Refuting Heap Reachability

Bor-Yuh Evan Chang University of Colorado Boulder

Sam Blackshear Manu Sridharan CU Boulder Samsung January 20, 2014 VMCAI 2014

At my first VMCAI in 2005 (Paris)

> as a young PhD student

At my first VMCAI in 2005 (Paris)

as a young PhD student

"Spirit of VMCAI" introduced in my "formative academic years"

Howśiś

Howśiś

Howšiš

Howšiš

Howšiš

How₅i₅

Howśiś

Howśiś

How_śiś

Bug: Holding reference to "old" Activity

How_śiś

The expert recommendation ...

The expert recommendation ...

The expert recommendation ...

The expert recommendation ...

The expert recommendation ...

"Do not keep long-lived references to a context-activity"

A Specific Property to Check:

No Activity is ever reachable from a static field.

Is there a program execution where at some time a_static_field Ś of type Activity

Can be answered with a points-to analysis

Known: Precise points-to analysis challenging

Hind (2001). "Pointer Analysis: Haven't We Solved This Problem Yet?"
75 papers, 9 PhD theses

Known: Precise points-to analysis challenging

Hind (2001). "Pointer Analysis: Haven't We Solved This Problem Yet?"
75 papers, 9 PhD theses

Known: Precise points-to analysis challenging

Next: A perspective on VMCAI and false alarms

VMCAI Tool

V-MC-Al approaches

Dijkstra, Floyd, Hoare, ... ESC, Spec#, Boogie, Caduceus, Havoc, Calysto, Jahob, VCC, Dryad, ...

ESC, Spec#, Boogie, Caduceus, Havoc, Calysto, Jahob, VCC, Dryad, ...

ESC, Spec#, Boogie, Caduceus, Havoc, Calysto, Jahob, VCC, Dryad, ...

Clarke, Emerson, Sifakis, McMillan, ... BDDs (SMV, ...), CEGAR (SLAM, Blast, ...), Interpolation (Impact, ...), JPF, FSoft, CBMC, ...

BDDs (SMV, ...), CEGAR (SLAM, Blast, ...), Interpolation (Impact, ...), JPF, FSoft, CBMC, ...

Clarke, Emerson, Sifakis, McMillan, ... BDDs (SMV, ...), CEGAR (SLAM, Blast, ...), Interpolation (Impact, ...), JPF, FSoft, CBMC, ...

Clarke, Emerson, Sifakis, McMillan, ... BDDs (SMV, ...), CEGAR (SLAM, Blast, ...), Interpolation (Impact, ...), JPF, FSoft, CBMC, ...

Back to ...

A candidate for statically answering, "Is there an Activity leak?"

Thresher [SAS'11,PLDI'13] attacks alarm triage for heap reachability properties

Thresher [SAS'11,PLDI'13] attacks alarm triage for heap reachability properties

Thresher [SAS'11,PLDI'13] attacks alarm triage for heap reachability properties

Thresher [SAS'11,PLDI'13] attacks alarm triage for heap reachability properties

Thresher [SAS'11, PLDI'13] attacks alarm triage for heap reachability properties

Thresher [SAS'11, PLDI'13] attacks alarm triage for heap reachability properties

Thresher [SAS'11,PLDI'13] attacks alarm triage for heap reachability properties

Thresher [SAS'11, PLDI'13] attacks alarm triage for heap reachability properties

Prove alarms false with a witness search

Thresher [SAS'11, PLDI'13] attacks alarm triage for heap reachability properties

Prove alarms false with a witness search

java.util.HashMap.class

MyClass3.java

Get abstract heap path + allocation sites

What does the user need to do? He starts at, say, line 142 and traces back to see if a bug is possible given what's happening.

What does the user need to do? He starts at, say, line 142 and traces back to see if a bug is possible given what's happening.

We can do this with analysis (V+MC+AI)!

What does the user need to do? He starts at, say, line 142 and traces back to see if a bug is possible given what's happening.

