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caused by an app-created memory leak |
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Android Developers Blog

Avoiding memory leaks

Android applications are, at least on the T-Mobile G1, limited to 16 MB of heap. It's both a lot of memory for a phone and yet
very little for what some developers want to achieve. Even if you do not plan on using all of this memory, you should use as
little as possible to let other applications run without getting them killed. The more applications Android can keep in memory,
the faster it will be for the user to switch between his apps. As part of my job, I ran into memory leaks issues in Android
applications and they are most of the time due to the same mistake: keeping a long-lived reference to a Context.

On Android, a Context is used for many operations but mostly to load and access resources. This is why all the widgets
receive a Context parameter in their constructor. In a regular Android application, you usually have two kinds of Context,
Activity and Application. It's usually the first one that the developer passes to classes and methods that need a Context:

@0verride
protected void onCreate(Bundle state) {
super.onCreate(state);

TextView label = new TextView(this);
label.setText("Leaks are bad");



“Do not keep long-lived references to a context-activity”
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TextView label = new TextView(this);
August (2) label.setText("Leaks are bad");
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“Do not keep long-lived references to a context-activity”
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Android applications are, at least on the T-Mobile G1, limited to 16 MB of heap. It's both a lot of memory for a phone and yet

very little for what some developers want to achieve. Even if you do not plan on using all of this memory, you should use as

little as possible to let other applications run without getting them killed. The more applications Android can keep in memory,

RCHIVE the faster it will be for the user to switch between his apps. As part of my job, I ran into memory leaks issues in Android
applications and they are most of the time due to the same mistake: keeping a long-lived reference to a Context.
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“Do not keep long-lived references to a context-activity”

Avoiding memory leaks
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Imagining a post-
MUSE scenario ...

. | | don’t know how |
HE:LP created a long-lived
f r l reference to an Activity!




Elsewhere, following the state of practice

for debugging leaks ...
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[This post is by Patrick Dubroy, an Android engineer who writes about programming,
usability, and interaction on his personal blog. — Tim Bray]
The Dalvik runtime may be garbage-collected, but that doesn't mean you can ignore
ARCHIVE memory management. You should be especially mindful of memory usage on mobile
» 2012 (31) devices, where memory is more constrained. In this article, we're going to take a look
» 2011 (68 atsome of the memory profiling tools in the Android SDK that can help you trim your
(68) application's memory usage.
» December (7)
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» October (5) every time the user touches the screen, it will probably trigger an
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Memory Analysis for Android Applications

[This post is by Patrick Dubroy, an Android engineer who writes about programming,
usability, and interaction on his personal blog. — Tim Bray]

The Dalvik runtime may be garbage-collected, but that doesn't mean you can ignore
memory management. You should be especially mindful of memory usage on mobile
devices, where memory is more constrained. In this article, we're going to take a look
atsome of the memory profiling tools in the Android SDK that can help you trim your
application's memory usage.

Some memory usage problems are obvious. For example, if your app leaks memory
every time the user touches the screen, it will probably trigger an

OutOfMemoryError eventually and crash your app. Other problems are more subtle, and may just degrade the
performance of both your app (as garbage collections are more frequent and take longer) and the entire system.

Tools of the trade

The Android SDK provides two main ways of profiling the memory usage of an app: the Allocation Trackertab in DDMS, and
heap dumps. The Allocation Tracker is useful when vou want to get a sense of what kinds of allocation are happening over a

. Run the app
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Memory Analysis for Android Applications

[This post is by Patrick Dubroy, an Android engineer who writes about programming,
usability, and interaction on his personal blog. — Tim Bray]

The Dalvik runtime may be garbage-collected, but that doesn't mean you can ignore
memory management. You should be especially mindful of memory usage on mobile
devices, where memory is more constrained. In this article, we're going to take a look
atsome of the memory profiling tools in the Android SDK that can help you trim your
application's memory usage.

Some memory usage problems are obvious. For example, if your app leaks memory
every time the user touches the screen, it will probably trigger an

OutOfMemoryError eventually and crash your app. Other problems are more subtle, and may just degrade the
performance of both your app (as garbage collections are more frequent and take longer) and the entire system.

