
Towards Programming in a Certified Grid
Computing Framework

Bor-Yuh Evan Chang

Advisors: Professors Robert Harper and Frank Pfenning

Carnegie Mellon University
March 20, 2002

1



Towards Programming in a Certified Grid Computing Framework

ConCert

The ConCert project seeks to develop programming language and
type theoretic technology for Grid Computing in a trustless setting.

March 20, 2002 Carnegie Mellon University 2



Towards Programming in a Certified Grid Computing Framework

ConCert

Vision: Distributed-application developer utilization of donated
resources is completely transparent to the donator, but
the donator is confident the specified safety, security, and
privacy policies will not be violated.

March 20, 2002 Carnegie Mellon University 3



Towards Programming in a Certified Grid Computing Framework

ConCert Framework

With Tom Murphy, Margaret DeLap, and Jason Liszka, we seek to
develop a real framework to:

• Motivate theoretical work

• Provide a source of technical ideas and problems to solve

• Provide a testbed for implementation

Margaret and Jason: Low-level to discover implementation issues.

• Conductor

• Raytracer

Evan and Tom: High-level to discover programming issues.

• ML Interface, New Programming Language?

• Parallel Theorem Prover

March 20, 2002 Carnegie Mellon University 4



Towards Programming in a Certified Grid Computing Framework

My Contribution

Idea: The process of developing a substantial application using
the ConCert framework will help us better understand the
requirements on the framework and how to program in
such an environment.

Goals

• drive the framework to a more robust and stable state

• better understand the requirements from a programmer’s
perspective

Last Semester: Develop a parallel theorem prover for linear logic.

This Semester: Bridge the gap between the implementation in CML and
the low-level interface provided by Conductor.

March 20, 2002 Carnegie Mellon University 5



Towards Programming in a Certified Grid Computing Framework

ConCert Programming: Jobs and Tasks

Job

Task Task Task

Job: A whole-program that is injected into the network from
the command-line.

Task: The unit of computation from the programmer’s point of
view. Consists of a piece of closed code along with its
arguments. The code should restartable.

March 20, 2002 Carnegie Mellon University 6



Towards Programming in a Certified Grid Computing Framework

Injecting a Task into the Network

type ’a task

val injectTask : bool -> (’b -> ’a) * ’b -> ’a task

val enableTask : ’a task -> unit

• A task can optionally be injected into the network in a
suspended state (i.e. disabled).

• If disabled, the task will not run until an explicit enable
instruction is issued.

March 20, 2002 Carnegie Mellon University 7



Towards Programming in a Certified Grid Computing Framework

Retrieving Results

val sync : ’a task -> ’a

• Returning a result and asking for results from other tasks are
the only form of communication between tasks.

• Blocks the calling task until the result can be obtained.

• Let t be the task that we seek the result from. Task t could be
in four possible states:

1. t has already completed execution successfully.
2. t is currently executing.
3. t has failed (or appears to have failed).

4. t is currently disabled.

March 20, 2002 Carnegie Mellon University 8



Towards Programming in a Certified Grid Computing Framework

Results from Multiple Tasks

val syncall : ’a task list -> ’a list

val relax : ’a task list -> ’a * ’a task list

• syncall blocks until results are obtained from all the given
tasks.

• relax continues as soon as one result is available.

March 20, 2002 Carnegie Mellon University 9



Towards Programming in a Certified Grid Computing Framework

Example: Merge Sort

1 (* mergesort : int list * int -> int list *)

2 fun mergesort (nil, _) = nil

3 | mergesort ([x], _) = [x]

4 | mergesort (l, cutoff) =

5 let

6 (* partition : int * int list -> int list * int list * int list *)

...

23

24 (* merge : int list * int list -> int list *)

...

32

33 val len = List.length l

34 val (lt,md,rt) = partition (len div 3, l)

35 in

36 if (len <= cutoff) then

37 merge (mergesort (lt,cutoff), merge (mergesort (md,cutoff), mergesort (rt,cutoff)))

38 else

...

58 end

March 20, 2002 Carnegie Mellon University 10



Towards Programming in a Certified Grid Computing Framework

Example: Merge Sort (cont’d)
36 if (len <= cutoff) then

37 merge (mergesort (lt,cutoff), merge (mergesort (md,cutoff), mergesort (rt,cutoff)))

38 else

39 let

40 open CCTasks

41

42 (* Start sorting each partition *)

43 val t1 = injectTask true (mergesort, (lt, cutoff))

44 val t2 = injectTask true (mergesort, (md, cutoff))

45 val t3 = injectTask true (mergesort, (rt, cutoff))

46

47 (* Get the results of the three child tasks. Start merging

48 when receive 2 sorted lists. *)

49 val (sort1, sort2) = let

50 val (a, rest) = relax [ t1, t2, t3 ]

51 val (b, [last]) = relax rest

52 in

53 (merge (a,b), sync last)

54 end

55 in

56 merge (sort1, sort2)

57 end

March 20, 2002 Carnegie Mellon University 11



Towards Programming in a Certified Grid Computing Framework

Jobs, Tasks, and Cords

Job

Cord

Task Task Task

Cord

Cord

Cord

Cord

Cord

Cord

Cord

Cord

Cord: The unit of computation scheduled by the ConCert frame-
work (Conductor).

March 20, 2002 Carnegie Mellon University 12



Towards Programming in a Certified Grid Computing Framework

Invariants

To simplify implementation and allow for failure recovery and
program mobility, we impose strong invariants on cords:

1. A cord is deterministic, or any possible result is “as good as”
any other.

2. Cords do not communicate except through explicit
dependencies.

3. Once its dependencies are filled, a cord is able to run to
completion.

Are these invariants really necessary, and what sorts of applications
do they preclude?

March 20, 2002 Carnegie Mellon University 13



Towards Programming in a Certified Grid Computing Framework

Next Steps

1. Make the theorem prover run on a simulator of the given
interface.

2. Flush out as many issues as possible with regards to compiling
the proposed interface.

3. Implement the interface (if possible).

4. Write everything up!

March 20, 2002 Carnegie Mellon University 14


