Refuting Heap
Reachability

Bor-Yuh Evan Chang
University of Colorado Boulder

Sam Blackshear Manu Sridharan January 20, 2014 @ PLV
CU Boulder Samsung VMCAI 2014

first VMCAI
(Paris)

in 2005
as a young
PhD student

>
=
<

At my first VMCAI
in 2005 (Paris)

as a young
PhD student

“Spirit of VMCAI” |

introduced in my |
“formative |
academic years”

IS

A bug that manifests spectacularly ...

Hodwood

Cay . Mourtan

v Miptas
Les Ados 'Kar"w."

Cugerno San Jose
Camptet

Lo Ganos

A bug that manifests spectacularly ... ﬁ

A bug that manifests spectacularly ...

(B b
Moraps -
Darvite
San Ramon
Outtn

Prasanton

[
Lomand | Vatey

Cagta Crur bt o Aeon
e

Wow! Android memory leaks underly
rotation-based crashes.

Wow! Android memory leaks underly

ele
rotation-based crashes. How¢le

Activity objects
encapsulate the Ul

Wow! Android memory leaks underly
rotation-based crashes.

How?¢l?e

Activity objects
encapsulate the Ul

Android

oS 7 of type Activity

-

Wow! Android memory leaks underly
rotation-based crashes.

How?¢l?e

Activity objects
encapsulate the Ul

Android

oS 7 of type Activity

-

Wow! Android memory leaks underly
rotation-based crashes.

How?¢l?e

Activity objects
encapsulate the Ul

Android
os of type Activity

-

18 of type Activity

Wow! Android memory leaks underly
rotation-based crashes.

How?¢l?e

a_static _field

Activity objects
encapsulate the Ul

program heap

of type Activity

Android

)

of type Activity

Wow! Android memory leaks underly
rotation-based crashes.

How?¢l?e

a_static _field

|
4
can’t collect

Activity objects
encapsulate the Ul

h this dead
program neap Activityl

of type Activit

Andr0|d

of type Activity

Wow! Android memory leaks underly
rotation-based crashes.

How?¢l?e

a_static _field

|
4
can’t collect

'
\ . . V fun of
) TN R g AQorbage !

Activity objects
encapsulate the Ul

| h this dead
program neap Activityl

.

of type Activity

Android

)

of type Activity

| .
Wovst. Android memory leaks underly How?212
rotation-based crashes.

a_static _field

Activity objects

| 'y

. ! Uil o can’t collec
1 <= [t | st || encapsulate the Ul
program heap\ ,c;ivicy1

, ’F‘ﬁr‘\;,

\ \;‘ AP

‘ 3 e

A ") | Je=0
R L "

of type Activity)

Android

= N

of type Activity

¢ { : |
Bug: Holding reference to “old” Activity |

- B l‘

| .
Wow.. Android memory leaks underly How?212
rotation-based crashes.

a_static _field

Activity objects

| 'y

1 < [ouben: encapsulate the Ul

can’t collect
/ h this dead
program neap Activityl

= B=
s | | | ‘t ey
) ! 4
\ \
‘ 1‘
-/ 1 e
{ .

- B =
of type Activity CY

Android
oS

— of type Activity

“an Activity leak”

,/’{ . ,
Bug: Holding reference to “old” Activity

e — :—*

The expert recommendation ...

8 00 E\,Questions containing 'andrc ﬂlssues - android - Android Android Developers Blog: A Android Developers Blog: M
&« C' [1 android-developers.blogspot.dk/2009/01/avoiding-memory-leaks.html Q<

i) Developers

SEARCH

Search |

ARCHIVE

» 2012(31)
2011 (68)
2010(73)

2009 (63)
December (7)

v

A

=

November (5)
October (5)

August (2)

=

=

=

» September (8)
=

> July (1)

Android Developers Blog

Avoiding memory leaks

Android applications are, at least on the T-Mobile G1, limited to 16 MB of heap. It's both a lot of memory for a phone and yet
very little for what some developers want to achieve. Even if you do not plan on using all of this memory, you should use as
little as possible to let other applications run without getting them killed. The more applications Android can keep in memory,
the faster it will be for the user to switch between his apps. As part of my job, I ran into memory leaks issues in Android
applications and they are most of the time due to the same mistake: keeping a long-lived reference to a Context.

On Android, a Context is used for many operations but mostly to load and access resources. This is why all the widgets
receive a Context parameter in their constructor. In a regular Android application, you usually have two kinds of Context,
Activity and Application. It's usually the first one that the developer passes to classes and methods that need a Context:

@0verride
protected void onCreate(Bundle state) {
super.onCreate(state);

TextView label = new TextView(this);
label.setText("Leaks are bad");

8 00 E\, Questions containing ‘andrc @Issues - android - Android Android Developers Blog: A Android Developers Blog: M
€« C' [1 android-developers.blogspot.dk/2009/01/avoiding-memory-leaks.html @ %

i) Developers

SEARCH

Search |

ARCHIVE

» 2012(31)
2011 (68)
2010(73)

2009 (63)
December (7)

v

v

=

November (5)
October (5)
September (8)
August (2)

=
=
=
=
=
> July (1)

Android Developers Blog

Avoiding memory leaks

Android applications are, at least on the T-Mobile G1, limited to 16 MB of heap. It's both a lot of memory for a phone and yet
very little for what some developers want to achieve. Even if you do not plan on using all of this memory, you should use as
little as possible to let other applications run without getting them killed. The more applications Android can keep in memory,
the faster it will be for the user to switch between his apps. As part of my job, I ran into memory leaks issues in Android
applications and they are most of the time due to the same mistake: keeping a long-lived reference to a Context.

On Android, a Context is used for many operations but mostly to load and access resources. This is why all the widgets
receive a Context parameter in their constructor. In a regular Android application, you usually have two kinds of Context,
Activity and Application. It's usually the first one that the developer passes to classes and methods that need a Context:

@0verride
protected void onCreate(Bundle state) {
super.onCreate(state);

TextView label = new TextView(this);
label.setText("Leaks are bad");

The expert recommendation ... -

“Do not keep long-lived references to a context-activity”

800 E\, Questions containing ‘andrc @Issues - android - Android Android Developers Blog: A Android Developers Blog: M

€« C' [android-developers.blogspot.dk/2009/01/avoiding-memory-leaks.html @ %

Android Developers Blog

Developers
Avoiding memory leaks

SEARCH

Android applications are, at least on the T-Mobile G1, limited to 16 MB of heap. It's both a lot of memory for a phone and yet

very little for what some developers want to achieve. Even if you do not plan on using all of this memory, you should use as

little as possible to let other applications run without getting them killed. The more applications Android can keep in memory,

ARCHIVE the faster it will be for the user to switch between his apps. As part of my job, I ran into memory leaks issues in Android
applications and they are most of the time due to the same mistake: keeping a long-lived reference to a Context.

Search

» 2012(31)

N ot cs On Android, a Context is used for many operations but mostly to load and access resources. This is why all the widgets
(68) receive a Context parameter in their constructor. In a regular Android application, you usually have two kinds of Context,

» 2010(73) Activity and Application. It's usually the first one that the developer passes to classes and methods that need a Context:

¥ 2009(63)

» December (7) @0verride

| don’t know how |
created a long-lived
reference to an Activity!

The expert recommendation ...

“Do not keep long-lived references to a context-activity”

L

e 00

€«

.=, Questions containing ‘andr 8} 1ssues - android - Android Android Developers Blog: A Android Developers Blog: IV

C [android-developers.blogspot.dk/2009/01/avoiding-memory-leaks.html

#

Developers

SEARCH

Search

009 (63)
December (7)

Android Developers Blog

Avoiding memory leaks

Android applications are, at least on the T-Mobile G1, limited to 16 MB of heap. It's
very little for what some developers want to achieve. Even if you do not plan on usi
little as possible to let other applications run without getting them killed. The more
the faster it will be for the user to switch between his apps. As part of my job, Iran
applications and they are most of the time due to the same mistake: keeping a long

On Android, a Context is used for many operations but mostly to load and acces:
receive a Context parameter in their constructor. In a regular Android application
Activity and Application. It's usually the first one that the developer passes to classe

@0verride

| don’t know how |
created a long-lived
reference to an Activity!

Often: A

misunderstanding of
a library causes the
library to keep the

Activity reference.

The expert recommendation ...