We can do this with analysis (V+MC+AI)!

If we filter most false alarms, the user can triage more quickly and get to true bugs earlier (without frustration).

Idea 1: Refute points-to on-demand with second precise "filter" analysis

Idea 1: Refute points-to on-demand with second precise "filter" analysis

Idea (2): Leverage the facts from the first analysis in the filter analysis to scale

Idea 1: Refute points-to on-demand with second precise "filter" analysis "from constraints" to reduce with the points-to domain

Idea (2): Leverage the facts from the first analysis in the filter analysis to scale

Idea (2): Leverage the facts from the first analysis in the filter analysis to scale

Idea 2: Leverage the facts from the first analysis in the filter analysis to scale

Is there a program execution where at

Is there a program execution where at some time

Select a points-to edge in the path

Is there a program execution where at some time

Select a points-to edge in the path

Try to refute the edge with a symbolic analysis

Is there a program execution where at some time a_static_field Ś of type Activity

Soundly Filtered

Soundly Filtered

Soundly Filtered

Not Refuted

Refutation: Derive a contradiction, that a points-to relation can't actually hold

class Vec {
 static Object[] EMPTY = new_{arr0} Object[1]; ...
 Vec() { this.tbl = EMPTY; capacity initially empty }

class Vec
 Null object pattern: Should never be written to
 static Object[] EMPTY = new_{arr0} Object[1]; ...
 Vec() { this.tbl = EMPTY; capacity initially empty }


```
Null object pattern: Should never be written to
class Vec
  static Object[] EMPTY = new_{arr_0} Object[1]; ...
  Vec() { this.tbl = EMPTY; capacity initially empty }
  void push(Object val) {
    if (need capacity) {
      this.tbl = new<sub>arr1</sub> Object[more capacity];
       copy from old table
    }
    this.tbl[next slot] = val;
  }
```

```
Refuting a points-to edge:
                                       act<sub>0</sub>: Activity
                               arr<sub>0</sub>
What are we up against?
             Null object pattern: Should never be written to
class Vec
  static Object[] EMPTY = new_{arr_0} Object[1]; ...
  Vec() { this.tbl = EMPTY; capacity initially empty }
  void push(Object val) {
     if (need capacity) {
       this.tbl = new<sub>arr1</sub> Object[more capacity];
       copy from old table
     }
     this.tbl[next slot] = val;
  }
```



```
Null object pattern: Should never be written to
class Vec
  static Object[] EMPTY = new_{arr_0} Object[1]; ...
  Vec() { this.tbl = EMPTY; capacity initially empty }
  void push(Object val) {
    if (need capacity) {
       this.tbl = new<sub>arr1</sub> Object[more capacity];
       copy from old table
    }
    this.tbl[next slot] = val;
  }
                                             act<sub>0</sub>: Activity
                                     arro
```


Null object pattern: Should never be written to class Vec static Object[] EMPTY = new_{arr_0} Object[1]; ... Vec() { this.tbl = EMPTY; capacity initially empty } void push(Object val) { if (need capacity) { this.tbl = new_{arr1} Object[more capacity]; copy from old table } this.tbl[next slot] = val; } act₀: Activity arro

Null object pattern: Should never be written to class Vec static Object[] EMPTY = new_{arr_0} Object[1]; ... Vec() { this.tbl = EMPTY; capacity initially empty } void push(Object Need interprocedural path-sensitivity if (need capacity) { this.tbl = new_{arr1} Object[more capacity]; copy from old table } this.tbl[next slot] = val; } act₀: Activity arro

