Welcome DARPA and AFRL Visitors!
MUSE Meeting in DLC 170

1:00pm-1:10pm Welcome
1:10pm-1:45pm Overview of the Fixr Project, Evan Chang

1:45pm-3:00pm Demo and Discussion: Analysis and Synthesis of App
Commits, Shawn Meier/Vaibhav Singh

3:00pm-3:20pm Break

3:20pm-4:00pm Demo and Discussion: Harvesting and Storing App
Commits, Mazin Hakeem/Sanghee Kim

Additional Research Meetings in ECCS 1B11
4:00pm-5:15pm Graduate Students

@]’ PLV

Fixr: Mining and Understanding
Bug Fixes for App-Framework
Protocol Defects

"‘12;-12;
) S5 L.
] 7 - . ‘

Bor-Yuh Evan Chang Ken Anderson Pavol Cerny Sriram Sankaranarayanan Tom Yeh

University of Colorado Boulder

MUSE Site Visit

February 25, 2015
PLV

A bug that manifests spectacularly ...

A bug that manifests spectacularly ...

A bug that manifests spectacularly ...

A bug that manifests spectacularly ...

caused by an app-created memory leak |

Ask framework devs ...

Ask framework devs ...

800 Questions containing ‘andrc xv Issues - android - Android /' 11 Android Developers Blog: A+ 11 Android Developers Blog: M« ¢
\ L "

€« > C [D android-developers.blogspot.dk/2009/01/avoiding-memory-leaks.html|

r—y
' Developers

SEARCH

ARCHIVE

» 2012(31)
» 2011 (68)
» 2010(73)

¥ 2009 (63)
» December (7)

» November (5)
» October (5)
» September (8)
» August (2)

> July(1)

Android Developers Blog

Avoiding memory leaks

Android applications are, at least on the T-Mobile G1, limited to 16 MB of heap. It's both a lot of memory for a phone and yet
very little for what some developers want to achieve. Even if you do not plan on using all of this memory, you should use as
little as possible to let other applications run without getting them killed. The more applications Android can keep in memory,
the faster it will be for the user to switch between his apps. As part of my job, I ran into memory leaks issues in Android
applications and they are most of the time due to the same mistake: keeping a long-lived reference to a Context.

On Android, a Context is used for many operations but mostly to load and access resources. This is why all the widgets
receive a Context parameter in their constructor. In a regular Android application, you usually have two kinds of Context,
Activity and Application. It's usually the first one that the developer passes to classes and methods that need a Context:

@0verride
protected void onCreate(Bundle state) {
super.onCreate(state);

TextView label = new TextView(this);
label.setText("Leaks are bad");

“Do not keep long-lived references to a context-activity”

e 00 &

.=, Questions containing ‘andr 8} 1ssues - android - Android Android Developers Blog: A Android Developers Blog: IV

€« C [android-developers.blogspot.dk/2009/01/avoiding-memory-leaks.html

Android Developers Blog

Developers
Avoiding memory leaks
SEARCH
Android applications are, at least on the T-Mobile G1, limited to 16 MB of heap. It's both a lot of memory for a phone and yet
Search very little for what some developers want to achieve. Even if you do not plan on using all of this memory, you should use as
little as possible to let other applications run without getting them killed. The more applications Android can keep in memory,
RCHIVE the faster it will be for the user to switch between his apps. As part of my job, I ran into memory leaks issues in Android
applications and they are most of the time due to the same mistake: keeping a long-lived reference to a Context.
» 2012 (31)
N oT1l68 On Android, a Context is used for many operations but mostly to load and access resources. This is why all the widgets
(65) receive a Context parameter in their constructor. In a regular Android application, you usually have two kinds of Context,
» 2010(73) Activity and Application. It's usually the first one that the developer passes to classes and methods that need a Context:
2009 (63)
» December (7) @override
» November (5) protected void onCreate(Bundle state) {
» October (5) super.onCreate(state);
» September (8)

TextView label = new TextView(this);
August (2) label.setText("Leaks are bad");
July (1)

“Do not keep long-lived references to a context-activity”

8 00 E\‘ Questions containing ‘andr @Issues - android - Android Android Developers Blog: A Android Developers Blog: I

€« C [android-developers.blogspot.dk/2009/01/avoiding-memory-leaks.html

Android Developers Blog

Developers
Avoiding memory leaks

SEARCH

Android applications are, at least on the T-Mobile G1, limited to 16 MB of heap. It's both a lot of memory for a phone and yet

very little for what some developers want to achieve. Even if you do not plan on using all of this memory, you should use as

little as possible to let other applications run without getting them killed. The more applications Android can keep in memory,

RCHIVE the faster it will be for the user to switch between his apps. As part of my job, I ran into memory leaks issues in Android
applications and they are most of the time due to the same mistake: keeping a long-lived reference to a Context.