8 00 E\,Questions containing 'andrc ﬂlssues - android - Android Android Developers Blog: A Android Developers Blog: M
&« C' [1 android-developers.blogspot.dk/2009/01/avoiding-memory-leaks.html Q<

i) Developers

SEARCH

Search |

ARCHIVE

» 2012(31)
2011 (68)
2010(73)

2009 (63)
December (7)

v

A

=

November (5)
October (5)

August (2)

=

=

=

» September (8)
=

> July (1)

Android Developers Blog

Avoiding memory leaks

Android applications are, at least on the T-Mobile G1, limited to 16 MB of heap. It's both a lot of memory for a phone and yet
very little for what some developers want to achieve. Even if you do not plan on using all of this memory, you should use as
little as possible to let other applications run without getting them killed. The more applications Android can keep in memory,
the faster it will be for the user to switch between his apps. As part of my job, I ran into memory leaks issues in Android
applications and they are most of the time due to the same mistake: keeping a long-lived reference to a Context.

On Android, a Context is used for many operations but mostly to load and access resources. This is why all the widgets
receive a Context parameter in their constructor. In a regular Android application, you usually have two kinds of Context,
Activity and Application. It's usually the first one that the developer passes to classes and methods that need a Context:

@0verride
protected void onCreate(Bundle state) {
super.onCreate(state);

TextView label = new TextView(this);
label.setText("Leaks are bad");

8 00 E\, Questions containing ‘andrc @Issues - android - Android Android Developers Blog: A Android Developers Blog: M
€« C' [1 android-developers.blogspot.dk/2009/01/avoiding-memory-leaks.html @ %

i) Developers

SEARCH

Search |

ARCHIVE

» 2012(31)
2011 (68)
2010(73)

2009 (63)
December (7)

v

v

=

November (5)
October (5)
September (8)
August (2)

=
=
=
=
=
> July (1)

Android Developers Blog

Avoiding memory leaks

Android applications are, at least on the T-Mobile G1, limited to 16 MB of heap. It's both a lot of memory for a phone and yet
very little for what some developers want to achieve. Even if you do not plan on using all of this memory, you should use as
little as possible to let other applications run without getting them killed. The more applications Android can keep in memory,
the faster it will be for the user to switch between his apps. As part of my job, I ran into memory leaks issues in Android
applications and they are most of the time due to the same mistake: keeping a long-lived reference to a Context.

On Android, a Context is used for many operations but mostly to load and access resources. This is why all the widgets
receive a Context parameter in their constructor. In a regular Android application, you usually have two kinds of Context,
Activity and Application. It's usually the first one that the developer passes to classes and methods that need a Context:

@0verride
protected void onCreate(Bundle state) {
super.onCreate(state);

TextView label = new TextView(this);
label.setText("Leaks are bad");

A
8 00 y =, Questions containing ‘andro ¢ | {#}Issues - android - Android - A /% Android Developers Blog: A« x 171 Android Developers Blog: M« ¢ |\ | £
€ C' [android-developers.blogspot.dk/2009/01/avoiding-memory-leaks.html el :q: 8

Android Developers Blog

Iil Deve|opers m
Avoiding memory leaks

SEARCH
Android applications are, at least on the T-Mobile G1, limited to 16 MB of heap. It's both a lot of memory for a phone and yet
[search | very little for what some developers want to achieve. Even if you do not plan on using all of this memory, you should use as
little as possible to let other applications run without getting them killed. The more applications Android can keep in memory,
the faster it will be for the user to switch between his apps. As part of my job, I ran into memory leaks issues in Android
ARCHIVE P .) . .
applications and they are most of the time due to the same mistake: keeping a long-lived reference to a Context.
» 2012 (31)
> 2011 (68) On Android, a Context is used for many operations but mostly to load and access resources. This is why all the widgets

receive a Context parameter in their constructor. In a regular Android application, you usually have two kinds of Context,
> 2010(73) Activity and Application. It's usually the first one that the developer passes to classes and methods that need a Context:
¥ 2009 (63)

» December (7) @override

» November (5) protected void onCreate(Bundle state) {

» October (5) super.onCreate(state);

» September (8) TextView label = new TextView(this);

> August (2) label.setText("Leaks are bad");
» July (1)

A candidate for statically answering,
“Is there an Activity leak?”

ls there a program
execution where at
some fime

a_static_field

@ooooce—

of type Activity 2

A candidate for statically answering,
“Is there an Activity leak?”

ls there a program
execution where at
some fime

a_static_field

l

i

of type Activity 2

Can be answered with a
points-to analysis

A candidate for statically answering,
“Is there an Activity leak?”

ls there a program
execution where at
some fime

a_static_field

%Qfﬂ' Can be answered with a

i points-to analysis

‘!' Compute a pointsto
J— graph and look for such
‘L points-to paths

of type Activity 2

A candidate for statically answering,
“Is there an Activity leak?”

ls there a program
execution where at
some fime

a_static_field

%Qfﬂ Can be answered with a

i points-to analysis

‘!' Compute a pointsto
J— graph and look for such
‘L points-to paths

of type Activity 2

This won’t work because ...

The well-known false alarm problem!

Oh
Verifier, help

me prove my
program has no
bugs

Oh
Verifier, help

On line 142,
me prove my there may be a
program has no

bugs

bug

The well-known false alarm problem!

Oh
Verifier, help

On line 142, Isn’t it obvious

there may be a

me prove my this can’t
program has no

bugs

bug happen!2!?

" 0w) | And noisily

i 2
&L repeated over
and over!

The
well-k
n
own false alarm
propie
m

B.G Hennessy

RCIUH |‘,\' .
Boris Kulikov
-

l”ustmrcd by

g

A -

g

. /«_,_\:‘"7 -
vt “‘l N

The well-known false alarm problem!

{

Known: Precise pointsto analysis challenging }

Hind (2001). “Pointer Analysis: Haven’t We Solved This Problem Yet2”
» 75 papers, 9 PhD theses

V ,

Known: Precise pointsto analysis challenging |
—— . ——

Hind (2001). “Pointer Analysis: Haven’t We Solved This Problem Yet2”
» 75 papers, 9 PhD theses

enouqh T e ble2

Perspective: The false alarm problem and VMCAI

Perspective: The false alarm problem and VMCALI

VMCAI Tool

Perspective: The false alarm problem and VMCAI w*

L\

A “union” of VYMCAI

tools and techniques

!

VMCAI Tool

Perspective: The false alarm problem and VMCAI W‘

)

A “union” of VYMCAI

tools and techniques
Spec-

ification \ \/

Program —> VMCAI TOOI

Perspective: The false alarm problem and VMCAI

A “union” of VYMCAI

tools and techniques
Spec-

ification \/ /
\ or /¢

/ proof of no bug witness to a bug
Program —> VMCAI TOOI

Perspective: The false alarm problem and VMCAI

A “union” of VYMCAI

oo tools and techniques Happy!

ification \Y /
.4 § or 4 rd

/ proof of no bug witness to a bug
Program —> VMCAI TOOI

Perspective: The false alarm problem and VMCAI

Spec-

ification \

Program —>

A “union” of VYMCAI

tools and techniques

!

VMCAI Tool

proof

x alarms

of
maybe
bugs

or

Happy!
\4 o
D D) 1 or 7 i/
of no bug witness to a bug

timeout
“bound-out”

Perspective: The false alarm problem and VMCAI

A “union” of VYMCAI

) tools and techniques Happy!
pec-
ification \/ V -
e g &
V /',\\',: or hﬁ
proof of no bug witness to a bug
ogom —> VMCAI Tool
x alarms
of
maybe or timeout
bugs “bound-out”

A

Unhappy but inevitable. Research work to minimize

Perspective: The false alarm problem and YMCALI

A “union” of VYMCAI

Sooc. tools and techniques Happy!

ification V /
|/ e &

proof of no bug witness to a bug
Program —> VM CAI TOOI

alarms
of

maybe or timeout
bugs “bound-out”

A

Unhappy but inevitable. Research work to minimize

Spirit of VMCAI: Recognize strength in combining |
V-MC-Al approaches |

:ﬁ

Perspective: The false alarm problem and YMCALI

A “union” of VYMCAI

; tools and techniques Happy!
pec-
ification \/ V /
V A or gl
proof of no bug witness to a bug
Program —» VMCAI Tool
xalarms e
of
maybe or timeout
bugs “bound-out”
This talk: A
Applied to heap o o
reqchqbim), Unhappy but inevitable. Research work to minimize

Spirit of VMCAL: Recognize strength in combmmg
V- MC Al approaches

VMCAI: Make tradeoffs based on focus

Spec-
ification /
\ V /7’,\\',! or 7 (
proof of no bug witness to a bug
Program —> VMCAI TOOI
x alarms

of

maybe or timeout
bugs “bound-out”

Dijkstra, Floyd, Hoare, ...
ESC, Spec#, Boogie, Caduceus, Havoc, Calysto, Jahob, VCC, Dryad, ...