Null object pattern: Should never be written to class Vec static Object[] EMPTY = new_{arr_0} Object[1]; ... Vec() { this.tbl = EMPTY; capacity initially empty } void push(Object Need interprocedural path-sensitivity if (need capacity) { this.tbl = new_{arr1} Object[more capacity]; copy from old table } this.tbl[next slot] = val; } act₀: Activity arro


```
class Vec {
  static Object[] EMPTY = new<sub>arr0</sub> Object[1]; ...
  Vec() { this.tbl = EMPTY; capacity initially empty }
```

```
void push(Object val) {
    if (need capacity) {
        this.tbl = new<sub>arr1</sub> Object[more capacity];
        copy from old table
    }
```



```
class Vec {
  static Object[] EMPTY = new<sub>arr0</sub> Object[1]; ...
  Vec() { this.tbl = EMPTY; capacity initially empty }
```

```
void push(Object val) {
    if (need capacity) {
        this.tbl = new<sub>arr1</sub> Object[more capacity];
        copy from old table
    }
```

```
\frac{\texttt{this.tbl[next slot]} = \texttt{val;}}{arr_0 \cdot [-] \mapsto act_0 * \texttt{true}}
```


val;

=

class Vec {

this.tbl[next slot]

newarra Object **Derive a contradiction** along all "backwards" path programs

[Beyer, Henzinger, Majumdar, Rybalchenko (2007)]

 $arr_0 \cdot [-] \mapsto act_0 * true$

Derive refutations by trying to find witnesses

Alias path explosion for strong updates (On write, case split for each possible alias in Q to maintain separation)

Alias path explosion for strong updates (On write, case split for each possible alias in Q to maintain separation)

Alias path explosion for strong updates (On write, case split for each possible alias in Q to maintain separation)

Control-flow path explosion: Ignore for now, reasonable if number of guards relevant to Q is small (e.g., [Das et al. (2002)])

Alias path explosion for strong updates (On write, case split for each possible alias in Q to maintain separation)

Control-flow path explosion: Ignore for now, reasonable if number of guards relevant to Q is small (e.g., [Das et al. (2002)])

Alias path explosion for strong updates (On write, case split for each possible alias in Q to maintain separation)

Control-flow path explosion: Ignore for now, reasonable if number of guards relevant to Q is small (e.g., [Das et al. (2002)])

Loops:

Simple loop invariant inference sufficient so far but more sophisticated techniques possible if needed

Alias path explosion for strong updates (On write, case split for each possible alias in Q to maintain separation)

Control-flow path explosion: Ignore for now, reasonable if number of guards relevant to Q is small (e.g., [Das et al. (2002)])

Loops:

Simple loop invariant inference sufficient so far but more sophisticated techniques possible if needed

Facts

Alias path explosion for strong updates (On write, case split for each possible alias in Q to maintain separation)

Soundness Criteria

 $\begin{array}{ll} \text{Concrete} \\ \text{Evaluation} \end{array} & \left\langle \sigma,s \right\rangle \Downarrow \sigma' \end{array}$

 $\begin{array}{ll} \textbf{Abstract} \\ \textbf{Analysis} \end{array} \vdash \{\widehat{\sigma}\} \ s \ \{\widehat{\sigma}'\} \end{array}$

Standard Total Correctness Soundness Criteria

If $\vdash \{\widehat{\sigma}\} \ s \ \{\widehat{\sigma'}\}$ such that $\sigma \in \gamma(\widehat{\sigma})$, then $\langle \sigma, s \rangle \Downarrow \sigma'$ for some $\sigma' \in \gamma(\widehat{\sigma'})$.

If $\vdash \{\widehat{\sigma}\} \ s \ \{\widehat{\sigma'}\}$ such that $\sigma \in \gamma(\widehat{\sigma})$, then $\langle \sigma, s \rangle \Downarrow \sigma'$ for some $\sigma' \in \gamma(\widehat{\sigma'})$.

If $\vdash \{\widehat{\sigma}\} \ s \ \{\widehat{\sigma}'\}$ such that $\sigma' \in \gamma(\widehat{\sigma}')$, then $\langle \sigma, s \rangle \Downarrow \sigma'$ for some $\sigma \in \gamma(\widehat{\sigma})$.

