
Fixr: Mining and Understanding 
Bug Fixes for App-Framework 

Protocol Defects (TA2) 

MUSE Kickoff
October 15, 2014

Tom YehPavol Cerny Sriram SankaranarayananBor-Yuh Evan Chang Ken Anderson

University of Colorado Boulder



A bug that manifests 
spectacularly …



A bug that manifests 
spectacularly …



A bug that manifests 
spectacularly …



A bug that manifests 
spectacularly …

Crash



A bug that manifests 
spectacularly …

Crash
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Often:  A 
misunderstanding 
of a library causes 
the library to keep 
the Activity 
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Bug from violating
(implicit) framework protocol rules



Imagining a post-MUSE 
scenario ...

for xxxxxxxxxxxx 
I don’t know how I created a 
long-lived reference to an 
Activity!
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Elsewhere, following the state of practice 
for debugging leaks  ...

1. Run the app
2. Watch the heap usage
3. Dump the heap. Dig around 

and finally find the culprit!
4. Commit a bugfix
5. Bugfix is picked up by Fixr Fixr
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I don’t know how I created a 
long-lived reference to an 
Activity!

It looks like you’ve created a memory leak like                and 

100,000 others.  Would you like to apply                ?

the bugfix is “transferred”
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One Sentence Summary:  Mine 
specifications of framework rules 

(indirectly) from bugfixes

Leverage volume and variety of bugfixes made 
by the crowd of client app developers

“toolify” stackoverflow
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aView.setTag(..., anObject)

if anObject can reach aView

class View {
  static WeakHashMap<View, SparseArray<Object>> sTags;
  Object mTag;
}

Bug
(on Android <4)

because of an unspecified class invariant: sTags’ 
values (:Object) must not reach their keys (:View)

Framework
Invariant

A Fix aView.setTag(..., anObject)
aView.setTag(anObject)

bug pre

invariant

uses mTag instead

Goal: Produce this repair specification: bug pre, 
framework invariant, fix suggestion
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Bayesian 
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The Fixr Loop:
Create as many observations as possible
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Fixr: Proposed System

fix

repair
specification

semantic
delta

Deltar: Inferring Semantic 
Deltas and Repair 

Specifications

MUSE

E.g., framework 
invariant + app “bug 
pre” + suggestions

Component: Deltar maps fixes to semantic 
difference summaries and candidate repair 

specifications
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aView.setTag(anObject)
Problem: Need to mine and check 
candidate framework invariants

Delta

sTags == null ∧ mTag != nullCandidate
Invariant

WeakHashMap$Entry MyView

Approach: Refine coarse, global summaries and 
verify candidate invariant on fixed version 

(scalably with “almost everywhere type analysis”)
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Fixr: Proposed System

fix

repair
specification

probabilistic repair
specification

semantic
delta

Deltar: Inferring Semantic 
Deltas and Repair 

Specifications

Prepair: Deriving 
Probabilistic 

Repair Specifications

MUSE

E.g., generalized 
repair spec with 

confidence measure

Component: Prepair reduces candidate repair 
specifications to generalized probabilistic repair 

specifications
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∀v. sTags[v][0] ↛* v

⊔
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Prepair: Deriving 
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Repair Specifications

Patchr: Detecting Potential 
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Patches

MUSE

E.g., bug evidence 
and patch

Component: Patchr 
maps (likely buggy) 

apps to patches
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Problem: How do we validate repair specifications?