—:ﬁ

/
?
|

VMCAI: Make tradeoffs based on focus

Spec-
ification /
= > #
\ / /7’,\\',! or 7 {

proof of no bug witness to a bug

Program —> VMCAI TOOI
x alarms
of
maybe or
bugs
Avoid

Dijkstra, Floyd, Hoare, ...
ESC, Spec#, Boogie, Caduceus, Havoc, Calysto, Jahob, VCC, Dryad, ...

—:“

|
?
|

VMCAI: Make tradeoffs based on focus

Tradeoff
Spec-

ification V
g4 or 7 L

proof of no bug
Program ——> Vmcai Tool

alarms
of

maybe or
bugs

Avoid

{

Dijkstra, Floyd, Hoare, ... |
ESC, Spec#, Boogie, Caduceus, Havoc, Calysto, Jahob, VCC, Dryad, ...

S 7 ,

VMCAI: Make tradeoffs based on focus w \

Expressivity and Usability: Specification can
eliminate false alarms (the right loopinv)

v Tradeoff
Spec-

ification V
V | or

proof of no bug
Program ——> Vmcai Tool

alarms
of

maybe or
bugs

Avoid

Dijkstra, Floyd, Hoare, ... |
ESC, Spec#, Boogie, Caduceus, Havoc, Calysto, Jahob, VCC, Dryad, ...

VMCAI: Make tradeoffs based on focus

Spec-

ification /
\ /é’,\\',! or % :L/
proof of no bug witness to a bug
Program ——> vMCai Tool
x alarms S
of

maybe or timeout
bugs “bound-out”

Clarke, Emerson, Sifakis, McMillan, ... f
BDDs (SMYV, ...), CEGAR (SLAM, Blast, ...), Interpolation (Impact, ...), ‘i
JPF, FSoft, CBMC, ... |

M

VMCAI: Make tradeoffs based on focus

Spec-

ification ~
v . =) (, f
4 or ﬁb
proof of no bug witness to a bug
Program —> VM CAI TOOI
x alarms 2
of
maybe or timeout
bugs “bound-out”
A
Tradeoff

Clarke, Emerson, Sifakis, McMillan, ...
BDDs (SMYV, ...), CEGAR (SLAM, Blast, ...), Interpolation (Impact, ...),
JPF, FSoft, CBMC, ...

- - -;“’

VMCAI: Make tradeoffs based on focus

Spec-

ification
V ?r\\":. or ¢
proof of no bug witness to a bug
Program —> VM CAI TOOI
x alarms 2
of
maybe or timeout
bugs “bound-out”
A\ A
Avoid Tradeoff

Clarke, Emerson, Sifakis, McMillan, ...
BDDs (SMYV, ...), CEGAR (SLAM, Blast, ...), Interpolation (Impact, ...),
JPF, FSoft, CBMC, ...

e — M

VMCAI: Make tradeoffs based on focus

. Especially Desired!
pec-

ification
V I or

proof of no bug
Program —> VM CAl TOOI

alarms

of
maybe or timeout
bugs “bound-out”
A\ A
Avoid Tradeoff

Clarke, Emerson, Sifakis, McMillan, ... "
BDDs (SMYV, ...), CEGAR (SLAM, Blast, ...), Interpolation (Impact, ...), |
JPF, FSoft, CBMC, ...

VMCAI: Make tradeoffs based on focus

Spec-

ification \

Program —> VMCAI TOOI

Cousot, Cousot, ...

Polyhedra/Octagons/... (Apron), Astrée, Polyspace, Fluctuat, Clousot,

Spacelnvader, Slayer, ...

s
YW or /!

proof of no bug witness to a bug

x alarms

of

maybe or timeout
bugs “bound-out”

— —— e —— -

VMCAI: Make tradeoffs based on focus

Spec-
ification /
\ V /é’,\\',! or 7 :L/
proof of no bug witness to a bug
Program ——> vmcAl Tool
x alarms
of

mbauyglze or
e A
Avoid!

Cousot, Cousot, ...

{
Polyhedra/Octagons/... (Apron), Astrée, Polyspace, Fluctuat, Clousot, ’i
Spacelnvader, Slayer, ... |

VMCAI: Make tradeoffs based on focus

Tradeoff
Spec-
ification /
: :) (. f/
\ V' s xX o 2
proof of no bug witness to a bug
Program ——> vmcAl Tool
x alarms
of

mbauygl:e or
A
Avoid!

Cousot, Cousot, ... f

Polyhedra/Octagons/... (Apron), Astrée, Polyspace, Fluctuat, Clousot, "
Spacelnvader, Slayer, ... ‘

:“’

VMCAI: Make tradeoffs based on focus

Spec-

ification \

Program T VMCAI TOOI

Specificity: “Right” domains on can
reduce or eliminate false alarms

Cousot, Cousot, ...

Tradeoff
‘ Y
V A or ¢l
< proof of no bug witness to a bug
x alarms
of

mbauygl:e or
A
Avoid!

Polyhedra/Octagons/... (Apron), Astrée, Polyspace, Fluctuat, Clousot,

Spacelnvader, Slayer, ...

Back to ...

A candidate for statically answering,
“Is there an Activity leak?”

ls there a program
execution where at
some fime

a_static_field

%Qfﬂ Can be answered with a

i points-to analysis

‘!' Compute a pointsto
J— graph and look for such
‘L points-to paths

of type Activity 2

This won’t work because ...

Thresher 1sas 11 pioii3) attacks alarm triage for
heap reachability properties

V @ \)
4 ¥ or ¢ L
proof of no bug witness to a bug
Program —>
x alarms
B -

mqybe »KM or timeout
bugs ., M~ “bound-out”

Thresher 1sas 11 pioii3) attacks alarm triage for
heap reachability properties

or ¢ L
POini'S'TO . witness to a bug
Program —> — Points-To
Analyzer Facts

Leak X or timeout
Wy
Alarmsy, ., “bound-out”

Thresher 1sas 11 pioii3) attacks alarm triage for
heap reachability properties

or

. roof of
PO I ntS'TO — Points-To P

Analyzer Facts

Leak o0 or timeout
Alarmsy, . “bound-out”

Program —>

Thresher (sas'1.pior13) attacks alarm triage for
heap reachability properties

PO | ntS'TO — Points-To
Analyzer Facts

Program —>

timeout
“bound-out”

Thresher (sas'1.pior13) attacks alarm triage for
heap reachability properties

A or
Poini-s_To) proof of no bUg
Program —> — Points-To
Analyzer Facts
timeout
“bound-out”
- D
Manudl
. . <
Triaging

Thresher (sas'1.pior13) attacks alarm triage for
heap reachability properties

Program —>

Points-To
Analyzer

Manual
Triaging

or

— Points-To
Facts

timeout
“bound-out”

Thresher (sas'1.pior13) attacks alarm triage for
heap reachability properties

Program —>

Points-To
Analyzer

Manual
Triaging

V R ¢ g
N B \
Il Or {, {

proof of no bug witness to a bug
— Points-To
Facts

timeout
“bound-out”

Thresher sas'1.pi013) attacks alarm triage for
heap reachability properties

P Y //r‘A L .
) Y na
O \) 4 \
(| or //

\ 1 8 ~feaa

Poini-s_'ro . proof of no bug witness to a bug
Program —> —» Points-To
: Analyzer Facts

timeout
“bound-out”

Manual
Triaging

Prove alarms false with a witness search

Thresher (sas'11 pioi13) attacks alarm triage for
heap reachability properties

(;

Poini-s_To . proof of witness to a bug
Program —> — Points-To
Analyzer Facts
timeout
“bound-out”
Manual
<€

T“qgmg 7 Proof Obligation User-Query

‘ [Dillig, Dillig, Aiken (2012)]

Alarm Clustering
[Lee, Lee, Yi (VMCAI'12)]

Prove alarms false with a witness search

Manual triage for heap reachability reports I

Manual triage for heap reachability reports I

M .
anual triage for heap reachability reports

public class TcpClientSample

void Mainl)

public static
pytell data = new byte\\‘nn; srring Lnput. avzinghavai
TcpClient sexver:
Low, porthi

= new TcpC\&em.\"

ocketixceptiom \
ritebine(“Unub\c

cryl

ver

o

urni
\RJ
_Ge‘.‘é“e““ .
= server danal&hq““'

