
The Flow-Insensitive Precision of

Andersen’s Analysis in Practice

UC Berkeley – June 10, 2011

Work to be presented at SAS 2011

Manu Sridharan

IBM Research

Sam Blackshear, Bor-Yuh Evan Chang,

Sriram Sankaranarayanan

University of Colorado Boulder

2

Pointers, pointers, pointers

Blackshear, Chang, Sankaranarayanan (CU Boulder), Sridharan (IBM)

Pointers/Heap Central to

Programming

*p = q; (C)

p.f = q; (Java/C#/JS)

Heap Analysis Key to

Program Reasoning

Property checkers (e.g.,

tainting, typestate, race

conditions) are typical

clients of pointer analysis.

3

Never precise enough

• The Benchmark: Andersen’s Analysis

– Sources of Imprecision?

Blackshear, Chang, Sankaranarayanan (CU Boulder), Sridharan (IBM)

Flow-Insensitive

Abstraction

Andersen’s

Algorithm

Program

Set of Pointer Update Statements

Points-To Facts

1

2
Andersen’s is not a (fully)

precise flow-insensitive points-

to analysis (PFIPTA)

[Chakaravarthy’03, Horwitz’97]

Which should we

attack?

4

Never precise enough

• The Benchmark: Andersen’s Analysis

– Sources of Imprecision?

Blackshear, Chang, Sankaranarayanan (CU Boulder), Sridharan (IBM)

Flow-Insensitive

Abstraction

Andersen’s

Algorithm

Program

Set of Pointer Update Statements

Points-To Facts

1

2
Andersen’s is not a (fully)

precise flow-insensitive analysis

[Chakaravarthy’03, Horwitz’97]

Which should we

attack?

Two Questions Arise:

Theory) Is there an

efficient algorithm for

precise flow-insensitive

analysis?

Practice) Is there a

precision gap with

Andersen’s in practice?

No

This Talk

5

Answering “precision in practice”

• An algorithm for precise flow-insensitive

points-to analysis (for finite memory)

– based on an on-demand witness search algo.

– with a SAT encoding, “efficient enough” for

experimentation

• Ask experimentally: Is an Andersen’s

derived-fact ever refuted by our precise

algorithm?

Blackshear, Chang, Sankaranarayanan (CU Boulder), Sridharan (IBM)

6

Roadmap

• Background: Imprecision in

 Andersen’s

• Precise Analysis by Witness Search

• Experimental Findings: Is There a Precision

Gap in Practice?

Blackshear, Chang, Sankaranarayanan (CU Boulder), Sridharan (IBM)

Andersen’s

Algorithm

2

7

The Points-To Analysis Problem

Given a set of assignments of the form

*n p := &q; *n p := *m q; finite memory

*n p := malloc(); with dynamic memory

Compute a (may) points-to graph

Blackshear, Chang, Sankaranarayanan (CU Boulder), Sridharan (IBM)

r q

g

abstract location modeling one or more concrete cells

“r may sometime contain the address of q”

“r may point to g”

8

Precise Flow-Insensitive Points-To Analysis

Andersen’s analysis

Exact graphs and an operational semantics

Blackshear, Chang, Sankaranarayanan (CU Boulder), Sridharan (IBM)

r := &q; x := &g;

y := x;

*x := y; *x := r;

r := *x;

r q

g

x

y

r q

g

x

y

models a single cell

*x := r;

An edge is realizable iff it is in

an exact graph after some seq.

of updates (from empty)

A precise flow-insensitive

points-to analysis

derives all realizable edges

and no others

i.e., derives a precise join of

all exact graphs along all

possible executions

9

Imprecision: Simultaneous Points-To

Blackshear, Chang, Sankaranarayanan (CU Boulder), Sridharan (IBM)

r q

g

x

y p

p := *r;

Unrealizable!

Requires simultaneously

r q and r g

or simultaneously

 g g and g q

10

Imprecision: Decomposing Multi-Derefs

Blackshear, Chang, Sankaranarayanan (CU Boulder), Sridharan (IBM)

a

b

c

p

q

**p := *q;

Unrealizable!

But realizable with

t1 := *p; t2 := *q; *t1 := t2;

11

Roadmap

• Background: Imprecision in

 Andersen’s

• Precise Analysis by Witness Search

• Experimental Findings: Is There a Precision

Gap in Practice?

