @

VIiy-f—pAXF#Y

x.fT =p
y-1—p




Roadmap: Thresher filters out false alarms by
refuting them one-by-one.

v

Points-To
Points-To
Program > Analyzer ™ o
!:2 (off-the-shelf) x e
/’Qﬁ ( y
$ & e
\— Alarms

Manual - Filter with
.. «—
Triaging

i

C
{

Ideal | : Refute pointsto on-demand with second precise “filter” analysis ‘,
S— - —_ —

Ideal % : Leverage the facts from the first analysis in the filter analysis to scale |

— — m




Is Thresher effective at filtering?

Thresher analyzes Java VM bytecode

7 Android app benchmarks
2,000 to 40,000 source lines of code

+ 880,000 sources lines of Android

framework code

Off-the-shelf, state-of-the-art points-to
analysis from WALA
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p Points-To Thresher
rogram Alarms Refuted

PulsePoint unknown 16 8
StandupTimer 2K 25 15
DroidLife 3K 3 0
SMSPopUp /K 3 l
aMetro 20K 34 18
K9Mail 40K 208 130
Total 72K 311 172
A A~
staticfield- || Filtered

Activity pairs




LOC P(::ﬂs-To Thresher
arms  Refuted Bugs

PulsePoint unknown 16 8 8
StandupTimer 2K 25 15 0
DroidLife 3K 3 0 3
SMSPopUp 7K 5 1 4
aMetro 20K 4 18 36
K9Mail 40K 208 130 64
Total 72K 311 172 115

A~ A ~
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Activity pairs
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arms Refuted

PulsePoint unknown 16 8 8
StandupTimer 2K 25 15 0
DroidLife 3K 3 0 3
SMSPopUp 7K 5 1 4
aMetro 20K 4 18 36
K9Mail 40K 208 130 04
Total 72K 311 172 115




p Points-To Thresher True Thresher
rogram Alarms Refuted Bugs Time (s)

PulsePoint unknown 16 8 8 95
StandupTimer 2K 25 15 0 1068
DroidLife 3K 3 0 3 l
SMSPopUp 7K 5 l 4 46
aMetro 20K 4 18 36 18
K9Mail 40K 208 130 04 374
Total 72K 311 172 115 1602
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PulsePoint unknown 16 8 8 95
StandupTimer 2K 25 15 0 1068
DroidLife 3K 3 0 3 l
SMSPopUp /K 5 l 4 46
aMetro 20K 34 18 36 18
K9Mail 40K 208 130 64 374
Total 72K 311 172 115 1602
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p Points-To Thresher True Thresher
rogram Alarms Refuted Bugs Time (s)

PulsePoint unknown 16 8 8 95
StandupTimer 2K 25 15 0 1068
DroidLife 3K 3 0 3 l
SMSPopUp 7K 5 l 4 46
aMetro 20K 4 18 36 18
K9Mail 40K 208 130 04 374
Total 72K 311 172 115 1602



p Points-To Thresher True Thresher False
rogram Alarms Refuted Bugs Time (s) Alarm %

PulsePoint unknown 16 8 8 95 0
StandupTimer 2K 25 15 0 1068 100
DroidLife 3K 3 0 3 l 0
SMSPopUp 7K 5 l 4 46 0
aMetro 20K 4 18 36 18 0
K9Mail 40K 208 130 64 374 18
Total 72K 311 172 115 1602 E
% after

filtering




Pc;::ﬂs-To Thresher True TI!resher Fulsoe Filiereod
arms  Refuted Bugs Time(s) Alarm % %
PulsePoint unknown 16 8 8 95 0 100
StandupTimer 2K 25 15 0 1068 100 60
DroidLife 3K 3 0 3 l 0

SMSPopUp 7K 5 l 4 46 0 100
aMetro 20K 34 18 36 18 0 100
K9Mail 40K 208 130 64 374 18 90
Total 72K 311 172 115 1602 E 88
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Pc;::ﬂs-To Thresher True TI!resher Fulsoe Filiereod
arms  Refuted Bugs Time(s) Alarm % %
PulsePoint unknown 16 8 8 95 0 100
StandupTimer 2K 25 15 0 1068 100 60
DroidLife 3K 3 0 3 l 0

SMSPopUp 7K 5 l 4 46 0 100
aMetro 20K 34 18 36 18 0 100
K9Mail 40K 208 130 64 374 18 90
Total 72K 311 172 115 1602 17 88




Pc;::ﬂs-To Thresher True TI!resher Falsoe Filiere;d
arms  Refuted Bugs Time(s) Alarm % %
PulsePoint unknown 16 8 8 95 0 100
StandupTimer 2K 25 15 0 1068 100 60
DroidLife 3K 3 0 3 l 0