MyClass1.java

public c
> class
ass TcpClientSample
void Mainl)

ew byte\\'ézﬂ\: srring Lo

public static
pyte(] data = ®
TcpClient server;
cryl
i W '&‘cpC\'xem.\" IR port)i
jom) \
("Cnub\

put, aLEingOata

yer = N€
v (‘;-',o<:ke!’.¥17;\<:e$>t
A sole.WriteL'xne

arni

e to connect o

arvaanl)i

g }
_ public ¢
" X ic class
g t"le\:u;rec { .ss TcpClientsample
in 2 public static voic
str:mqt { R RaLR
ASCI', pyte() data = new
pytell)
COn501 ’ii‘;c‘lieht sexver: gte(1024); string iewste et
jle
Whl—ll server = new Tcpcxiem,v\ ., porth
KetExcepLiom {
.Wr‘.te\.ine\"\x\ab\(: o ect 'O
i
¥ grrea™ ns = sewe:.Getsuem\\:
= ns.Read\data, ' da\.a.\-ex\q!.\\\.
Aing -
ata nco ’
Getsu‘ankdata, 0 :::‘»t’\-
rite‘a'ﬂ\e \st:inq“a i
) dx.‘mek\:
ole.ilea x
= CO(\S’ Y»')-‘-“\ b{ea\h' u-y.kdd
= jes o
i _"‘E‘,‘L,‘.“-‘g-i Y
pe? “cmnq“

s ut :
(109 “ewc\""‘é'
“N,dxx,x“" com™)
(P ens?ine cros®
- S

LibraryClass1.java

Ma '
nual triage for heap reachability reports

class TcpClientsample

public
{
public static void MainQ)
pytel(] data = new byte(10241: exring input, avEasgRAtsd
TcpClient sexrver:
cryl
=k yer = new TCpC\').EI\Y.\" Low, porthi
¥ (Socketixcepliom\ T e
g sole.vﬂritebinek“umb\e o connect =°
arvaanl)i

urn:

} public cla
I 2 Ne\:work o {c class TcpClientSample
v A rr\:; ‘()m” je static void MainQ)
strl
c1’ pytel) data = new byte(10241; string input, stringbatai
AS
1 rTcpClient server:
cons® cryl
segxver = new Tcpcxient\" Low, porthi
¥ Ke\‘.ExcepLion\ \ y
'ne\"\x\ab‘k(: o nect to %€

.wr‘.te\.x
~rvaanl)’

class TcpClientSample

public static void Mainl)
avringhatai

pytell data =
pcpClient
P

re({1024): srring inpet.

_om, perhhi

cpclient”

cept'xom
(*unable ©

onnect t

- gerver = NeY

n (sockeV
Wx jreline

ycatc
Console,
:eturn;
am DS - server: etsx.cea‘u;\‘:;‘mz
s .ilead\data, atd .
ncodan . Jy

datar v <
L :’_“qbata\ '

MyClass2.java

bl
1 TepClientsample

{
-’(2 ot L MainQ)

pytel() data = new byte(10241: string Ao o

Tcpclient sexrver:

tryl

. ver = newvw ’Yupcl'\em.\" .. w, porthi
(Socketixcep\.io:\\\ 2 feibe
pine (“unadl ‘

sole.Write
cifeurns

arvaanl)}
=5 TcpClientSample

Main)

strir\qf {
9 pytell data = new pyte(10241:

ASCX TcpClienL sexver:
cryl
ver = new Tcpcnexm\" S Low, porthi
¥ kerException § . =
.Nritehir\e wynable * .
arvaanl)i

TcpClientSample
Main)

ve (1024}

string i

acvaaml)i

Library2Class1.class

1 TepClientsample

{
Buk rat Main)

{
pytel() data = new byte(l024); strind es
TcpClient sexver:
tryl
yver = new ’Yupchem.\" . w, porthi
(Socketixcep\.io:\\\ 2 feibe
sole.WriteLine\""' ol :

leuxni
avvaami) i

' TepClientSample

allocated

oxrk
Main ()
{
ASCY pyte() data = new byte(102431: 109 atrAngOAtAS
pcpClient sexver:
cryl
ver = new TCpClient\" .. L, porhhi
s xetException ! <
("unable \ |

writeuine

arvaanl)i

bl
) TepClientsample

Mainl)

{
pytel() data = re(1024); string e
rTcpClient 22
- gerver = NeY cpClient (™ - », port)i
)catch (SocketE cep\ﬁ)on\\ ; e
Console.vir'u,ehine ("Unak
acvaaml)i

retur™?

Library

java.util. HashMap.class

Manual tri
riage for heap reachability reports

TcpClientSample

{
publi rat
Y CE W
(aint)
pytel() data = new byte(10241: ki AR
Tcpclient sexrver: '
cryl
. yver = new Tcpcl".enns" .. .o, porvhi
(SocketExcepLio:\‘) \ 5
sole.Wr&ceLine\" nnect \
arvaanl)i

TcpClientSample

g } public
5 or¥k {
int rec publi rat
1 4 . o Pd Mainl)
s
1 a = new pyte(1024); strind input, svringbatat

pytell dat
client sexver;

TCP
= new 'ch(:\.')eht\" < , portdi
ketExcepL'xom \ :
.Write&inel""nm‘,ﬂ aect tO B€F \
arvaani)i

14¢ 1a
1 TepClientsample

-0

1 Mainl)

public
re(1024); string i

“server = new, cpclientt® « o w, port)i

)cacch (Sockeci‘. cepLiO!\\k =

Console.Wr&teL‘xne ("unable * \
acvaaml)i

retur"i

——

|ava.utii.|

TcpClientSample

1 Mainl)

{
pytel() data = new byte(10281: R
pcpClient sexrver;
cryl
server = new Tcpcnem.l" .
ycatch (Sockeci‘.xcepLioz\\k =
Console.Wr&teL‘xnek"":. ple ¥ nnect il

returni
c,er.ﬁuaam \)
ats.

., porthi

tworkscream ns
s

_yecV

MyClass3.java

TepClientsample

L Mainl)

{
pytel() data = new bytel102a1: ke
TcpClient sexver: o et
cryl
- ver = nevw ’Yupcnem.\" S », port)i
(Socketixcep\.io:\\ \ =
sole.\ﬂriteLine\""- . t \

~rvaaml)
1 TcpClientSample

Main)

allocaked h

pytell data = new pyte(10241:

ASCL
TcpClienL sexver:
cryl
yer = new Tcpcnexm\" o Low, porthi
keti“xcep\.io:\\\ e
.Nritehir\e wynable * ect \

arvaanl)i
TcpClientSample
Main)

ve (10241

string i

acvaaml)i

TcpClientSample

Mainl)

bytel\ data = new pyte(10241: otEAvS
TcpClient sexvers
cryl
server = nev pepClient ™ - », port)i
)catch (Sockec?‘,xcep\domk =
Console.w:itehinek"":.-.1 X
return;
3 A\
= e:vct.’oetaueav .
¥ dare engt™

xstrea™ ns
£wor o cad 32t '

cv ns-. A
mq\data' o, x
~v‘\nq03‘3\'

Assuming the user starts to triage an alarm ... I

[D)

What does the user need to do? He starts at,
say, line 142 and traces back to see if a bug is
possible given what’s happening.

[D)

What does the user need to do? He starts at,
say, line 142 and traces back to see if a bug is
possible given what’s happening.

We can do this with analysis (V+MC+Al)!

LY

What does the user need to do? He starts at,
say, line 142 and traces back to see if a bug is
possible given what’s happening.

If we filter most false alarms, the user can triage
more quickly and get to true bugs earlier
(without frustration).

Roadmap: Thresher filters out false alarms by
refuting them one-by-one.

Points-To
> > Points-To
5 (offthe-shelf) X ey

.
Alarms

Manual
Triaging

Roadmap: Thresher filters out false alarms by

refuting them one-by-one.

Points-To

Program = Analyzer
TR (offthe-shelf)

Manual
Triaging

__),Pohﬂ&ﬁa

«—

Facts

w

Filter with

v

X %l
,:.:‘::,s

Roadmap: Thresher filters out false alarms by

refuting them one-by-one.

Points-To

Program = Analyzer
TR (offthe-shelf)

Manual
Triaging

—> Points-To
Facts

w

Filter with

«—

v

X %l
,:.:‘::,s

Roadmap: Thresher filters out false alarms by
refuting them one-by-one.