Concrete
Evaluation $\langle \sigma, s \rangle \Downarrow \sigma'$ $\sigma \in State$ $s \in Statement$ Abstract
Analysis $\vdash \{\widehat{\sigma}\} \ s \ \{\widehat{\sigma}'\}$ $\widehat{\sigma} \in State$ $\gamma : State \rightarrow \wp(State)$ Post: Goal

If $\vdash \{\widehat{\sigma}\} \ s \ \{\widehat{\sigma}'\}$ such that $\sigma' \in \gamma(\widehat{\sigma}')$, then $\langle \sigma, s \rangle \Downarrow \sigma'$ for some $\sigma \in \gamma(\widehat{\sigma})$.

"Total" Witness Soundness Criteria

Post: Goal

If $\vdash \{\widehat{\sigma}\} \ s \ \{\widehat{\sigma'}\}$ such that $\sigma' \in \gamma(\widehat{\sigma'})$, then $\langle \sigma, s \rangle \Downarrow \sigma'$ for some $\sigma \in \gamma(\widehat{\sigma})$.

Ball, Kupferman, and Yorsh (2005)

"Total" Witness Soundness Criteria

Post: Goal

If $\vdash \{\widehat{\sigma}\} \ s \ \{\widehat{\sigma}'\}$ such that $\sigma' \in \gamma(\widehat{\sigma}')$, then $\langle \sigma, s \rangle \Downarrow \sigma'$ for some $\sigma \in \gamma(\widehat{\sigma})$.

Ball, Kupferman, and Yorsh (2005)

Snugglebug, Alter, DART, ... are under-approximate

Refutation Soundness Criteria

If a loop may "produce" a conjunct of the query, we can "assume it does" (weaken the query) only at the cost of precision.

Refutation Soundness Criteria

If a loop may "produce" a conjunct of the query, we can "assume it does" (weaken the query) only at the cost of precision.

Refutation Soundness Criteria

If $\vdash \{\widehat{\sigma}\} \ s \ \{\widehat{\sigma'}\}$ such that $\sigma' \in \gamma(\widehat{\sigma'})$ and $\langle \sigma, s \rangle \Downarrow \sigma'$, then $\sigma \in \gamma(\widehat{\sigma})$.

Refutations: Prove alarms false with "partial" witnesses, an "easier condition" for loops

 $\begin{array}{ll} \text{Concrete} \\ \text{Evaluation} \end{array} & \left\langle \sigma, s \right\rangle \Downarrow \sigma' \qquad \sigma \in \textbf{State} \quad s \in \textbf{Statement} \\ \\ \text{Abstract} \\ \text{Analysis} \qquad \vdash \{\widehat{\sigma}\} \; s \; \{\widehat{\sigma}'\} \qquad \widehat{\sigma} \in \textbf{State} \quad \gamma : \textbf{State} \to \mathcal{P}(\textbf{State}) \end{array}$

Necessary Precondition Soundness Criteria

If $\vdash \{\widehat{\sigma}\}\ s$ fault such that $\sigma \notin \gamma(\widehat{\sigma})$ and $\langle \sigma, s \rangle \Downarrow \sigma'$, then $\operatorname{error}(\sigma')$.

Cousot, Cousot, Fähndrich, Logozzo (VMCAI'13)

Roadmap: Precise but with scalability challenges

Alias path explosion for strong updates (On write, case split for each possible alias in Q to maintain separation)

Control-flow path explosion: Ignore for now, reasonable if number of guards relevant to Q is small (e.g., [Das et al. (2002)])

Loops:

Simple loop invariant inference sufficient so far but more sophisticated techniques possible if needed

Roadmap: Precise but with scalability challenges

Alias path explosion for strong updates (On write, case split for each possible alias in Q to maintain separation)

Control-flow path explosion: Ignore for now, reasonable if number of guards relevant to Q is small (e.g., [Das et al. (2002)])

Loops:

Simple loop invariant inference sufficient so far but more sophisticated techniques possible if needed

Roadmap: Precise but with scalability challenges

Alias path explosion for strong updates (On write, case split for each possible alias in Q to maintain separation)