Search

2012 (31)

2011 o8 On Android, a Context is used for many operations but mostly to load and access resources. This is why all the widgets
2000(CE) receive a Context parameter in their constructor. In a regular Android application, you usually have two kinds of Context,
2010(73) Activity and Application. It's usually the first one that the developer passes to classes and methods that need a Context:
2009 (63)

| don’t know how |
created a long-lived
reference to an Activity!

“Do not keep long-lived references to a context-activity”

8 00 E\‘ Questions containing "andr« @Issues - android - Android Android Developers Blog: A Android Developers Blog: I -

&~ C [android-developers.blogspot.dk/2009/01/avoiding-memory-leaks.html

Android Developers Blog

Developers

Avoiding memory leaks

SEARCH
Android applications are, at least on the T-Mobile G1, limited to 16 MB of heap. It's

Search very little for what some developers want to achieve. Even if you do not plan on usi °
little as possible to let other applications run without getting them killed. The more e n
the faster it will be for the user to switch between his apps. As part of my job, Iran [

ARCHIVE T - i .
applications and they are most of the time due to the same mistake: keeping a long

2012 (31)
2011 (68) On Android, a Context is used for many operations but mostly to load and acces:
V4

([] ([]
receive a Context parameter in their constructor. In a regular Android application
2010(73) Activity and Application. It's usually the first one that the developer passes to classe

| don’t know how | of a IIbI’CII‘)’
created a long-lived causes the IIbI'CII')’

. . I
reference to an Activity! to keep the

5 Activity

“Do not keep long-lived references to a context-activity”

Avoiding memory leaks

o '

i‘éag from violating ;
(implicit) framework protocol rules

Imagining a post-
MUSE scenario ...

. | | don’t know how |
HE:LP created a long-lived
f r l reference to an Activity!

Elsewhere, following the state of practice

for debugging leaks ...

6 00 é Questions containing 'andrc xv@ Issues - android - Android -~ ¢ v\:i:Androld Developers Blog: A+ x/v -ﬁ:Android Developers Blog: M«

€« > C lD android-developers.blogspot.dk/2011/03/memory-analysis-for-android.html

Android Developers Blog

lil Deve]opers m
Memory Analysis for Android Applications

SEARCH
[This post is by Patrick Dubroy, an Android engineer who writes about programming,
usability, and interaction on his personal blog. — Tim Bray]
The Dalvik runtime may be garbage-collected, but that doesn't mean you can ignore
ARCHIVE memory management. You should be especially mindful of memory usage on mobile
» 2012 (31) devices, where memory is more constrained. In this article, we're going to take a look
» 2011 (68 atsome of the memory profiling tools in the Android SDK that can help you trim your
(68) application's memory usage.
» December (7)
» November (7) Some memory usage problems are obvious. For example, if your app leaks memory

» October (5) every time the user touches the screen, it will probably trigger an
outo yError lly and crash your app. Other problems are more subtle, and may just degrade the
» September (5) performance of both your app (as garbage collections are more frequent and take longer) and the entire system.
» August (3)
> July () Tools of the trade
» June(3) The Android SDK provides two main ways of profiling the memory usage of an app: the Allocation Trackertab in DDMS, and

= Mo gy heap dumps. The Allocation Tracker is useful when vou want to get a sense of what kinds of allocation are habpening over a

8 00

(_

C' [android-developers.blogspot.dk/2011/03/memory-analysis-for-android.html

E\‘ Questions containing ‘andr @Issues - android - Android Android Developers Blog: A Android Developers Blog: I

Developers

SEARCH

Search

ARCHIVE

2012(31)

2011 (68)
December (7)
November (7)
October (5)
September (5)
August (3)
July (7)

June (3)

(VRIS

Android Developers Blog

Memory Analysis for Android Applications

[This post is by Patrick Dubroy, an Android engineer who writes about programming,
usability, and interaction on his personal blog. — Tim Bray]

The Dalvik runtime may be garbage-collected, but that doesn't mean you can ignore
memory management. You should be especially mindful of memory usage on mobile
devices, where memory is more constrained. In this article, we're going to take a look
atsome of the memory profiling tools in the Android SDK that can help you trim your
application's memory usage.

Some memory usage problems are obvious. For example, if your app leaks memory
every time the user touches the screen, it will probably trigger an

OutOfMemoryError eventually and crash your app. Other problems are more subtle, and may just degrade the
performance of both your app (as garbage collections are more frequent and take longer) and the entire system.

Tools of the trade

The Android SDK provides two main ways of profiling the memory usage of an app: the Allocation Trackertab in DDMS, and
heap dumps. The Allocation Tracker is useful when vou want to get a sense of what kinds of allocation are happening over a

. Run the app

8 00 E\‘ Questions containing ‘andr @Issues - android - Android Android Developers Blog: A Android Developers Blog: I
€« C' [android-developers.blogspot.dk/2011/03/memory-analysis-for-android.html

Developers
SEARCH
Search
ARCHIVE
2012(31)
2011 (68)
December (7)
November (7)
October (5)

September (5)
August (3)
July (7)

June (3)

(VRIS

Android Developers Blog

Memory Analysis for Android Applications

[This post is by Patrick Dubroy, an Android engineer who writes about programming,
usability, and interaction on his personal blog. — Tim Bray]

The Dalvik runtime may be garbage-collected, but that doesn't mean you can ignore
memory management. You should be especially mindful of memory usage on mobile
devices, where memory is more constrained. In this article, we're going to take a look
atsome of the memory profiling tools in the Android SDK that can help you trim your
application's memory usage.

