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Pointers, pointers, pointers 

Blackshear, Chang, Sankaranarayanan (CU Boulder), Sridharan (IBM) 

Pointers/Heap Central to 

Programming 

*p = q;  (C) 

 

p.f = q;  (Java/C#/JS) 

Heap Analysis Key to 

Program Reasoning 

Property checkers (e.g., 

tainting, typestate, race 

conditions) are typical 

clients of pointer analysis. 
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Never precise enough 

• The Benchmark: Andersen’s Analysis 

– Sources of Imprecision? 

 

Blackshear, Chang, Sankaranarayanan (CU Boulder), Sridharan (IBM) 

Flow-Insensitive 

Abstraction 

Andersen’s 

Algorithm 

Program 

Set of Pointer Update Statements 

Points-To Facts 

1 

2 
Andersen’s is not a (fully) 

precise flow-insensitive points-

to analysis (PFIPTA) 

[Chakaravarthy’03, Horwitz’97] 

Which should we 

attack? 
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Flow-Insensitive 

Abstraction 

Andersen’s 

Algorithm 

Program 

Set of Pointer Update Statements 

Points-To Facts 

1 

2 
Andersen’s is not a (fully) 

precise flow-insensitive analysis 

[Chakaravarthy’03, Horwitz’97] 

Which should we 

attack? 

Two Questions Arise: 

Theory) Is there an 

efficient algorithm for 

precise flow-insensitive 

analysis? 

Practice) Is there a 

precision gap with 

Andersen’s in practice? 

No 

This Talk 
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Answering “precision in practice” 

• An algorithm for precise flow-insensitive 

points-to analysis (for finite memory) 

– based on an on-demand witness search algo. 

– with a SAT encoding, “efficient enough” for 

experimentation 
 

• Ask experimentally: Is an Andersen’s 

derived-fact ever refuted by our precise 

algorithm? 

 

 

 

 

Blackshear, Chang, Sankaranarayanan (CU Boulder), Sridharan (IBM) 
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Roadmap 

• Background: Imprecision in 

 Andersen’s 

 

• Precise Analysis by Witness Search 

 

• Experimental Findings: Is There a Precision 

Gap in Practice? 

 

Blackshear, Chang, Sankaranarayanan (CU Boulder), Sridharan (IBM) 

Andersen’s 

Algorithm 

2 
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The Points-To Analysis Problem 

Given a set of assignments of the form 

*n p := &q; *n p := *m q;  finite memory 

*n p := malloc();    with dynamic memory 

 

Compute a (may) points-to graph 

 

Blackshear, Chang, Sankaranarayanan (CU Boulder), Sridharan (IBM) 

r q 

g 

abstract location modeling one or more concrete cells 

“r may sometime contain the address of q” 

“r may point to g” 
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Precise Flow-Insensitive Points-To Analysis 

Andersen’s analysis 

 

 

 
 

Exact graphs and an operational semantics 

Blackshear, Chang, Sankaranarayanan (CU Boulder), Sridharan (IBM) 

r := &q; x := &g; 

y := x; 

*x := y; *x := r; 

r := *x; 

r q 

g 

x 

y 

r q 

g 

x 

y 

models a single cell 

*x := r; 

An edge is realizable iff it is in 

an exact graph after some seq. 

of updates (from empty) 

 

A precise flow-insensitive 

points-to analysis 
 

derives all realizable edges 

and no others 
 

i.e., derives a precise join of 

all exact graphs along all 

possible executions 
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Imprecision: Simultaneous Points-To 

Blackshear, Chang, Sankaranarayanan (CU Boulder), Sridharan (IBM) 

r q 

g 

x 

y p 

p := *r; 

Unrealizable! 
 

Requires simultaneously 

r  q and r  g 

or simultaneously 

 g  g and g  q 
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Imprecision: Decomposing Multi-Derefs 

Blackshear, Chang, Sankaranarayanan (CU Boulder), Sridharan (IBM) 

a 

b 

c 

p 

q 

**p := *q; 

Unrealizable! 
 

But realizable with 
 

t1 := *p; t2 := *q; *t1 := t2; 
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Roadmap 

• Background: Imprecision in 

 Andersen’s 

 

• Precise Analysis by Witness Search 

 

• Experimental Findings: Is There a Precision 

Gap in Practice? 