Points-To
> > Points-To
£ (offthe-shelf) X oy

.
Alarms

Manual Filter with

Triaging (_

Roadmap: Thresher filters out false alarms by

refuting them one-by-one.

Program = Analyzer

Points-To

(off-the-shelf)

Manual
Triaging

—> Points-To
Facts

Filter with

«—

v

X %l
,:.:‘::,s

Roadmap: Thresher filters out false alarms by
refuting them one-by-one.

v

Points-To
Points-To
Program —> Anquzer —> o

£ ‘ f? (offthe-shelf) - x -
% Leak
A Alarms

Manuadl Filter with
Triaging Thresher

€ -

Idea’ | : Refute pointsto on-demand with second precise “filter” analysis |
- WA

filters

Points-To
> > Points-To
' (off-the-shelf)

Triaging Thres

Manual - Filter with
her

v

.
Alarms

= 4 ."\;[:3. (.
Vv T - - 5 5 -
Iﬁ; %I o)

*.sensitive, strong updates (separation logic) b

ut over-approximate

ldea

\

. Refute points-to on-demand with second precise “filter” analysis

Roadmap: Thresher filters out false alarms by
refuting them one-by-one.

v

Points-To
Points-To
Program —> Anquzer —> o

£ ‘ f? (offthe-shelf) - x -
% Leak
A Alarms

Manuadl Filter with
Triaging Thresher

€ -

Idea’ | : Refute pointsto on-demand with second precise “filter” analysis |
- WA

Roadmap: Thresher filters out false alarms by
refuting them one-by-one.

v

Points-To
Points-To
Program > Analyzer ™ o
!:2 (off-the-shelf) x e
/’Qﬁ (y
$ & e
\— Alarms

Manual - Filter with
.. «—
Triaging

i

C
{

Ideal | : Refute pointsto on-demand with second precise “filter” analysis ‘,
S— - —_ —

Ideal % : Leverage the facts from the first analysis in the filter analysis to scale |

— — m

filters

Points-To
Points-To
Program ——> Anquzer —> Facts
(i3 (off-the-shelf)

& .
N Alarms

Manual - Filter with
h

Triaging Thresher

At
-

- a_nonints-to an-demand with arnand nreci a 7 = ”YSis

“from constraints” to reduce with the pointsto domain

” @

ldea

Ideal 2 : Leverage the facts from the first analysis in the filter analysis to scale |

Roadmap: Thresher filters out false alarms by
refuting them one-by-one.

v

Points-To
Points-To
Program > Analyzer ™ o
!:2 (off-the-shelf) x e
/’Qﬁ (y
$ & e
\— Alarms

Manual - Filter with
.. «—
Triaging

i

C
{

Ideal | : Refute pointsto on-demand with second precise “filter” analysis ‘,
S— - —_ —

Ideal % : Leverage the facts from the first analysis in the filter analysis to scale |

— — m

Roadmap: Thresher filters out false alarms by
refuting them one-by-one.

v

Points-To
Points-To
Pr°9"‘ ? Analyzer 1 ok
e = the- .
Q;’Z (off-the-shelf) | x “

ﬁ [< Leak
M reﬁnement\i Alarms

WV
Manual - Filter with
.. «—
Triaging

i

Q

Ideal | : Refute pointsto on-demand with second precise “filter” analysis ‘,
— - —_—— e——

Ideal % : Leverage the facts from the first analysis in the filter analysis to scale |

—— ——— “

filters (

Related: Staged analysis
[Fink, Yahav, Dor, Ramalingam, Geay (2006)]

v

Points-To
Points-To
p — —
rogram Analyzer -
(off-the-shelf)
\ ~ B i
| refinement Alarms
Y
Manual |~ Filter with
e D —
Triaging Thresher
ldea’ | : Refute points-to on-demand with second precise “filter” analysis

Ideal ~ : Leverage the facts from the first analysis in the filter analysis to scale |

A top-level filter:
Filter leak alarms by refuting points-to edges

ls there a program
execution where at
some time

a_static _field

@oooooe—

of type Activity | ©

A top-level filter:
Filter leak alarms by refuting points-to edges

ls there a program Select a points-to
execution where at edge in the path
some time

a_static _field

@
i

of type Activity | @

A top-level filter:

Filter leak alarms by refuting points-to edges

ls there a program
execution where at
some time

a_static _field

@
i

of type Activity | ©

Select a points-to
edge in the path

l

Try to refute the
edge with a
symbolic analysis

A top-level filter:
Filter leak alarms by refuting points-to edges

ls there a program Select a points-to
execution where at edge in the path
some time l
a_static_field
l Try to refute the
edge with a

symbolic analysis

‘L 2 l‘igfuted /

of type Activity

A top-level filter:
Filter leak alarms by refuting points-to edges

ls there a program Select a points-to
execution where at edge in the path
some time l
a_static_field
\L Try to refute the
edge with a

symbolic analysis

‘L 2 l‘lgfuted /

of type Activit
v False Alarm

Soundly Filtered

A top-level filter:
Filter leak alarms by refuting points-to edges

ls there a program Select a points-to
execution where at edge in the path
some time l
a_static_field
\L Try to refute the
edge with a

symbolic analysis

f l’ — . Refuted / X
or type Activity) False Alarm Not Refuted
Soundly Filtered

A top-level filter:
Filter leak alarms by refuting points-to edges

ls there a program Select a pointsto
execution where at edge in the path
some time l Repeat
a_static_field
\L Try to refute the
edge with a

symbolic analysis

f l’ — . Refuted / X
of fype Activity ° False Alarm Not Refuted
Soundly Filtered

A top-level filter:

Filter leak alarms by refuting points-to edges

ls there a program
execution where at
some time

a_static _field

4

of type Activity

‘L 2 Igfuted /

False Alarm

Select a pointsto <

edge in the path

l

Try to refute the
edge with a
symbolic analysi

Repeat

S

Soundly Filtered

X

Not Refuted

Refutation: Derive a contradiction, that a pointsto |

relation can’t actually hold

|

_ﬁ

Refuting a points-to edge:
What are we up against?

class Vec {
static Object[] EMPTY = new,,, Object[1];
Vec() { this.tbl = EMPTY; capactity initially empty }

Refuting a points-to edge:
What are we up against?

Null object pattern: Should never be written to

class Vec
static Object[] EMPTY = new,y, Objectl[1];
Vec() { this.tbl = EMPTY; capacity initially empty }

Refuting a points-to edge:
What are we up against?

Null object pattern: Should never be written to

class Vec
static Object[] EMPTY = new,y, Objectl[1];
Vec() { this.tbl = EMPTY; capacity initially empty }

void push(Object val) {
if (need capacity) {
this.tbl = new,,, Object[more capacityl];
copy from old table
Iy
this.tbl[next slot] = val;
by
¥

Refuting a points-to edge:

: arro > actp: Activity
What are we up against? |

Null object pattern: Should never be written to

class Vec
static Object[] EMPTY = new,y, Objectl[1];
Vec() { this.tbl = EMPTY; capacity initially empty }

void push(Object val) {
if (need capacity) {
this.tbl = new,,, Object[more capacityl];
copy from old table
Iy
this.tbl[next slot] = val;
by
¥

Refuting a points-to edge:
What are we up against?

Null object pattern: Should never be written to

class Vec
static Object[] EMPTY = new,y, Objectl[1];
Vec() { this.tbl = EMPTY; capacity initially empty }

void push(Object val) {
if (need capacity) {
this.tbl = new,,, Object[more capacityl];
copy from old table

}
this.tbl[next slot] = val;

} arro —>{ acte: Activity

}

Refuting a points-to edge:
What are we up against?

Null object pattern: Should never be written to

class Vec
static Object[] EMPTY = new,y, Objectl[1];
Vec() { this.tbl = EMPTY; capacity inttially empty }

void push(Object val) {
if (need capacity) {
this.tbl = new,,, Object[more capacityl];
copy from old table

}
this.tbl[next slot] = val;

} arro —>{ acte: Activity

}

Refuting a points-to edge:
What are we up against?

Null object pattern: Should never be written to

class Vec
static Object[] EMPTY = new,y, Objectl[1];
Vec() { this.tbl = EMPTY; capacity inttially empty }

void push(Object Need mterprocedural path-sensmwty

if (need capacity) 1

this.tbl = new,,, Object[more capacity];
copy from old table

}
this.tbl[next slot] = val;

} arro —>{ acte: Activity

}

Refuting a points-to edge:
What are we up against?