Some memory usage problems are obvious. For example, if your app leaks memory
every time the user touches the screen, it will probably trigger an

OutOfMemoryError eventually and crash your app. Other problems are more subtle, and may just degrade the
performance of both your app (as garbage collections are more frequent and take longer) and the entire system.

Tools of the trade

The Android SDK provides two main ways of profiling the memory usage of an app: the Allocation Trackertab in DDMS, and
heap dumps. The Allocation Tracker is useful when vou want to get a sense of what kinds of allocation are happening over a

. Run the app
2. Watch the heap usage

Dalvik Debug Monitor

1 8570

Display Stats

free 1,772

data object 40,528
class object 2,187
1~-byte array (Dyte!], boolean(]) 2,247
2-byte array (short), char(p 10,373
4-byte array (object]), mxl), ficacl) 3,663
S-byte array Congl), double(]) 283
fon-Java object 92

fter every CC for this client

107.312 KB
1.229 MB
637.234 KB
S.654 MB
677.352 KB
276812 KB
14 875 K8
14219 KB

45.297 X8
1.047 XB
34,125 %8
1.500 m8
28,023 X8
16.023 XB
4.000 x8
§.023 X8

248
ize
1668
458
488
408
jze
ize

628
ile
2988
2.576 K8
66 8
778
538
1588

8 00

(—

E\, Questions containing ‘andr @Issues - android - Android Android Developers Blog: A Android Developers Blog: I
C' [1 android-developers.blogspot.dk/2011/03/memory-analysis-for-android.html [2:- Rl

Developers
SEARCH
Search
ARCHIVE
2012 (31)
2011 (68)

December (7)
November (7)
October (5)
September (5)
August (3)
July (7)

June (3)

(VRIS

Android Developers Blog

Memory Analysis for Android Applications

[This post is by Patrick Dubroy, an Android engineer who writes about programming,
usability, and interaction on his personal blog. — Tim Bray]

The Dalvik runtime may be garbage-collected, but that doesn't mean you can ignore
memory management. You should be especially mindful of memory usage on mobile
devices, where memory is more constrained. In this article, we're going to take a look
atsome of the memory profiling tools in the Android SDK that can help you trim your
application's memory usage.

Some memory usage problems are obvious. For example, if your app leaks memory
every time the user touches the screen, it will probably trigger an

OutOfMemoryError eventually and crash your app. Other problems are more subtle, and may just degrade the
performance of both your app (as garbage collections are more frequent and take longer) and the entire system.

Tools of the trade

The Android SDK provides two main ways of profiling the memory usage of an app: the Allocation Trackertab in DDMS, and
heap dumps. The Allocation Tracker is useful when vou want to get a sense of what kinds of allocation are happening over a

. Run the app
2. Watch the heap usage
3. Dump the heap. Dig around

and finally find the culprit!

frer every CC for this client

3208 98.62%

1 85
Display Stats
da ANN LOhgriae Mariny Asalvzer -
"ee = — .
> 4 e semearted hgew' L
data objt
U - e rudc M
Cass OO
P AN 0T MCTON oF DyMel’) - NDOund
1-byte al Thalew Heap Retamed Puap
2-byte a1
b o yhell) @ Sudimanct 1eTa 4 24
4-bytwe al v o byeeld 7568 SONASS N 58 . 07504 ™
S-byte a1 v mbfer sncve wlaionie -~ A 2
v' -t SR TY Y X VR § v {roy - ~“eth N)
- p L L R P —— v 11 Java ol s ao I astMaclrery L8] © Ondd80s44 » N800 940
Tpe Name (S v Wi Jve v s . h08d 1490 N 500,008
SBAmapC arhe rams ram o3 mmple andrad e gatery Camemelragmens M 13400 008
s culne sy Pr—— e ry aa s 144
The cu pei 27 weles jeve Al MashMap T e Maploty § Oeds o 24 23
\ 3 Yetsh J evarien
» 108 BLe MA PR A CAMIS A ’ 2297 504 2,007 304
> SUE 0 ONe NOT DUV DUV v 0 ol 3\ 0y 2097504 ™
» Pt Agesd ca L AR A N LN R B ‘ AN L) i
» .) .
»one 2297504 1797 384
» bytr “ 2dn ’ BARBANN ’ 7504 "
» o e . B> 47D AVASUD e Do Qs WD MO WD WD #
> 0 iz MOISEN " N
» 000008 74 LoD
> 5 Oadtu 1000 P
> - " 3 62,102
» T . .
» Wt wrie *datsa . 112
» = bynel2E @ Ondledals - -
> L byteieo AT . 112
» e TP © @
» i ae bt MM " .
P = Wyte{768) § Cudtada00 P ——— Y a4
» U e wAead 200 200 abe taS SAR €11 300 Frdbal) AC) A5a M SP0A8 e
> bytelse p . > ¥
> o byreihé "e %
» Dytei e 2 O > 3 Al
> bt . 00809624 s o "N 1%
b o byelSA @ OndBmANIN MO0 2 e s n
€) A 2 il A B_As e SO L o e I A A