 

Blackshear, Chang, Sankaranarayanan (CU Boulder), Sridharan (IBM) 

Andersen’s 

Algorithm 

2 
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Witnesses 

A witness for an edge e is an execution (or, 

a sequence of assignments) 

 
 

 where e  Gn 

 

Idea: Given an edge e to witness, search 

backwards over possible executions 

constrained by the initial analysis 

Blackshear, Chang, Sankaranarayanan (CU Boulder), Sridharan (IBM) 

G1 

a2 

… 

an 

Gn {} 

a1 



13 

Edge Dependency Rules 

 

 

Dependency Rule 

 

 

 

Blackshear, Chang, Sankaranarayanan (CU Boulder), Sridharan (IBM) 

p r s q *p := q; 

r  s { p  r, q  s } 
*p := q 

is 

realizable 

are simultaneously 

realizable 
if 
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Search by rewriting using dependency rules 

Blackshear, Chang, Sankaranarayanan (CU Boulder), Sridharan (IBM) 

r q 

g 

x 

y p 

r  g { x  g, g  g } 
r := *x 

{ x  g, y  g } 
*x := y 

{ x  g } 
y := x 

{ } 
x := &g 

g  g 

y  g 

x  g 
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Refutation yields precision improvement 

Blackshear, Chang, Sankaranarayanan (CU Boulder), Sridharan (IBM) 

r q 

g 

x 

y p 

p  q { r  g, g  q } 
p := *r 

{ r  g, x  g, r  g } 
*x := r 

{ x  g, g  g, g  q } 
r := *x 

g  q r  g 

r r 

g g 

Proven 

Unrealizable! 
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Roadmap 

• Background: Imprecision in 

 Andersen’s 

 

• Precise Analysis by Witness Search 

 

• Experimental Findings: Is There a Precision 

Gap in Practice? 

 

Blackshear, Chang, Sankaranarayanan (CU Boulder), Sridharan (IBM) 

Andersen’s 

Algorithm 

2 
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Evaluation Methodology Overview 

Is there a precision gap in practice? 
 

Is there a witness for every points-to fact 

derived by Andersen’s?  Yes  No Gap 
 

Test Configurations 

• Factor out imprecision due to dynamic memory 

(summary nodes) 

• Factor out imprecision due to decomposing 

multi-dereferences 

• What about for alias queries?  r.{p  r, q  r}?  

 Blackshear, Chang, Sankaranarayanan (CU Boulder), Sridharan (IBM) 
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Summary Nodes and Dynamic Memory 

Standard Practice: structs, arrays, malloc 

modeled by summary nodes 

– An abstract location modeling possibly more 

than one concrete cell 
 

Bounding the Precision Gap with Summaries 

• Lower: Weak update semantics for summaries 

during witness search (over-approx. analysis) 

• Upper: Treat summaries as abstracting one 

concrete cell (under-approx. analysis) 

Blackshear, Chang, Sankaranarayanan (CU Boulder), Sridharan (IBM) 

Decidability of precise flow-insensitive points-to 

analysis with dynamic memory allocation is unknown 

Always find witnesses = No precison gap! 
(factoring out decomposing multi-dereferences)  
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Evaluation Benchmarks 

program size problem size lower bound upper bound 

kloc num pt edges depth time (s) depth time (s) 

aget 1.1 33 1.8 0.0 1.8 0.1 

arp 3.1 287 2.7 1.3 2.7 1.3 

slattach 3.4 251 2.8 1.2 2.8 1.2 

netstat 4.5 250 2.8 1.2 2.8 1.2 

ifconfig 8.8 247 2.5 1.0 2.5 1.0 

stunnel 17.1 426 3.9 16.3 4.0 20.4 

plip 18.4 1052 9.3 38613.0 9.3 40089.0 

knot 1.3 29 2.3 0.1 2.3 0.1 

esp 10.9 637 5.9 51744.0 6.9 77878.0 

ide-disk 12.6 437 8.7 424.3 8.7 699.9 

bc 6.2 453 7.2 10.6 7.2 88.9 

watchdog 9.4 1027 6.3 2698.3 6.5 4982.0 

Blackshear, Chang, Sankaranarayanan (CU Boulder), Sridharan (IBM) 

12 benchmarks 
(small- to medium-sized in C)  
 

over 4 categories  
(network utilities, device 

drivers, terminal application, 

system daemon) 

Feasability: 

Small search 

depths 
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Decomposing Multi-Derefs and Aliasing 

Decomposing Multi-Dereferences 

• Witness search over transformed statements 

• Post-pass to validate w.r.t. original statements 

• All witnesses validate for lower bound config. 

and 97.5% (4561/4676) for upper bound config. 

– Definitely no gap factoring out summaries imprecision 

– At most tiny gap considering summaries imprecision 
 

Alias Queries 

• Witness search on 1000 random pairs of vars 

• Always found witnesses  No observed gap! 
Blackshear, Chang, Sankaranarayanan (CU Boulder), Sridharan (IBM) 
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Conclusion 

• Empirically Observed: No (or ≤tiny) gap 

between Andersen’s and PFIPTA 

– Witnesses are short 

Blackshear, Chang, Sankaranarayanan (CU Boulder), Sridharan (IBM) 

• Target Imprecision from 

Flow-Insensitivity 

– Witness refutation with aspects 

of flow-sensitivity 

– Get on-demand refinement 

with flow-sensitivity 

Flow-Insensitive 

Abstraction 

1 