Null object pattern: Should never be written to

class Vec
static Object[] EMPTY = new,y, Objectl[1];
Vec() { this.tbl = EMPTY; capacity inttially empty }

void push(Object Need mterprocedural path-sensmwty

if (need capactity) 1

this.tbl = new,,, Object[more capacity];
copy from old table

}
this.tbl[next slot] = val;

} arro —>{ acte: Activity

}

Refuting a points-to edge:
What are we up against?

Null object pattern: Should never be written to

class Vec
static Object[] EMPTY = new,y, Objectl[1];
Vec() { this.tbl = EMPTY; capacity inttially empty }

void push(Object Need mterprocedural path-sensmwty

if (need capacity) 1

this.tbl = new,,, Object[more capacity];
copy from old table

}
this.tbl[next slot] = val;

} arro —>{ acte: Activity

Need strong updates

__‘:-_‘d

}

A refutation analysis: Try to derive a
contradiction with a backwards symbolic analysis

this.tbl[next slot] = val;

arro

A refutation analysis: Try to derive a
contradiction with a backwards symbolic analysis

this.tbl[next slot] = val;
<<

arre' [-1 » act, * true

A refutation analysis: Try to derive a
contradiction with a backwards symbolic analysis

arre -1 —» acty, * true

A refutation analysis: Try to derive a
contradiction with a backwards symbolic analysis

Derive a contradiction
along all “backwards”
path programs

[Beyer, Henzinger, Majumdar, Rybalchenko (2007)]

this.tbl [next slot] = val:
<

arre -1 —» acty, * true

A refutation analysis: Try to derive a
contradiction with a backwards symbolic analysis

-\»; 0 S \ (d
" . \)
D . . L) Al .
B | N 4
]

this.tbl[next slot] =

false falsefalse

Derive a contradiction
along all “backwards”
path programs

[Beyer, Henzinger, Majumdar, Rybalchenko (2007)]

val;
<

arre -1 —» acty, * true

A refutation analysis: Try to derive a
contradiction with a backwards symbolic analysis

false falsetalse
X Derive a contradiction

along all “backwards”
path programs

[Beyer, Henzinger, Majumdar, Rybalchenko (2007)]

this.tbl [next slot] = val:
<

arre -1 —» acty, * true

{
{

Derive refutations by trying to find witnesses |

e

Roadmap: Precise but with scalability challenges

@1V Qs < Alias path explosion for strong updates

< T (On write, case split for each possible alias in Q to
maintain separation)

Q

Roadmap: Precise but with scalability challenges

@1 V Qo < Alias path explosion for strong updates

< T (On write, case split for each possible alias in Q to
maintain separation) o

Q =)

1V Q2

1V Qo

if (...) {} else {}

Q

< Control-flow path explosion:

< Alias path explosion for strong updates

(On write, case split for each possible alias in Q to
maintain separation)

Ignore for now, reasonable if number of guards
relevant to Q is small (e.g., [Das et al. (2002)])

Roadmap: Precise but with scalability challenges

Q1 V s < Alias path explosion for strong updates

x. T (On write, case split for each possible alias in Q to
maintain separation)

1V Q2

< Control-flow path explosion:

Ignore for now, reasonable if number of guards
relevant to Q is small (e.g., [Das et al. (2002)])

Roadmap: Precise but with scalability challenges

Alias path explosion for strong updates
(On write, case split for each possible alias in Q to
maintain separation)

Facts

Points-To

et

S —

Control-flow path explosion:

Ignore for now, reasonable if number of guards
relevant to Q is small (e.g., [Das et al. (2002)])

1V Qo <
x .1
Q
1V Qo <
Q
wil Qino|) 1]

Loops:
Simple loop invariant inference sufficient so far but
more sophisticated techniques possible if needed

Roadmap: Precise but with scalability challenges

Alias path explosion for strong updates

(On write, case split for each possible alias in Q to
maintain separation)

Control-flow path explosion:

Ignore for now, reasonable if number of guards
relevant to Q is small (e.g., [Das et al. (2002)])

Q1 V Qo] _
Q
Q1 V Qs .
Q
WhTe Q) 1] _
Q

Loops:
Simple loop invariant inference sufficient so far but
more sophisticated techniques possible if needed

Roadmap: Precise but with scalability challenges

Alias path explosion for strong updates

(On write, case split for each possible alias in Q to
maintain separation)

Control-flow path explosion:

Ignore for now, reasonable if number of guards
relevant to Q is small (e.g., [Das et al. (2002)])

Over-approximate what?

Q1 V Qo] _
Q
Q1 V Qs .
Q
WhTe Q) 1] _
Q

Loops: Y

Simple loop invariant inference sufficient so far but
more sophisticated techniques possible if needed

Soundness Criteria

Concrete ,
) og.8)l o
Evaluation 7:5)

Soundness Criteria

Concrete (0,5) | o

) o € State s € Statement
Evaluation

Soundness Criteria

C t
ONerere (o, s) | o’ o € State s € Statement

Evaluation

Abstract N .,
Analysis -0} s {0}

Soundness Criteria

C t
ONerere (o, s) | o’ o € State s € Statement

Evaluation

Abstract

Analysis - {6} s {6’} & c State 7 :State — p(State)

Concrete (0.5) | &

Evaluation o € State s € Statement

Abstract

Analysis - {c} s {6’} G e State 7 :State — p(State)

Standard Total Correctness Soundness Criteria

If - {5} s {5’} such that o €~(7) ,
then (o, s) || o’ for some o' € (7).

Soundness Criteria

C t
ONerere (o, s) | o’ o € State s € Statement

Evaluation

Abstract

Analysis - {6} s {6’} & c State 7 :State — p(State)

If - {5} s {5’} such that o €~(7) ,
then (o, s) || o’ for some o' € (7).

Soundness Criteria

C t
ONerere (o, s) | o’ o € State s € Statement

Evaluation

Abstract

Analysis - {6} s {6’} & c State 7 :State — p(State)

If ={5} s {5’} such that o/ € (7",
then (0, s) || o’ for some o € ~(5) .

Soundness Criteria

C t
ONerere (o, s) | o’ o € State s € Statement

Evaluation

Abstract

Analysis - {6} s {6’} & c State 7 :State — p(State)

Post: Goal

If ={5}s {5’} such that o/ € v(c"),
then (0, s) || o’ for some o € ~(5) .

e —

Concrete (0.5) | &

Evaluation o € State s € Statement

Abstract N N R))
Analysis - {c} s{0c’} G c State 7 :State — p(State)

“Total” Witness Soundness Criteria| Post: Goal

If -{5} s {5’} such that ¢/ € ~(7),
then (0, s) || o’ for some o € ~(5) .

Concrete (o.5) | o

Evaluation o € State s € Statement

Abstract

Analysis - {c} s {6’} G e State 7 :State — p(State)

“Total” Witness Soundness Criteria| Post: Godl

If {5} s {5’} such that o’ €~(d"),

then (0, s) |} o’ for some o €~(7) . c=1%

Concrete (0.5) | &

Evaluation o € State s € Statement

Abstract N N R))
Analysis - {c} s{0c’} G c State 7 :State — p(State)

“Total” Witness Soundness Criteria| Post: Goal

If -{5} s {5’} such that ¢/ € ~(7),
then (0, s) || o’ for some o € ~(5) .

Concrete (0.5) | &

Evaluation o € State s € Statement

Abstract

Analysis - {6} s {6’} G e State 7 :State — p(State)

“Total” Witness Soundness Criteria| Post: Goal

If - {5} s{c’} such that ¢/ € (5,
then (0,s) || o/ for some o €~(7) .

Ball, Kupferman, and Yorsh (2005)

Concrete (0,5) | o

Evaluation o € State s € Statement

Abstract

Analysis - {6} s {6’} G e State 7 :State — p(State)

“Total” Witness Soundness Criteria| Post: Godl

If - {5} s{c’} such that ¢/ € (5,
then (0,s) || o/ for some o €~(7) .

Ball, Kupferman, and Yorsh (2005)

Snugglebug, Alter, DART, ... are under-approximate

Soundness Criteria

C t
ONerere (o, s) | o’ o € State s € Statement

Evaluation

Abstract

Analysis - {6} s {6’} & c State 7 :State — p(State)

If ={5} s {5’} such that o/ € (7",
then (0, s) || o’ for some o € ~(5) .

