
Programming Languages Research

at the University of Colorado,

Boulder

Amer Diwan Jeremy Siek Sriram SankaranarayananBor-Yuh Evan Chang

2

How do we assist

reasoning about programs?
program analysis,

development tools

PL research at CU has breadth!

How do we effectively

express computation?
language design, type

systems, logic

How do we make programs

run efficiently?
performance analysis,

compilation

How do we get reliable,

secure software?
verification, model checking

3

PL researchers at CU collaborate!

Gradual

Programming

Dynamic Algorithmic

Complexity

Preventing Resource

Exhaustion Attacks

language design performance analysis

program analysis

Devin Coughlin

You?

You?

verification

4

Application: Auto Code Improvement

Suggestion: using Java.util.HashMap

instead of Java.util.List will give you a

speedup.

Click here to see more details.
Have I used the

right data

structures for

my tasks?

5

Computational Complexity

AVL Trees, Fibonacci

heaps, O(n2), P=NP?

Have I used

the right data

structures?

Memory hierarchy:

Caches, page faults,

register allocation,..

6

Class MyContainer

void addElement(Element x);

Element chooseElt (...);

Element findMatch (...);

Element findMaximum (...);

void printSorted (...);

Function Hashtable Balanced

Tree

addElement O(1) O(log N)

chooseElt O(1) O(1)

findMatch O(N) O(log N)

findMaximum O(N) O(log N)

printSorted O(N log N) O(N)

?Have I used the right data structures?

7

How is the library being used?

Function Usage Fraction

addElement 70%

chooseElt 12%

findMatch 5%

findMax 10%

prettyPrint 3%

Usage Profile for MyContainer

Conclusion: Use HashTable

But wait, what

would your systems

professor say?

8

Dynamic Complexity Estimation

Parameterized Unit Tests:

Design unit test suites to

simulate usage pattern

and vary input size.
Runtime System

with

Performance

Monitoring

Input Size

Avg.

Runtime

9

What function to fit?

• Static analysis of complexity trends.

– Using invariant + ranking function generation.

for (i=0; i < N; ++i)

for (j=0; j < i; ++j)

foo(x[i][j],N);
O(N2)

while (i < N)

if (…)

i = i* 3;

else

i = i *2;

O(log N)

O(N2)

10

Application: Dynamic Algo. Selection

Dynamically select the best algorithm.

Strassen’s Matrix

Multiplication

Algorithm

“AP Computer

Science” algorithm

N >

100000

O(N^(2.38…))

O(N^3)

11

Application: System Security

• Denial of Service Attacks can exploit high

complexity worst case.

Remote Server

(run quicksort

over user input)

Malicious

User

Worst-

Case

Average-Case

Quick Sort O(N2) O(N log N)

12

Challenges and Opportunities

Runtime Monitoring

Static Analysis

Specification Formalisms

Compiler Optimizations

Complexity

Linear Programming

Monte-Carlo Simulations

Randomized Algorithms

Theory

Practice

Tools that the

programmer can use.

Exciting

Ideas

13

PL research at CU is successful!

PLDI 2010 (2) Toronto, Canada
Mytkowicz, Diwan, Hauswirth, Sweeney. Evaluating the Accuracy of Java

Profilers.

Khoo, Chang, Foster. Mixing Type Checking and Symbolic Evaluation.

POPL 2010 (2) Madrid, Spain
Harris, Sankaranarayanan, Ivancic, Gupta. Program Analysis via Satisfiability

Modulo Path Programs.

Siek, Wadler. Threesomes, With and Without Blame.

ESOP 2010 Cyprus
Laviron, Chang, Rival. Separating Shape Graphs.

< 20%

acceptance rate

< 27%

acceptance rate

14

PL research at CU is successful!

ASPLOS 2009 Washington, DC
Mytkowicz, Diwan, Hauswirth, Sweeney. Producing wrong data without doing

anything obviously wrong!

OOPSLA 2009 (2) Orlando
von Dincklage, Diwan. Optimizing programs with intended semantics.

Mytkowicz, Coughlin, Diwan. Inferred call-path profiling.

ASE 2009 Auckland, New Zealand
Deshmukh, Emerson, Sankaranarayanan. Refining the control structure of

loops using static analysis. ACM SIGSOFT Distinguished Paper.

CAV 2009 Grenoble, France
Kanade, Alur, Sankaranarayanan et al. Generating and analyzing symbolic

traces of Simulink/Stateflow models.

15

PL research at CU is successful!

ESOP 2009 York, UK
Siek, Garcia, Taha. Exploring the design space of higher-order casts.

TACAS 2009 York, UK
Kahlon, Sankaranarayanan, Gupta. Semantic reduction of thread interleavings

in concurrent programs.

CC 2009 York, UK
Knights, Mytkowicz, Sweeney, Mozer, Diwan. Blind optimization for exploiting

architectural features.

and more …

Papers Travel + PhD

16

PL research at CU has

world-wide collaborations!

U. Edinburgh

U. Lugano

Google - CA

MSR – WA
IBM – NY

Apple - CA

NEC– NJ

ENS - Paris

Collaborators

Internships and Jobs

17

PL students have interned at …

18

After graduation,

PL students have gone to …

faculty

19

The PL group has fun together!

Our mentoring: Guide you to

research that excites you!

20

Our group

Robert Jonathan

Devin Weiyu

PhD

Amer Jeremy

SriramEvan

Faculty

Todd

Postdoc

You? You?

MS

Daniel

James

BS

21

Some of our other research projects

• Understanding performance

• Program metamorphosis

• Lightweight data collection

• Blind optimization

• Algorithmic optimizations

• Validating architectural

simulators

• Using non-linear dynamics to

understand computer systems

• Tools for teaching programming

languages

• End-user program analysis

• Post-mortem analysis and error

reporting

• Security policies for power-grids

• Analysis of web languages

• Modeling and validating building

security policies

• Confident program analysis

• Checking low-level code

• Generic programming

• Meta-programming

• Gradual type checking

• High-level optimizations for

memory efficiency

• Finding bugs in parallel programs

• Cyber-physical systems

verification

• And soon projects created by you!