Control-flow path explosion: Ignore for now, reasonable if number of guards relevant to Q is small (e.g., [Das et al. (2002)])

Loops:

Simple loop invariant inference sufficient so far but more sophisticated techniques possible if needed

o from { ...,
$$a_i$$
 ,... }
symbolic object
instance (an address)

Refute (derive false) if: i > j ∧ i < j

Refute (derive false) if: i > j ∧ i < j or o · f → p * o · f → q ∧ p≠q

Refute (derive false) if: i > j ∧ i < j or o.f↦p * o.f↦q ∧ p≠q or o from Ø

Refute (derive false) if: i > j ∧ i < j or o frop * o from Ø

Refute (derive false) if: i > j ∧ i < j or o f → p * o f → q ∧ p≠q or o from Ø

$$\texttt{y from } \operatorname{pt}(\texttt{x}) \cap \operatorname{pt}(\texttt{y}) \land \texttt{x} = \texttt{y}$$

$$\vee \left[\texttt{y} \cdot \texttt{f} \mapsto \texttt{p} \land \texttt{x} \neq \texttt{y} \right]$$

$$\begin{array}{c} x \cdot \mathbf{I} - p \\ y \cdot \mathbf{f} \mapsto p \end{array}$$

Refute (derive false) if: i > j ∧ i < j or o f → p * o f → q ∧ p≠q or o from Ø

Points-To Facts

y from
$$pt(x) \cap pt(y) \land x = y$$

$$\forall y \cdot \mathbf{f} \mapsto \mathbf{p} \land \mathbf{x} \neq \mathbf{y}$$

$$x.i = p$$
$$y \cdot f \mapsto p$$

ር _ _

Refute (derive false) if: i > j ∧ i < j or o f → p * o f → q ∧ p≠q or o from Ø

Points-To Facts

y from
$$pt(x) \cap pt(y) \land x = y$$

$$\vee \left| \mathbf{y} \cdot \mathbf{f} \mapsto \mathbf{p} \wedge \mathbf{x} \neq \mathbf{y} \right|$$

x.f = p

 $\mathbf{y} \cdot \mathbf{f} \mapsto \mathbf{p}$

Generalized disalias check: $pt(x) \cap pt(y) = \emptyset$

o from
$$\{ ..., a_i ,... \}$$

symbolic object
instance (an address) abstract loc in points-to
(set of addresses)
Restriction on possible abstract
locations based on flow in the
backwards analysis

$$y \text{ from } pt(x) \cap pt(y) \land x = y$$

$$\lor y \cdot f \mapsto p \land x \neq y$$

x.f = p $y \cdot f \mapsto p$

Generalized disalias check: $pt(x) \cap pt(y) = \emptyset$

Roadmap: Thresher filters out false alarms by refuting them one-by-one.

Idea (2): Leverage the facts from the first analysis in the filter analysis to scale

Thresher analyzes Java VM bytecode

7 Android app benchmarks

2,000 to 40,000 source lines of code

+ 880,000 sources lines of Android framework code

Off-the-shelf, state-of-the-art points-to analysis from WALA

Program	LOC	Points-To Alarms
PulsePoint	unknown	16
StandupTimer	2 K	25
DroidLife	ЗК	3
SMSPopUp	7K	5
aMetro	20K	54
K9Mail	40K	208
Total	72K	311

Program	LOC	Points-To Alarms		
PulsePoint	unknown	16		
StandupTimer	2 K	25		
DroidLife	ЗК	3		
SMSPopUp	7K	5		
aMetro	20K	54		
K9Mail	40K	208		
Total	72K	311		
	stat Activ	staticfield- Activity pairs		

Program	LOC	Points-To Alarms	Thresher Refuted
PulsePoint	unknown	16	8
StandupTimer	2 K	25	15
DroidLife	ЗК	3	0
SMSPopUp	7K	5	1
aMetro	20K	54	18
K9Mail	40K	208	130
Total	72K	311	172
	stat Activ	icfield- ity pairs	Filtered