e’ pF k Debug Monite
800 E\,Questions containing ‘andr 3} 1ssues - android - Android Android Developers Blog: A Android Developers Blog: I -
€« C' [1 android-developers.blogspot.dk/2011/03/memory-analysis-for-android.html [2:- Rl
Heap updates will fter every CC for this client
| teea ree _ ‘ # Oboects
1 8570 3208 98.62%
Display Stats
Android Developers Blog ann P p—— "
= om N
oo ar T O g ek ssnaried hgewt 11
I R o
M egren o (I Wl Svie .t
Thatem Heap atscad tuap
Developers ?
. . . . ytelB) § Qi menS 1P e 24
Memory Analysis for Android Applications - O o s e M e —
SEARCH O BITAD § NdtaI s -« Ly
[This post is by Patrick Dubroy, an Android engineer who writes about programming, MashMuoSegshMaglrery bl tootd 24
Search usability, and interaction on his personal blog. — Tim Bray] PR P S — v 13 Jova vnd et Mo it Maoloeryl L4 © On 080344 » [§]
- v i jove i o5 w080 L0 “
The Dalvik runtime may be garbage-collected, but that doesn't mean you can ignore SmepCache dum somermvpieanduidingsiry Costfvagment s 2
ARCHIVE memory management. You should be especially mindful of memory usage on mob. The culprit T p—— SRSy) b e
2012 (31) devices, where memory is more constrained. In this article, we're going to take a loc' P CUIPA wehet Jove Al MashMupTHashMaploty B Oadl 2 12
2011 (68 atsome of the memory profiling tools in the Android SDK that can help you trim yo., 3 Vetsh J evaries
20100 application's memory usage. P OsAAsTEE N 1 o8 Ale A ML A CAMES A r 2007 504 2
December (7) 250 P One WY DY DUV v Lo 3 Loy 297,504
November (7) Some memory usage problems are obvious. For example, if your app leaks mem o o0 Apd 5 cu oig 0l a L e ol A0 e s b LML S 2
every time the user touches the screen, it will probably trigger an « 2
October (5)
OutOfMemoryError eventually and crash your app. Other problems are more s 2]
September (5) performance of both your app (as garbage collections are more frequent and tak T e T N ’ 7.5 2
Augus[(3] LR R .2 Q Qs LY MO WY P IMMT M
Tools of the trade »7.004
July (7) 3
June (3) The Android SDK provides two main ways of profiling the memory usage of LONS 4 AR
Mo (€Y heap dumps. The Allocation Tracker is useful when vou want to get a se L 2rar s 2
» - .
» & 4
. » . 4 .
» © 4
» INMTMTW - .
» ML AL MM AR MM WRE MM M A o 1) g L)
» 08 200 200 4Pt SAS SAR AL 3u0 brdba) AC) Aa S72.48 (AP
» - »”
° » " ol%
» > Al
» tytel . o000 " s » e
L L T .8 s 7 n
€) A 2 SRTIRY) AR 00s 0N on - DA e o e Al A A

3. Dump the heap. Dig around
and finally find the culprit!

8 00 E\,Questions containing ‘andr @Issues - android - Android Android Developers Blog: A Android Developers Blog: I -
€« C' [1 android-developers.blogspot.dk/2011/03/memory-analysis-for-android.html [2:- Rl

Developers
SEARCH
Search
ARCHIVE
2012 (31)
2011 (68)

December (7)
November (7)
October (5)
September (5)
August (3)
July (7)

June (3)

(VRIS

. Run the app

Display Stats

ANN

Android Developers Blog

-byle a1
~byte al
~byte a|

Memory Analysis for Android Applications

[This post is by Patrick Dubroy, an Android engineer who writes about programming,
usability, and interaction on his personal blog. — Tim Bray]

The Dalvik runtime may be garbage-collected, but that doesn't mean you can ignore
memory management. You should be especially mindful of memory usage on mob:.
devices, where memory is more constrained. In this article, we're going to take a loc'
atsome of the memory profiling tools in the Android SDK that can help you trim yo.,
application's memory usage.