Tools of the trade

The Android SDK provides two main ways of profiling the memory usage of an app: the Allocation Trackertab in DDMS, and
heap dumps. The Allocation Tracker is useful when vou want to get a sense of what kinds of allocation are happening over a

. Run the app
2. Watch the heap usage
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Memory Analysis for Android Applications

[This post is by Patrick Dubroy, an Android engineer who writes about programming,
usability, and interaction on his personal blog. — Tim Bray]

The Dalvik runtime may be garbage-collected, but that doesn't mean you can ignore
memory management. You should be especially mindful of memory usage on mobile
devices, where memory is more constrained. In this article, we're going to take a look
atsome of the memory profiling tools in the Android SDK that can help you trim your
application's memory usage.

Some memory usage problems are obvious. For example, if your app leaks memory
every time the user touches the screen, it will probably trigger an

OutOfMemoryError eventually and crash your app. Other problems are more subtle, and may just degrade the
performance of both your app (as garbage collections are more frequent and take longer) and the entire system.

Tools of the trade

The Android SDK provides two main ways of profiling the memory usage of an app: the Allocation Trackertab in DDMS, and
heap dumps. The Allocation Tracker is useful when vou want to get a sense of what kinds of allocation are happening over a

. Run the app
2. Watch the heap usage
3. Dump the heap. Dig around

and finally find the culprit!
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3. Dump the heap. Dig around
and finally find the culprit!
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Memory Analysis for Android Applications

[This post is by Patrick Dubroy, an Android engineer who writes about programming,
usability, and interaction on his personal blog. — Tim Bray]

The Dalvik runtime may be garbage-collected, but that doesn't mean you can ignore
memory management. You should be especially mindful of memory usage on mob:.
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3. Dump the heap. Dig around

and finally find the culprit!
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Dump the heap. Dig around S —
and finally find the culprit!

Commit a bugfix GitHUb

Bugfix is picked up by Fixr




A Fixr-enabled IDE responds ...

| don’t know how |
created a long-lived
reference to an Activity!
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created a long-lived
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A Fixr-enabled IDE responds ...

N

It looks like you’ve created a memory leak like é and

{100,000 others. Would you like to apply &777)\ 2

| don’t know how |
created a long-lived
reference to an Activity!




It looks like you’ve created a memory leak like \\-: ! and \

100,000 others. Would you like to apply g;‘});‘i)
J4 sl
\ R BUGHLY /

the bugfix is “transterred”

. | don’t know how |
I}[EM created a long-lived

I reference to an Activity!
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Mine bugfixes

Prior Hypothesis

of a
Framework ™ : |
Invariant Bayesmn . POSfeI‘IOI:
U pdate Hypothesis

Observe a Bugﬁ/

The Fixr Loop: ,
Create as many observations as possible

B —



Simple motivating example:
A well-understood Android
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A well-understood Android
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a common misuse of the framework
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aView.setTag(..., anObject)
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: Object mTag;
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values (:Object) must not reach their keys (:View)
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on oug . aView.setTag(..., anObject)

if anObject can reach aView

class View {
Framework static WeakHashMap<View, sparsearay<Objects> sTags;

: Object mTag;
Invariant \ ect miag

because of an unspecified class invariant: sTags’
values (:Object) must not reach their keys (:View)
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A Fix

uses mTag instead
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bug pre |
— 7 if anObiject can reach aView

class View {
Framework static WeakHashMap<View, sparsearay<Objects> sTags;
| : Object mTag; ,
nvariant } invariant |
C—— —_—
because of an unspecified class invariant: sTags’

values (:Object) must not reach their keys (:View)

Goal: Produce this repair specification: bug pre,

framework invariant, fix suggestion |
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and generalize the fix (to be able “transter”)?

How do we find bugfix commits?
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Given a bugfix commit, how do we summarize
and generalize the fix (to be able “transter”)?

a specification of the
View.setTag repair

How do we find bugfix commits?

an instance of a
View.setTag fix
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Components and

Workflows



Workflow 1a: Harvesting bugfix commits
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