Soundness Criteria

C t
ONerere (o, s) | o’ o € State s € Statement

Evaluation

Abstract

Analysis - {6} s {6’} & c State 7 :State — p(State)

If {5} s {5’} such that ¢/ € ~(3') and (o,5) || ¢,
then o € 7(5).

e —

Concrefe (o,5) | o o € State s € Statement
Evaluation

Abstract

Analysis - {c} s {6’} G e State 7 :State — p(State)

Refutation Soundness Criteria

If - {5} s {5"} such that o/ € v(5") and (o,s) || o,
then o € 7(5).

If a loop may “produce” a conjunct of the query, we can
“assume it does” (weaken the query) only at the cost of
precision.

Refutation Soundness Criteria

If {5} s {5’} such that ¢/ € ~(3') and (o,s) | ¢,
then o € 7(5).

If a loop may “produce” a conjunct of the query, we can
“assume it does” (weaken the query) only at the cost of
precision.

Refutation Soundness Criteria

If {5} s {5’} such that ¢/ € ~(3') and (o,s) | ¢,
then o € 7(5).

III

Refutations: Prove alarms false with “partial” witnesses,

an “easier condition” for loops

Soundness Criteria

C t
ONerere (o, s) | o’ o € State s € Statement

Evaluation

Abstract

Analysis - {6} s {6’} & c State 7 :State — p(State)

If {5} s {5’} such that ¢/ € ~(3') and (o,5) || ¢,
then o € 7(5).

e —

Soundness Criteria

C t
ONerere (o, s) | o’ o € State s € Statement

Evaluation

Abstract N R R))

Analysis - {G} s {0’} G e State 7 :State — p(State)
If such that and (o0,s) || ¢/,

then

Concrefe (o,5) | o o € State s € Statement
Evaluation

Abstract

Analysis - {6} s {6’} G e State 7 :State — p(State)

Necessary Precondition Soundness Criteria

If - {c} s fault such that o ¢~(@) and (o,s) | o,
then error(o’).

Cousot, Cousot, Fahndrich, Logozzo (VMCAI'13)

Q1 V & < Alias path explosion for strong updates

x.f (On write, case split for each possible alias in Q to
maintain separation)

(1 V Q2 < Controlflow path explosion:
if (...) {} else {} Ignore for now, reasonable if number of guards

relevant to Q is small (e.g., [Das et al. (2002)])
@

s

hil inoll ...
WhTTe Wil) 1) J o

Q Simple loop invariant inference sufficient so far but
more sophisticated techniques possible if needed

Q1 V & < Alias path explosion for strong updates

x.f (On write, case split for each possible alias in Q to
maintain separation)

(1 V Q2 < Controlflow path explosion:
if (...) {} else {} Ignore for now, reasonable if number of guards

relevant to Q is small (e.g., [Das et al. (2002)])
@

s

hil inoll ...
WhTTe Wil) 1) J o

Q Simple loop invariant inference sufficient so far but
more sophisticated techniques possible if needed

Roadmap: Precise but with scalability challenges

Q1 V Qo < Alias path explosion for strong updates
< f (On write, case split for each possible alias in Q to
maintain separation) i
:)
Q1 V Qo < Controlflow path explosion:

if (...) {} else {} Ignore for now, reasonable if number of guards

relevant to Q is small (e.g., [Das et al. (2002)])
@

Qinv
< Loops:

9 Simple loop invariant inference sufficient so far but
more sophisticated techniques possible if needed

from constraints: Reducing separation constraints
with points-to facts

o from { O I Y |

from constraints: Reducing separation constraints
with points-to facts

o from { e e | §

from constraints: Reducing separation constraints
with points-to facts

o from{ ...,

R

from constraints: Reducing separation constraints
with points-to facts

o from{...,

from constraints: Reducing separation constraints
with points-to facts

o from{ ..,

from constraints: Reducing separation constraints
with points-to facts

o from{ .., e, | §

from constraints: Reducing separation constraints
with points-to facts

0 from{ ...,

from constraints: Reducing separation constraints

with points-to facts

o from{ ...,

o e}

-

Refute (derive false) if:

from

o from { veey | W, } Refute (derive false) if:
. i>3Ai<j
symbolic object abstract loc in points-to
instance (an address) (set of addresses) or o- fl—)p X O- f|—>q N\ p#q

or o from @

y from pt(x) Npt(y) Ax =1y

VIiy-f—pAXF#Y

x.fT =p
y-1—p

from

o from { veey | W, } Refute (derive false) if:
. i>3Ai<j
symbolic object abstract loc in points-to
instance (an address) (set of addresses) or o- fl—)p X O- f|—>q N\ p#q

or o from @

y from pt(x) Npt(y) Ax =1y

VIiy-f—pAXF#Y

x.fT =p
y-1—p

from

o from { veey | W, } Refute (derive false) if:
. i>3Ai<j
symbolic object abstract loc in points-to
instance (an address) (set of addresses) or o- fl—)p X O- f|—>q N\ p#q

or o from @

y from pt (X) M pt (Y) A X =Y | < Generalized disalias check:
pt(x) n pt(y) = @

VIiy-£f—=pAXF£Yy

x.fT =p
y-1—p

from

o from { veey | W, } Refute (derive false) if:
. i>3Ai<j
symbolic object abstract loc in points-to
instance (an address) (set of addresses) or o- fl—)p X O- f|—>q N\ p#q

or o from @
Restriction on possible abstract
locations based on flow in the
backwards analysis

y from pt (X) M pt (Y) A X =Y | < Generalized disalias check:
pt(x) n pt(y) = @

VIiy-f—pAXF#Y

x.fT =p
y-1—p

Roadmap: Thresher filters out false alarms by
refuting them one-by-one.

v

Points-To
Points-To
Program > Analyzer ™ o
!:2 (off-the-shelf) x e
/’Qﬁ (y
$ & e
\— Alarms

Manual - Filter with
.. «—
Triaging

i

C
{

Ideal | : Refute pointsto on-demand with second precise “filter” analysis ‘,
S— - —_ —

Ideal % : Leverage the facts from the first analysis in the filter analysis to scale |

— — m

Is Thresher effective at filtering?

Thresher analyzes Java VM bytecode

7 Android app benchmarks
2,000 to 40,000 source lines of code

+ 880,000 sources lines of Android

framework code

Off-the-shelf, state-of-the-art points-to
analysis from WALA

Points-To

PulsePoint unknown 16
StandupTimer 2K 25
DroidLife 3K 3
SMSPopUp /K 3
aMetro 20K 34
K9Mail 40K 208
Total 72K 311

Points-To

PulsePoint unknown 16
StandupTimer 2K 25
DroidLife 3K 3
SMSPopUp /K 3
aMetro 20K 34
K9Mail 40K 208
Total 72K 311
A~
staticfield-

Activity pairs

p Points-To Thresher
rogram Alarms Refuted

PulsePoint unknown 16 8
StandupTimer 2K 25 15
DroidLife 3K 3 0
SMSPopUp /K 3 l
aMetro 20K 34 18
K9Mail 40K 208 130
Total 72K 311 172
A A~
staticfield- || Filtered

Activity pairs

LOC P(::ﬂs-To Thresher
arms Refuted Bugs

PulsePoint unknown 16 8 8
StandupTimer 2K 25 15 0
DroidLife 3K 3 0 3
SMSPopUp 7K 5 1 4
aMetro 20K 4 18 36
K9Mail 40K 208 130 64
Total 72K 311 172 115

A~ A ~
<taticfield. ||Filtered||Manudl

Activity pairs

1€

Pc;::ﬂs-To Thresher

arms Refuted

PulsePoint unknown 16 8 8
StandupTimer 2K 25 15 0
DroidLife 3K 3 0 3
SMSPopUp 7K 5 1 4
aMetro 20K 4 18 36
K9Mail 40K 208 130 04
Total 72K 311 172 115

p Points-To Thresher True Thresher
rogram Alarms Refuted Bugs Time (s)

PulsePoint unknown 16 8 8 95
StandupTimer 2K 25 15 0 1068
DroidLife 3K 3 0 3 l
SMSPopUp 7K 5 l 4 46
aMetro 20K 4 18 36 18
K9Mail 40K 208 130 04 374
Total 72K 311 172 115 1602

Pc;::ﬂs-To Thresher True TI!resher
arms Refuted Bugs Time (s)
PulsePoint unknown 16 8 8 95
StandupTimer 2K 25 15 0 1068
DroidLife 3K 3 0 3 l
SMSPopUp /K 5 l 4 46
aMetro 20K 34 18 36 18
K9Mail 40K 208 130 64 374
Total 72K 311 172 115 1602

< ~coffee to
lunch break

p Points-To Thresher True Thresher
rogram Alarms Refuted Bugs Time (s)