Some memory usage problems are obvious. For example, if your app leaks mem
every time the user touches the screen, it will probably trigger an

OutOfMemoryError eventually and crash your app. Other problems are more s
performance of both your app (as garbage collections are more frequent and tak

Tools of the trade

The Android SDK provides two main ways of profiling the memory usage of
heap dumps. The Allocation Tracker is useful when vou want to get a se

2. Watch the heap usage

3. Dump the heap. Dig around

and finally find the culprit!

4. Commit a bugfix

.
e semarted hpew' L
I - e vade | A8
A 0T MWILON oF Dyt pound |
v . aJ
T |
). T e
The (:U:[l«'” " sy r tarme P reprecy - e
] » wolen wve Al HaarMap Thash Maplaasy § Cedl
3 Yetsh J evarien
P Gye{ITOTI0N © 0udAle3TE8 N 1 8 Sl AR A CAMED S
P Om ST DY DY e 2 F e
DN Cu NG ML LA A e b
e BARBANNL ’
VRSP als Qo Qs WD MO MO WP »
L ONG 4
MM

MM MOV VML MM M M MM M

B aht SA AR A 3l et bl A0 Ma M

R d

24
AT
-

R

»

“

]

M
2rra
AT
PR LAY
LTS
7504
2797 58
AT

8 00 E\,Questions containing ‘andr @Issues - android - Android Android Developers Blog: A Android Developers Blog: I
€« C' [1 android-developers.blogspot.dk/2011/03/memory-analysis-for-android.html [2:- Rl

Display Stats

Android Developers Blog * ano ' ks Memery Anaiae

.
— YR T ——p o
I R o
L4 o0 e MWLM O DN pouna |
el Haap Lersrad tosp
Developers ? o -byie al -
. . . . » 14 24
Memory Analysis for Android Applications ~byte aj . - — ~
SEARCH ~byte al = :
[This post is by Patrick Dubroy, an Android engineer who writes about programming, 2
Search usability, and interaction on his personal blog. — Tim Bray] PRI Sy e—— z » %)
R o ’ “
The Dalvik runtime may be garbage-collected, but that doesn't mean you can ignore _— m . —— s -
ARCHIVE memory management. You should be especially mindful of memory usage on mob. The culbeit) ST Saasate BRIy - . »
2012 (31) devices, where memory is more constrained. In this article, we're going to take a loc' @ CUips 27 wehes Jeve AL MashMupTHashMaplotry B Oeds 2 ™2
2011 (68 atsome of the memory profiling tools in the Android SDK that can help you trim yo., 3 Vetsh J evaries
20100 application's memory usage. P GyelITOII0N © 0uAleiTE8 Nl o8 Ale A ML A CAMED A r 2007 504 3,097 304
December (7) » o byl PRIS6N Lo 250 P One WY DY DUV v Lo 3 Loy 2297504 SETY)
November (7) Some memory usage problems are obvious. For example, if your app leaks mem > = oynlzrer s 5 00 APd DAL S 00g 80l NI wri i A0 4D e b LIUL.S04 190 384
every time the user touches the screen, it will probably trigger an » o bynddd «) ‘
October (5)
OutOfMemoryError eventually and crash your app. Other problems are more s » o byel2P LTS 1797 384
September (5) performance of both your app (as garbage collections are more frequent and tak » o b2 T4 adn 'y L BE B T Y ’ 7004 "
August (3) » el ? B 4TH AV & o Q Qs MY MO MI MD . 2797 504 n
Tools of the trade » »7.004
July (7) . 3
June (3) The Android SDK provides two main ways of profiling the memory usage of » ONS 4 .
Mo (€Y heap dumps. The Allocation Tracker is useful when vou want to get a se » L 2rar s 2
» - .
N . 112
p p . - A
» © 4
» INMTMTW - .
» ML AL MM AR MM WRE MM M A o 1) g L)
> b ahe SAS SAR €' 3nd brdba) AC) Aa M S70.4% L
» > Al
» " v] % .
» .9 A 5 " n 4
(L] e A . » 2 2 " BOA ! L] A A

Dump the heap. Dig around S —
and finally find the culprit!

Commit a bugfix GitHUb

Bugfix is picked up by Fixr

A Fixr-enabled IDE responds ...

| don’t know how |
created a long-lived
reference to an Activity!

A Fixr-enabled IDE responds ...

| don’t know how |
created a long-lived
reference to an Activity!

A Fixr-enabled IDE responds ...

N

It looks like you’ve created a memory leak like é and

{100,000 others. Would you like to apply &777)\ 2

| don’t know how |
created a long-lived
reference to an Activity!

It looks like you’ve created a memory leak like \\-: ! and \

100,000 others. Would you like to apply g;‘});‘i)
J4 sl
\ R BUGHLY /

the bugfix is “transterred”

. | don’t know how |
I}[EM created a long-lived

I reference to an Activity!