Program	LOC	Points-To Alarms	Thresher Refuted	True Bugs
PulsePoint	unknown	16	8	8
StandupTimer	2 K	25	15	0
DroidLife	ЗК	3	0	3
SMSPopUp	7K	5	5 1	
aMetro	20K	54	18	36
K9Mail	40K	208	130	64
Total	72 K	311	172	115
	stat Activ	icfield- ity pairs	Filtered	Manual Manual

Program	LOC	Points-To Alarms	Thresher Refuted	True Bugs
PulsePoint	unknown	16	8	8
StandupTimer	2 K	25	15	0
DroidLife	ЗК	3	0	3
SMSPopUp	7 K	5	1	4
aMetro	20K	54	18	36
K9Mail	40K	208	130	64
Total	72K	311	172	115

Program	LOC	Points-To Alarms	Thresher Refuted	True Bugs	Thresher Time (s)
PulsePoint	unknown	16	8	8	95
StandupTimer	2К	25	15	0	1068
DroidLife	ЗК	3	0	3	1
SMSPopUp	7 K	5	1	4	46
aMetro	20K	54	18	36	18
K9Mail	40K	208	130	64	374
Total	72K	311	172	115	1602

Program	LOC	Points-To Alarms	Thresher Refuted	True Bugs	Thresher Time (s)
PulsePoint	unknown	16	8	8	95
StandupTimer	2 K	25	15	0	1068
DroidLife	ЗК	3	0	3	1
SMSPopUp	7 K	5	1	4	46
aMetro	20K	54	18	36	18
K9Mail	40K	208	130	64	374
Total	72K	311	172	115	1602
				< ~(lun	coffee to ch break

Program	LOC	Points-To Alarms	Thresher Refuted	True Bugs	Thresher Time (s)
PulsePoint	unknown	16	8	8	95
StandupTimer	2К	25	15	0	1068
DroidLife	ЗК	3	0	3	1
SMSPopUp	7 K	5	1	4	46
aMetro	20K	54	18	36	18
K9Mail	40K	208	130	64	374
Total	72K	311	172	115	1602

Program	LOC	Points-To Alarms	Thresher Refuted	True Bugs	Thresher Time (s)	False Alarm %
PulsePoint	unknown	16	8	8	95	0
StandupTimer	2 K	25	15	0	1068	100
DroidLife	ЗК	3	0	3	1	0
SMSPopUp	7K	5	1	4	46	0
aMetro	20K	54	18	36	18	0
K9Mail	40K	208	130	64	374	18
Total	72K	311	172	115	1602	17 ^
						% after filtering

Program	LOC	Points-To Alarms	Thresher Refuted	True Bugs	Thresher Time (s)	False Alarm %	Filtered %
PulsePoint	unknown	16	8	8	95	0	100
StandupTimer	2 K	25	15	0	1068	100	60
DroidLife	ЗК	3	0	3	1	0	-
SMSPopUp	7К	5	1	4	46	0	100
aMetro	20K	54	18	36	18	0	100
K9Mail	40K	208	130	64	374	18	90
Total	72K	311	172	115	1602	17 ^	88
						% after filterina	

Program	LOC	Points-To Alarms	Thresher Refuted	True Bugs	Thresher Time (s)	False Alarm %	Filtered %
PulsePoint	unknown	16	8	8	95	0	100
StandupTimer	2 K	25	15	0	1068	100	60
DroidLife	ЗК	3	0	3	1	0	-
SMSPopUp	7 K	5	1	4	46	0	100
aMetro	20K	54	18	36	18	0	100
K9Mail	40K	208	130	64	374	18	90
Total	72K	311	172	115	1602	17	88