SMSPopUp 7K 5 l 4 46 0 100
aMetro 20K 34 18 36 18 0 100
K9Mail 40K 208 130 64 374 18 90
Total 72K 311 172 115 1602 17 88

False alarms down to 17% from 63% (points-to analysis only)

Thresher filters 88% of false alarms from points-to analysis

E—



Some Highlights *va

Filter with

MM N

Thresher: Precise Refutations for Heap Reachability

Assist in triage of queries about heap relations

» Assume alarms false, prove them so (refute) automatically with a
“partial” witness search

» Reduced separation constraints with points-to facts
» Filters out ~90% of false alarms to expose true bugs

» Application: Find memory leaks and eliminate crashes in Android



Final Commentary: Design and apply analyses to the whole
bug mitigation process!

v

x alarms
of

maybe

bugs

Program — > Anquzer —  Facts

Manual
Triaging




Final Commentary: Design and apply analyses to the whole

bug mitigation process!

Manual
Triaging

A
W Y

T

N Vv

alarms
of
maybe

bugs




Final Commentary: Design and apply analyses to the whole
bug mitigation process!

¥ |
N 7,

<\

Program —> Anquzer —  Facts _<
j@ alarms
maybe
bugs

- p

Manual
.. «—— Refuter —
Triaging




Final Commentary: Design and apply analyses to the whole
bug mitigation process!

v,

\
N Vv

Program —> Anquzer —  Facts _<

=77) ) alarms

A X
maybe
bugs

b
N

- p

Manual
.. «—— Refuter —
Triaging




Final Commentary: Design and apply analyses to the whole
bug mitigation process!

Spec- w&

ification \
\ S\
Program —> Anquzer —  Facts _<
N 2 X olarms

of
maybe
bugs

- p

Manual
.. «—— Refuter —
Triaging




Final Commentary: Design and apply analyses to the whole

bug mitigation process!

Spec-
ification \
Fissile Types: 1
Checking
Almost Program —>  Analyzer —> Facs
Everywhere | xalarms
Invariants of
[Coughlin+ POPL'14] maybe
bugs

Manual
Triaging

«—

Refuter




Final Commentary: Design and apply analyses to the whole
bug mitigation process!

Spec-
ification N \\\

Fissile Types:

Checking
Almost

Everywhere

Invariants
[Coughlin+ POPL'14]

Program —> AnCI |yzer

Manual
Triaging

> Facts _<

«—

\

Refuter

v

alarms
of

maybe
bugs
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bug mitigation process!
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... in the process of finding leaks in apps



Find Android’s HashMap bug ...

class HashMap {
static Object[] EMPTY = new Object[2]; ...
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {
if (need capacity) {
this.tbl = new Object[more capacity];
copy from old table
¥
this.tbl[bucket using hash of key] = val;
+

HashMap (Map m) {
if (m.size() < 1) { this.tbl = EMPTY; }
else { this.tbl = new Objectlat least m.size()]; }
copy from m

+
+
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Find Android’s HashMap bug ...

class HashM

+

Null object pattern: Should never be written to

static Object[] EMPTY = new Object[2];
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {
if (need capacity) { allocate new
this.tbl = new Object[more capacity]; backing array

copy from old table on first write

by
this.tbl[bucket using hash of key] = val;

+

HashMap (Map m) {
if (m.size() < 1) { this.tbl = EMPTY; }
else { this.tbl = new Objectlat least m.size()]; }
copy from m

}




Find Android’s HashMap bug

Null object pattern: Should never be written to
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Find Android’s HashMap bug

Null object pattern: Should never be written to

class HashM
static Object[] EMPTY = new Object[2];
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {

if (need capacity) { allocate new
this.tbl = new Object[more capacity]; backing array
copy from old table on first write
by
this.tbl[bucket using hash of key] = val;
by [
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7 {if (m.size() < 1) { this.tbl = EMPTY; }
else { this.tbl = new Objectlat least m.size()]; }
copy from m

An “evil” implementation of the Map interface

by
3 can corrupt EMPTY. Then, all HashMaps created

in the future will be corrupted.



Null object pattern: Should never be written to
class HashM | P
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Null object pattern: Should never be written to
class HashM | P

static Object[] EMPTY = new Object[2];
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {

if (need capacity) { allocate new
this.tbl = new Object[more capacity]; backing array
copy from old table on first write

} [ J }

this.  We reported this, Google fixed it

hitps://android-review.googlesource.com/#/c/52183/
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else { this.tbl = new Object[at least m.size()]; }
copy from m

/ /1f (m.size()“< 1) { this.tbl = EMPTY; }

An “evil” implementation of the Map interface

} R | e can corrupt EMPTY. Then, all HashMaps created

in the future will be corrupted.
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