Summary: framework specifications with

Prior Hypothesis

of a

Framework

Invariant

Bayesian
Update

—>

Observe a Bugﬁ/

Posterior
Hypothesis

Mine bugfixes

Prior Hypothesis

of a
Framework ™ : |
Invariant Bayesmn . POSfeI‘IOI:
U pdate Hypothesis

Observe a Bugﬁ/

The Fixr Loop: ,
Create as many observations as possible

B —

Simple motivating example:
A well-understood Android
bug

Simple motivating example:
A well-understood Android
bug

a common misuse of the framework

Bug
(on Android <4)

aView.setTag(..., anObject)

Bug

(on Android <4) |eW. setTag (oo

., anObiject)

: /]1 ™
Y TN
, =

if anObject can reach aView

on oug . aView.setTag(..., anObject)

if anObject can reach aView

class View {
Framework static WeakHashMap<View, sparsearay<Objects> sTags;

: Object mTag;
Invariant \ ect miag

on AE 9 . aiew.setTag(..

W =
%

., anObject)

if anObject can reach aView

class View {
Framework static WeakHashMap<View, sparsearay<Objects> sTags;

: Object mTag;
Invariant \ ect miag

because of an unspecified class invariant: sTags’
values (:Object) must not reach their keys (:View)

on AE 9 . aiew.setTag(..

W =
%

., anObject)

if anObject can reach aView

class View {
Framework static WeakHashMap<View, sparsearay<Objects> sTags;

: Object mTag;
Invariant \ ect miag

because of an unspecified class invariant: sTags’
values (:Object) must not reach their keys (:View)

A Fix

on oug . aView.setTag(..., anObject)

if anObject can reach aView

class View {
Framework static WeakHashMap<View, sparsearay<Objects> sTags;

: Object mTag;
Invariant \ ect miag

because of an unspecified class invariant: sTags’
values (:Object) must not reach their keys (:View)

M .
afl Mo .o oL\l

A Fix

uses mTag instead

on AE 9 . aiew.setTag(..

W =
%

., anObject)

bug pre |
— 7 if anObiject can reach aView

class View {
Framework static WeakHashMap<View, sparsearay<Objects> sTags;
| : Object mTag; ,
nvariant } invariant |
C—— —_—
because of an unspecified class invariant: sTags’

values (:Object) must not reach their keys (:View)

Goal: Produce this repair specification: bug pre,

framework invariant, fix suggestion |
]

Challenges

Given a bugfix commit, how do we summarize
and generalize the fix (to be able “transter”)?

How do we find bugfix commits?

Given a bugfix commit, how do we summarize
and generalize the fix (to be able “transter”)?

a specification of the
View.setTag repair

How do we find bugfix commits?

Given a bugfix commit, how do we summarize
and generalize the fix (to be able “transter”)?

a specification of the
View.setTag repair

How do we find bugfix commits?

an instance of a
View.setTag fix

Fixr
Components and

Workflows

Workflow 1a: Harvesting bugfix commits

Workflow 1a: Harvesting bugfix commits

FixrDB

Workflow 1a: Harvesting bugfix commits

Y
N—

FixrDB
N

Harvestr: Social Validation
and Mining of Fixes

Workflow 1a: Harvesting bugfix commits

Y
N—

FixrDB
N

Harvestr: Social Validation
—> and Mining of Fixes

/@mmit

Github

Workflow 1a: Harvesting bugfix commits

Deltar: Inferring Semantic
Deltas and Repair
Specifications

Y
N—

FixrDB
N

Harvestr: Social Validation
—> and Mining of Fixes

/@mmit

Github

Workflow 1a: Harvesting bugfix commits

Deltar: Inferring Semantic
Deltas and Repair
Specifications

Y
N—

fix FixrDB
A

Harvestr: Social Validation
—> and Mining of Fixes

Workflow 1a: Harvesting bugfix commits

Deltar: Inferring Semantic
Deltas and Repair
Specifications

repair
specification

Y
N—

FixrDB
N

Harvestr: Social Validation
—> and Mining of Fixes

/@mmit

Github

Workflow 1a: Harvesting bugfix commits

E.g., a specific bug
pre for calling
setTag

Deltar: Inferring Semantic -
) repair
Deltas and Repair specification
Specifications

Y
N—

FixrDB
N

Harvestr: Social Validation
—> and Mining of Fixes

/@mmit

Github

E.g., a specific bug
pre for calling
setTag

Deltar: Inferring Semantic :

. repair
Deltas and Repair specification

Specifications
)
N
fix .
E.g., a commit FixrDB
removing a call to

setTag ____,//

Component: Deltar maps bugfixes to candidate
repair specifications (including bug pre)
o T

Shawn Meier E.g., a specific bug

pre for calling
setTag
39 Deltar: Inferring Semantic :
. repair
> Deltas and Repair specification
Specifications \/

A
N
fix .
E.g., a commit FixrDB
removing a call to
setTag \/

Component: Deltar maps bugfixes to candidate
repair specifications (including bug pre) ?
N T