Program	LOC	Points-To Alarms	Thresher Refuted	True Bugs	Thresher Time (s)	False Alarm %	Filtered %
PulsePoint	unknown	16	8	8	95	0	100
StandupTimer	2 K	25	15	0	1068	100	60
DroidLife	ЗК	3	0	3	1	0	-
SMSPopUp	7K	5	1	4	46	0	100
aMetro	20K	54	18	36	18	0	100
K9Mail	40K	208	130	64	374	18	90
Total	72K	311	172	115	1602	17	88

False alarms down to 17% from 63% (points-to analysis only) Thresher filters 88% of false alarms from points-to analysis

Some Highlights

Thresher: Precise Refutations for Heap Reachability

Assist in triage of queries about heap relations

- Assume alarms false, prove them so (refute) automatically with a "partial" witness search
- Reduced separation constraints with points-to facts
- Filters out ~90% of false alarms to expose true bugs
- Application: Find memory leaks and eliminate crashes in Android

www.cs.colorado.edu/~bec pl.cs.colorado.edu

... in the process of finding leaks in apps

```
class HashMap {
  static Object[] EMPTY = new Object[2]; ...
 HashMap() { this.tbl = EMPTY; capacity initially empty }
 void put(Object key, Object val) {
    if (need capacity) {
      this.tbl = new Object[more capacity];
      copy from old table
    }
    this.tbl[bucket using hash of key] = val;
 }
 HashMap(Map m) {
    if (m.size() < 1) { this.tbl = EMPTY; }</pre>
    else { this.tbl = new Object[at least m.size()]; }
    copy from m
  }
```

```
Null object pattern: Should never be written to
class HashM
  static Object[] EMPTY = new Object[2]; ...
  HashMap() { this.tbl = EMPTY; capacity initially empty }
  void put(Object key, Object val) {
    if (need capacity) {
      this.tbl = new Object[more capacity];
      copy from old table
    }
    this.tbl[bucket using hash of key] = val;
  }
 HashMap(Map m) {
    if (m.size() < 1) { this.tbl = EMPTY; }</pre>
    else { this.tbl = new Object[at least m.size()]; }
    copy from m
  }
```

```
Null object pattern: Should never be written to
class HashM
  static Object[] EMPTY = new Object[2]; ...
  HashMap() { this.tbl = EMPTY; capacity initially empty }
  void put(Object key, Object val) {
    if (need capacity) {
                                                    allocate new
      this.tbl = new Object[more capacity];
                                                    backing array
      copy from old table
                                                    on first write
    }
    this.tbl[bucket using hash of key] = val;
  }
  HashMap(Map m) {
    if (m.size() < 1) { this.tbl = EMPTY; }</pre>
    else { this.tbl = new Object[at least m.size()]; }
    copy from m
  }
```

}

```
Null object pattern: Should never be written to
class HashM
  static Object[] EMPTY = new Object[2]; ...
  HashMap() { this.tbl = EMPTY; capacity initially empty }
  void put(Object key, Object val) {
    if (need capacity) {
                                                    allocate new
      this.tbl = new Object[more capacity];
                                                    backing array
      copy from old table
                                                    on first write
    }
    this.tbl[bucket using hash of key] = val;
  HashMap(Map m) {
    if (m.size() < 1) { this.tbl = EMPTY; }</pre>
    else { this.tbl = new Object[at least m.size()]; }
    copy from m
  }
```

```
Null object pattern: Should never be written to
class HashM
  static Object[] EMPTY = new Object[2]; ...
  HashMap() { this.tbl = EMPTY; capacity initially empty }
  void put(Object key, Object val) {
    if (need capacity) {
                                                      allocate new
      this.tbl = new Object[more capacity];
                                                      backing array
      copy from old table
                                                      on first write
    }
    this.tbl[bucket using hash of key] = val;
  MashMap(Map m) {
    if (m.size() < 1) { this.tbl = EMPTY; }</pre>
    else { this.tbl = new Object[at least m.size()]; }
    copy from m
                            An "evil" implementation of the Map interface
  }
                            can corrupt EMPTY. Then, all HashMaps created
}
                                  in the future will be corrupted.
```


