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ConCert

The ConCert project seeks to develop programming language and
type theoretic technology for Grid Computing in a trustless setting.
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ConCert

Vision: Distributed-application developer utilization of donated
resources is completely transparent to the donator, but
the donator is confident the specified safety, security, and
privacy policies will not be violated.
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ConCert Framework

With Tom Murphy, Margaret DeLap, and Jason Liszka, we seek to
develop a real framework to:

• Motivate theoretical work

• Provide a source of technical ideas and problems to solve

• Provide a testbed for implementation

Margaret and Jason: Low-level to discover implementation issues.

• Conductor

• Raytracer

Evan and Tom: High-level to discover programming issues.

• ML Interface, New Programming Language?

• Parallel Theorem Prover
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My Contribution

Idea: The process of developing a substantial application using
the ConCert framework will help us better understand the
requirements on the framework and how to program in
such an environment.

Goals

• drive the framework to a more robust and stable state

• better understand the requirements from a programmer’s
perspective

Last Semester: Develop a parallel theorem prover for linear logic.

This Semester: Bridge the gap between the implementation in CML and
the low-level interface provided by Conductor.
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ConCert Programming: Jobs and Tasks

Job

Task Task Task

Job: A whole-program that is injected into the network from
the command-line.

Task: The unit of computation from the programmer’s point of
view. Consists of a piece of closed code along with its
arguments. The code should restartable.
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Injecting a Task into the Network

type ’a task

val injectTask : bool -> (’b -> ’a) * ’b -> ’a task

val enableTask : ’a task -> unit

• A task can optionally be injected into the network in a
suspended state (i.e. disabled).

• If disabled, the task will not run until an explicit enable
instruction is issued.
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Retrieving Results

val sync : ’a task -> ’a

• Returning a result and asking for results from other tasks are
the only form of communication between tasks.

• Blocks the calling task until the result can be obtained.

• Let t be the task that we seek the result from. Task t could be
in four possible states:

1. t has already completed execution successfully.
2. t is currently executing.
3. t has failed (or appears to have failed).

4. t is currently disabled.
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Results from Multiple Tasks

val syncall : ’a task list -> ’a list

val relax : ’a task list -> ’a * ’a task list

• syncall blocks until results are obtained from all the given
tasks.

• relax continues as soon as one result is available.
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Example: Merge Sort

1 (* mergesort : int list * int -> int list *)

2 fun mergesort (nil, _) = nil

3 | mergesort ([x], _) = [x]

4 | mergesort (l, cutoff) =

5 let

6 (* partition : int * int list -> int list * int list * int list *)

...

23

24 (* merge : int list * int list -> int list *)

...

32

33 val len = List.length l

34 val (lt,md,rt) = partition (len div 3, l)

35 in

36 if (len <= cutoff) then

37 merge (mergesort (lt,cutoff), merge (mergesort (md,cutoff), mergesort (rt,cutoff)))

38 else

...

58 end
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Example: Merge Sort (cont’d)
36 if (len <= cutoff) then

37 merge (mergesort (lt,cutoff), merge (mergesort (md,cutoff), mergesort (rt,cutoff)))

38 else

39 let

40 open CCTasks

41

42 (* Start sorting each partition *)

43 val t1 = injectTask true (mergesort, (lt, cutoff))

44 val t2 = injectTask true (mergesort, (md, cutoff))

45 val t3 = injectTask true (mergesort, (rt, cutoff))

46

47 (* Get the results of the three child tasks. Start merging

48 when receive 2 sorted lists. *)

49 val (sort1, sort2) = let

50 val (a, rest) = relax [ t1, t2, t3 ]

51 val (b, [last]) = relax rest

52 in

53 (merge (a,b), sync last)

54 end

55 in

56 merge (sort1, sort2)

57 end
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Jobs, Tasks, and Cords

Job

Cord

Task Task Task

Cord

Cord

Cord

Cord

Cord

Cord

Cord

Cord

Cord: The unit of computation scheduled by the ConCert frame-
work (Conductor).
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Invariants

To simplify implementation and allow for failure recovery and
program mobility, we impose strong invariants on cords:

1. A cord is deterministic, or any possible result is “as good as”
any other.

2. Cords do not communicate except through explicit
dependencies.

3. Once its dependencies are filled, a cord is able to run to
completion.

Are these invariants really necessary, and what sorts of applications
do they preclude?
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Next Steps

1. Make the theorem prover run on a simulator of the given
interface.

2. Flush out as many issues as possible with regards to compiling
the proposed interface.

3. Implement the interface (if possible).

4. Write everything up!
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