Workflow 1b: Aggregating repairs

Deltar: Inferring Semantic
Deltas and Repair
Specifications

Y
N—

FixrDB
N

Workflow 1b: Aggregating repairs

Deltar: Inferring Semantic .
repair

Deltas and Repair specification
Specifications \/

Y
N—

FixrDB
N

Workflow 1b: Aggregating repairs

Deltar: Inferring Semantic
Deltas and Repair
Specifications

repair
specification

N
FixrDB

Prepair: Deriving
Probabilistic
Repair Specifications

N—

Deltar: Inferring Semantic
Deltas and Repair
Specifications

repair
specification

N
FixrDB

N—

Prepair: Deriving
Probabilistic
Repair Specifications

Deltar: Inferring Semantic
Deltas and Repair
Specifications

repair
specification

N
FixrDB

N—

Prepair: Deriving
Probabilistic
Repair Specifications

probabilistic repair
specification

Deltar: Inferring Semantic
Deltas and Repair
Specifications

repair
specification

N
FixrDB

N—

Prepair: Deriving
Probabilistic
Repair Specifications

probabilistic repair
specification

Triggers query to
FixrDB for buggy apps
(satisfying bug pre)

Deltar: Inferring Semantic repair Prepair: Deriving

Deltas and Repair specification Probabilistic
Specifications Repair Specifications
E.g., repair
conditions for

O setTag
probabilistic repair
FixrDB specification

Component: Prepair reduces candidate repair
specifications to generalized probabilistic repair
specifications

Workflow 1c: Synthesizing patches

Prepair: Deriving
Probabilistic
Repair Specifications

Y
N—

FixrDB
N

Workflow 1c: Synthesizing patches

Prepair: Deriving
Probabilistic
Repair Specifications

o
N
probabilistic repair

FixrDB specification

N—

Workflow 1c: Synthesizing patches

Y
N—

FixrDB

Prepair: Deriving
Probabilistic
Repair Specifications

N—

probabilistic repair
specification

Patchr: Detecting Potential
Bugs and Synthesizing
Patches

Workflow 1c: Synthesizing patches

Prepair: Deriving
Probabilistic
Repair Specifications

)
N
probabilistic repair

FixrDB specification

N—

Patchr: Detecting Potential
Bugs and Synthesizing
Patches

Workflow 1c: Synthesizing patches

Prepair: Deriving
Probabilistic
Repair Specifications

)
N
probabilistic repair

FixrDB specification

patch Patchr: Detecting Potential

Bugs and Synthesizing
Patches

Workflow 1c: Synthesizing patches

Github

Y
N—

FixrDB

Prepair: Deriving
Probabilistic
Repair Specifications

probabilistic repair
specification

Patchr: Detecting Potential
Bugs and Synthesizing
Patches

Workflow 1c: Synthesizing patches

Prepair: Deriving
Probabilistic
Repair Specifications

Y
N—

FixrDB

probabilistic repair
specification

Patchr: Detecting Potential
Bugs and Synthesizing
Patches

Github

Prepair: Deriving

Component: Patchr
Probabilistic

mapS buggy apps to Repair Specifications
patched apps

TN
— —__

FixrDB

probabilistic repair
specification

Triggers query to
FixrDB for buggy apps
(satisfying bug pre)
E.g., replace call
to setTag with

patch Patchr: Detecting Potential

alternative Bugs and Synthesizing
Patches
/\
\/ :

N—

Component: Patchr

maps

buggy apps to

patched apps

)
N

Github

E.g., replace call
to setTag with

alternative

N—

)
N—

FixrDB

Prepair: Deriving
Probabilistic
Repair Specifications

patch

probabilistic repair
specification

Triggers query to
FixrDB for buggy apps
(satisfying bug pre)

Patchr: Detecting Potential
Bugs and Synthesizing
Patches

Vaibhav Singh

Component: Patchr

maps

patched apps

)
N

Github

Prepair: Deriving
Probabilistic

buggy apps to Repair Specifications

probabilistic repair
specification

FixrDB

Triggers query to
FixrDB for buggy apps
(satisfying bug pre)