PulsePoint unknown 16 8 8 95
StandupTimer 2K 25 15 0 1068
DroidLife 3K 3 0 3 l
SMSPopUp 7K 5 l 4 46
aMetro 20K 4 18 36 18
K9Mail 40K 208 130 04 374
Total 72K 311 172 115 1602

p Points-To Thresher True Thresher False
rogram Alarms Refuted Bugs Time (s) Alarm %

PulsePoint unknown 16 8 8 95 0
StandupTimer 2K 25 15 0 1068 100
DroidLife 3K 3 0 3 l 0
SMSPopUp 7K 5 l 4 46 0
aMetro 20K 4 18 36 18 0
K9Mail 40K 208 130 64 374 18
Total 72K 311 172 115 1602 E
% after

filtering

Pc;::ﬂs-To Thresher True TI!resher Fulsoe Filiereod
arms Refuted Bugs Time(s) Alarm % %
PulsePoint unknown 16 8 8 95 0 100
StandupTimer 2K 25 15 0 1068 100 60
DroidLife 3K 3 0 3 l 0

SMSPopUp 7K 5 l 4 46 0 100
aMetro 20K 34 18 36 18 0 100
K9Mail 40K 208 130 64 374 18 90
Total 72K 311 172 115 1602 E 88

% after

filtering

Pc;::ﬂs-To Thresher True TI!resher Fulsoe Filiereod
arms Refuted Bugs Time(s) Alarm % %
PulsePoint unknown 16 8 8 95 0 100
StandupTimer 2K 25 15 0 1068 100 60
DroidLife 3K 3 0 3 l 0

SMSPopUp 7K 5 l 4 46 0 100
aMetro 20K 34 18 36 18 0 100
K9Mail 40K 208 130 64 374 18 90
Total 72K 311 172 115 1602 17 88

Pc;::ﬂs-To Thresher True TI!resher Falsoe Filiere;d
arms Refuted Bugs Time(s) Alarm % %
PulsePoint unknown 16 8 8 95 0 100
StandupTimer 2K 25 15 0 1068 100 60
DroidLife 3K 3 0 3 l 0

SMSPopUp 7K 5 l 4 46 0 100
aMetro 20K 34 18 36 18 0 100
K9Mail 40K 208 130 64 374 18 90
Total 72K 311 172 115 1602 17 88

False alarms down to 17% from 63% (points-to analysis only)

Thresher filters 88% of false alarms from points-to analysis

E—

Some Highlights *va

Filter with

MM N

Thresher: Precise Refutations for Heap Reachability

Assist in triage of queries about heap relations

» Assume alarms false, prove them so (refute) automatically with a
“partial” witness search

» Reduced separation constraints with points-to facts
» Filters out ~90% of false alarms to expose true bugs

» Application: Find memory leaks and eliminate crashes in Android

Final Commentary: Design and apply analyses to the whole
bug mitigation process!

v

x alarms
of

maybe

bugs

Program — > Anquzer — Facts

Manual
Triaging

Final Commentary: Design and apply analyses to the whole

bug mitigation process!

Manual
Triaging

A
W Y

T

N Vv

alarms
of
maybe

bugs

Final Commentary: Design and apply analyses to the whole
bug mitigation process!

¥ |
N 7,

<\

Program —> Anquzer — Facts _<
j@ alarms
maybe
bugs

- p

Manual
.. «—— Refuter —
Triaging

Final Commentary: Design and apply analyses to the whole
bug mitigation process!

v,

\
N Vv

Program —> Anquzer — Facts _<

=77)) alarms

A X
maybe
bugs

b
N

- p

Manual
.. «—— Refuter —
Triaging

Final Commentary: Design and apply analyses to the whole
bug mitigation process!

Spec- w&

ification \
\ S\
Program —> Anquzer — Facts _<
N 2 X olarms

of
maybe
bugs

- p

Manual
.. «—— Refuter —
Triaging

Final Commentary: Design and apply analyses to the whole

bug mitigation process!

Spec-
ification \
Fissile Types: 1
Checking
Almost Program —> Analyzer —> Facs
Everywhere | xalarms
Invariants of
[Coughlin+ POPL'14] maybe
bugs

Manual
Triaging

«—

Refuter

Final Commentary: Design and apply analyses to the whole
bug mitigation process!

Spec-
ification N \\\

Fissile Types:

Checking
Almost

Everywhere

Invariants
[Coughlin+ POPL'14]

Program —> AnCI |yzer

Manual
Triaging

> Facts _<

«—

\

Refuter

v

alarms
of

maybe
bugs

Final Commentary: Design and apply analyses to the whole
bug mitigation process!

N Vv

Program — > Aﬂ(]lyzel' — Facts _<
~77)) alarms
maybe
bugs
Manual

.. «<— Refuter —
Triaging

Thank Youl .

X — el

@]‘ PLV

www.cs.colorado.edu/ bec
pl.cs.colorado.edu

- - .
", ,.
t‘.\ i ~—
¥

;/ /Android

... in the process of finding leaks in apps

Find Android’s HashMap bug ...

class HashMap {
static Object[] EMPTY = new Object[2]; ...
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {
if (need capacity) {
this.tbl = new Object[more capacity];
copy from old table
¥
this.tbl[bucket using hash of key] = val;
+

HashMap (Map m) {
if (m.size() < 1) { this.tbl = EMPTY; }
else { this.tbl = new Objectlat least m.size()]; }
copy from m

+
+

Find Android’s HashMap bug ...

Null object pattern: Should never be written to

class HashM
static Object[] EMPTY = new Object[2];
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {
if (need capacity) {
this.tbl = new Object[more capacity];
copy from old table
¥
this.tbl[bucket using hash of key] = val;
+

HashMap (Map m) {
if (m.size() < 1) { this.tbl = EMPTY; }
else { this.tbl = new Objectlat least m.size()]; }
copy from m

}
+

Find Android’s HashMap bug ...

class HashM

+

Null object pattern: Should never be written to

static Object[] EMPTY = new Object[2];
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {
if (need capacity) { allocate new
this.tbl = new Object[more capacity]; backing array

copy from old table on first write

by
this.tbl[bucket using hash of key] = val;

+

HashMap (Map m) {
if (m.size() < 1) { this.tbl = EMPTY; }
else { this.tbl = new Objectlat least m.size()]; }
copy from m

}

Find Android’s HashMap bug

Null object pattern: Should never be written to

class HashM
static Object[] EMPTY = new Object[2];
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {

if (need capacity) { allocate new
this.tbl = new Object[more capacity]; backing array
copy from old table on first write
+

this.tbl[bucket using hash of key] = val;

7 /’f (m.size() < 1) { this.tbl = EMPTY; }
else { this.tbl = new Object[at least m.size()]; }
copy from m

}

Find Android’s HashMap bug

Null object pattern: Should never be written to

class HashM
static Object[] EMPTY = new Object[2];
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {

if (need capacity) { allocate new
this.tbl = new Object[more capacity]; backing array
copy from old table on first write
by
this.tbl[bucket using hash of key] = val;
by [

%’fll\/[ap(l\’[ap m) {

7 {if (m.size() < 1) { this.tbl = EMPTY; }
else { this.tbl = new Objectlat least m.size()]; }
copy from m

An “evil” implementation of the Map interface

by
3 can corrupt EMPTY. Then, all HashMaps created

in the future will be corrupted.

Null object pattern: Should never be written to
class HashM | P

static Object[] EMPTY = new Object[2];
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {

if (need capacity) { allocate new
this.tbl = new Object[more capacity]; backing array
copy from old table on first write
t

this.tbl[bucket using hash of key] = val;

= EMPTY; }

else { this.tbl = new ObJect[at least m.size()]; }
copy from m

An “evil” implementation of the Map interface

} R | e can corrupt EMPTY. Then, all HashMaps created

in the future will be corrupted.

Null object pattern: Should never be written to
class HashM | P

static Object[] EMPTY = new Object[2];
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {

if (need capacity) { allocate new
this.tbl = new Object[more capacity]; backing array
copy from old table on first write

} [J }

this. We reported this, Google fixed it

hitps://android-review.googlesource.com/#/c/52183/

-—y — - - - e

else { this.tbl = new Object[at least m.size()]; }
copy from m

/ /1f (m.size()“< 1) { this.tbl = EMPTY; }

An “evil” implementation of the Map interface

} R | e can corrupt EMPTY. Then, all HashMaps created

in the future will be corrupted.

https://android-review.googlesource.com/#/c/52183/