Blackshear, Chang, Sankaranarayanan (CU Boulder), Sridharan (IBM)

Andersen’s

Algorithm

2

12

Witnesses

A witness for an edge e is an execution (or,

a sequence of assignments)

 where e Gn

Idea: Given an edge e to witness, search

backwards over possible executions

constrained by the initial analysis

Blackshear, Chang, Sankaranarayanan (CU Boulder), Sridharan (IBM)

G1

a2

…

an

Gn {}

a1

13

Edge Dependency Rules

Dependency Rule

Blackshear, Chang, Sankaranarayanan (CU Boulder), Sridharan (IBM)

p r s q *p := q;

r s { p r, q s }
*p := q

is

realizable

are simultaneously

realizable
if

14

Search by rewriting using dependency rules

Blackshear, Chang, Sankaranarayanan (CU Boulder), Sridharan (IBM)

r q

g

x

y p

r g { x g, g g }
r := *x

{ x g, y g }
*x := y

{ x g }
y := x

{ }
x := &g

g g

y g

x g

15

Refutation yields precision improvement

Blackshear, Chang, Sankaranarayanan (CU Boulder), Sridharan (IBM)

r q

g

x

y p

p q { r g, g q }
p := *r

{ r g, x g, r g }
*x := r

{ x g, g g, g q }
r := *x

g q r g

r r

g g

Proven

Unrealizable!

16

Roadmap

• Background: Imprecision in

 Andersen’s

• Precise Analysis by Witness Search

• Experimental Findings: Is There a Precision

Gap in Practice?

Blackshear, Chang, Sankaranarayanan (CU Boulder), Sridharan (IBM)

Andersen’s

Algorithm

2

17

Evaluation Methodology Overview

Is there a precision gap in practice?

Is there a witness for every points-to fact

derived by Andersen’s? Yes No Gap

Test Configurations

• Factor out imprecision due to dynamic memory

(summary nodes)

• Factor out imprecision due to decomposing

multi-dereferences

• What about for alias queries? r.{p r, q r}?

 Blackshear, Chang, Sankaranarayanan (CU Boulder), Sridharan (IBM)

18

Summary Nodes and Dynamic Memory

Standard Practice: structs, arrays, malloc

modeled by summary nodes

– An abstract location modeling possibly more

than one concrete cell

Bounding the Precision Gap with Summaries

• Lower: Weak update semantics for summaries

during witness search (over-approx. analysis)

• Upper: Treat summaries as abstracting one

concrete cell (under-approx. analysis)

Blackshear, Chang, Sankaranarayanan (CU Boulder), Sridharan (IBM)

Decidability of precise flow-insensitive points-to

analysis with dynamic memory allocation is unknown

Always find witnesses = No precison gap!
(factoring out decomposing multi-dereferences)

19

Evaluation Benchmarks

program size problem size lower bound upper bound

kloc num pt edges depth time (s) depth time (s)

aget 1.1 33 1.8 0.0 1.8 0.1

arp 3.1 287 2.7 1.3 2.7 1.3

slattach 3.4 251 2.8 1.2 2.8 1.2

netstat 4.5 250 2.8 1.2 2.8 1.2

ifconfig 8.8 247 2.5 1.0 2.5 1.0

stunnel 17.1 426 3.9 16.3 4.0 20.4

plip 18.4 1052 9.3 38613.0 9.3 40089.0

knot 1.3 29 2.3 0.1 2.3 0.1

esp 10.9 637 5.9 51744.0 6.9 77878.0

ide-disk 12.6 437 8.7 424.3 8.7 699.9

bc 6.2 453 7.2 10.6 7.2 88.9

watchdog 9.4 1027 6.3 2698.3 6.5 4982.0

Blackshear, Chang, Sankaranarayanan (CU Boulder), Sridharan (IBM)

12 benchmarks
(small- to medium-sized in C)

over 4 categories
(network utilities, device

drivers, terminal application,

system daemon)

Feasability:

Small search

depths

20

Decomposing Multi-Derefs and Aliasing

Decomposing Multi-Dereferences

• Witness search over transformed statements

• Post-pass to validate w.r.t. original statements

• All witnesses validate for lower bound config.

and 97.5% (4561/4676) for upper bound config.

– Definitely no gap factoring out summaries imprecision

– At most tiny gap considering summaries imprecision

Alias Queries

• Witness search on 1000 random pairs of vars

• Always found witnesses No observed gap!
Blackshear, Chang, Sankaranarayanan (CU Boulder), Sridharan (IBM)

21

Conclusion

• Empirically Observed: No (or ≤tiny) gap

between Andersen’s and PFIPTA

– Witnesses are short

Blackshear, Chang, Sankaranarayanan (CU Boulder), Sridharan (IBM)

• Target Imprecision from

Flow-Insensitivity

– Witness refutation with aspects

of flow-sensitivity

– Get on-demand refinement

with flow-sensitivity

Flow-Insensitive

Abstraction

1