Mazin Hakeem

E.g., replace call
to setTag with

h - -
patc Patchr: Detecting Potential

Bugs and Synthesizing
Patches

alternative

N—

Vaibhav Singh

Workflow 0: Continuous commit harvesting, buggy app

patching, and social validation

Harvestr: Social Validation
and Mining of Fixes

Workflow 0: Continuous commit harvesting, buggy app

patching, and social validation

Harvestr: Social Validation
—> and Mining of Fixes

/@mmit

Github

Workflow 0: Continuous commit harvesting, buggy app

patching, and social validation

Y
N—

FixrDB
commit v

Harvestr: Social Validation
—> and Mining of Fixes

/@mmit

Github

Workflow 0: Continuous commit harvesting, buggy app

patching, and social validation

Deltar: Inferring Semantic
Deltas and Repair
Specifications

Y
N—

FixrDB
commit v

Harvestr: Social Validation
—> and Mining of Fixes

/@mmit

Github

Workflow 0: Continuous commit harvesting, buggy app

patching, and social validation

Deltar: Inferring Semantic

Deltas and Repair
semantic
facts

Specifications
N
N

FixrDB
commit v

Harvestr: Social Validation
—> and Mining of Fixes

/@mmit

Github

Workflow 0: Continuous commit harvesting, buggy app

patching, and social validation

Deltar: Inferring Semantic

Deltas and Repair
semantic
facts

Specifications
N
N

FixrDB
commit \/

Patchr: Detecting Potential
Bugs and Synthesizing
Patches

Harvestr: Social Validation
> and Mining of Fixes

/@mmit

Github

Workflow 0: Continuous commit harvesting, buggy app

patching, and social validation

Deltar: Inferring Semantic
Deltas and Repair

Specifications
semantic
facts
N
N
FixrDB
commit

Patchr: Detecting Potential
Bugs and Synthesizing
Patches

Harvestr: Social Validation
> and Mining of Fixes

Workflow 0: Continuous commit harvesting, buggy app

patching, and social validation

Deltar: Inferring Semantic
Deltas and Repair

Specifications
semantic
facts
N
N
FixrDB
commit

Harvestr: Social Validation

> and Mining of Fixes

Patchr: Detecting Potential
Bugs and Synthesizing
Patches

Workflow 0: Continuous commit harvesting, buggy app

patching, and social validation

Deltar: Inferring Semantic

Deltas and Repair
semantic
facts

Specifications
N
N

FixrDB

E.g., pull request commit
% % accepted

Harvestr: Social Validation

> and Mining of Fixes

Patchr: Detecting Potential
Bugs and Synthesizing
Patches

Workflow 0: Continuous commit harvesting, buggy app

patching, and social validation

Deltar: Inferring Semantic Prepair: Deriving
Deltas and Repair Probabilistic

Specifications Repair Specifications
semantic
facts

Y
N—

FixrDB

commit

E.g., pull request
% % accepted
/@mmit
N

N—

Patchr: Detecting Potential
Bugs and Synthesizing
Patches

Harvestr: Social Validation
and Mining of Fixes

16

Workflow 0: Continuous commit harvesting, buggy app

patching, and social validation

Deltar: Inferring Semantic Prepair: Deriving
Deltas and Repair Probabilistic

Specifications Repair Specifications
semantic
facts

Y
N—

updated probabilities

FixrDB

commit

E.g., pull request
% % accepted
/@mmit
N

N—

Patchr: Detecting Potential
Bugs and Synthesizing
Patches

Harvestr: Social Validation
and Mining of Fixes

16

Deltar: Inferring Semantic Prepair: Deriving
Deltas and Repair Probabilistic
Specifications Repair Specifications

semcm /

Component: Harvestr maps
external events to semantic facts,

%%% “w Updated probabilities, and patches

interaction l h
patc Patchr: Detecting Potential

Harvestr: Social Validation Bugs and Synthesizing
/@mit

= and Mining of Fixes Patches
N

N

|6

Deltar: Inferring Semantic Prepair: Deriving
Deltas and Repair Probabilistic
Specifications Repair Specifications

semcm /

Component: Harvestr maps
external events to semantic facts,

%%% “w Updated probabilities, and patches

interaction l h
patc Patchr: Detecting Potential

Harvestr: Social Validation Bugs and Synthesizing

/@m“ 7 o Mi"i" o s Patches
~—

Github < »
~—— Sanghee Kim

semantic
statistical-semantic
syntactic

social

X3

Deltar: Inferring Semantic

Deltas and Repair
Specifications

facts

mmit
N
N
Github
N

a

Harvestr: Social Validation
and Mining of Fixes

semantic

repair
specification

Prepair: Deriving
Probabilistic
Repair Specifications

patch

robabilistic repair
specification

Patchr: Detecting Potential
Bugs and Synthesizing
Patches

Bor-Yuh Evan Chang Sriram Sankaranarayanan

symbolic numerical-probabilistic
program analysis | program analysis
Deltar: Inferring Semantic Prepair: Deriving
Deltas and Repair Probabilistic
Specifications Repair Specifications

software engineering

for big data FixrDB

Ken Anderson

Patchr: Detecting Potential
Bugs and Synthesizing
Patches

Harvestr: Social Validation
and Mining of Fixes

- ‘ |||
= — . :
- ’;) <
o -
T e w
2 .
-
- -

I user-centered

l big data analytics program synthesis

Pavol Cerny

Bor-Yuh Evan Chang ~ Shawn Meier Max Russek (UG) Sriram Sankaranarayanan

Deltar: Inferring Semantic Prepair: Deriving
Deltas and Repair Probabilistic
Specifications Repair Specifications

Mazin Hakeem Ken Anderson

Patchr: Detecting Potential
Bugs and Synthesizing

P..J.-L--

Harvestr: Social Validation
and Mining of Fixes

Tom Yeh Sanghee Kim Brennan McConnell (UG) Vaibhav Singh Pavol Cerny