Candidate
Invariant

Approach: Synthesize patches for human validation 
(easier to understand and immediately useful)

A Patch otherView.setTag(..., o)
otherView.setTag(o)

sTags == null ∧ mTag != null

need to find apps satisfying “bug pre”

0.9



Fixr: Proposed System

fix

patch

repair
specification

probabilistic repair
specification

semantic
delta

Deltar: Inferring Semantic 
Deltas and Repair 

Specifications

Prepair: Deriving 
Probabilistic 

Repair Specifications

Harvestr: Social Validation 
and Mining of Fixes

Patchr: Detecting Potential 
Bugs and Synthesizing 

Patches

MUSE

E.g., bug evidence 
and patch



Fixr: Proposed System

fix

patch

repair
specification

probabilistic repair
specification

semantic
delta

Deltar: Inferring Semantic 
Deltas and Repair 

Specifications

Prepair: Deriving 
Probabilistic 

Repair Specifications

Harvestr: Social Validation 
and Mining of Fixes

Patchr: Detecting Potential 
Bugs and Synthesizing 

Patches

MUSE

E.g., bug evidence 
and patch



Fixr: Proposed System

fix

patch

repair
specification

probabilistic repair
specification

semantic
delta

Deltar: Inferring Semantic 
Deltas and Repair 

Specifications

Prepair: Deriving 
Probabilistic 

Repair Specifications

Harvestr: Social Validation 
and Mining of Fixes

Patchr: Detecting Potential 
Bugs and Synthesizing 

Patches

MUSE



Fixr: Proposed System

fix

patch

repair
specification

probabilistic repair
specification

semantic
delta

Deltar: Inferring Semantic 
Deltas and Repair 

Specifications

Prepair: Deriving 
Probabilistic 

Repair Specifications

Harvestr: Social Validation 
and Mining of Fixes

Patchr: Detecting Potential 
Bugs and Synthesizing 

Patches

MUSE

social
delta



Fixr: Proposed System

fix

patch

repair
specification

probabilistic repair
specification

semantic
delta

Deltar: Inferring Semantic 
Deltas and Repair 

Specifications

Prepair: Deriving 
Probabilistic 

Repair Specifications

Harvestr: Social Validation 
and Mining of Fixes

Patchr: Detecting Potential 
Bugs and Synthesizing 

Patches

MUSE

social
delta

E.g., bugfix 
confirmation



Fixr: Proposed System

interaction

fix

patch

repair
specification

probabilistic repair
specification

semantic
delta

Deltar: Inferring Semantic 
Deltas and Repair 

Specifications

Prepair: Deriving 
Probabilistic 

Repair Specifications

Harvestr: Social Validation 
and Mining of Fixes

Patchr: Detecting Potential 
Bugs and Synthesizing 

Patches

MUSE

social
delta

E.g., bugfix 
confirmation



Fixr: Proposed System

interaction

fix

patch

repair
specification

probabilistic repair
specification

semantic
delta

Deltar: Inferring Semantic 
Deltas and Repair 

Specifications

Prepair: Deriving 
Probabilistic 

Repair Specifications

Harvestr: Social Validation 
and Mining of Fixes

Patchr: Detecting Potential 
Bugs and Synthesizing 

Patches

MUSE

social
delta

E.g., bugfix 
confirmation



Fixr: Proposed System

interaction

fix

patch

repair
specification

probabilistic repair
specification

semantic
delta

Deltar: Inferring Semantic 
Deltas and Repair 

Specifications

Prepair: Deriving 
Probabilistic 

Repair Specifications

Harvestr: Social Validation 
and Mining of Fixes

Patchr: Detecting Potential 
Bugs and Synthesizing 

Patches

MUSE

social
delta



Fixr: Proposed System

interaction

fix

patch

repair
specification

probabilistic repair
specification

semantic
delta

Deltar: Inferring Semantic 
Deltas and Repair 

Specifications

Prepair: Deriving 
Probabilistic 

Repair Specifications

Harvestr: Social Validation 
and Mining of Fixes

Patchr: Detecting Potential 
Bugs and Synthesizing 

Patches

MUSE

social
delta



Fixr: Proposed System

Code

interaction

commit

fix

patch

repair
specification

probabilistic repair
specification

semantic
delta

Deltar: Inferring Semantic 
Deltas and Repair 

Specifications

Prepair: Deriving 
Probabilistic 

Repair Specifications

Harvestr: Social Validation 
and Mining of Fixes

Patchr: Detecting Potential 
Bugs and Synthesizing 

Patches

MUSE

social
delta



Fixr: Proposed System

Code

interaction

commit

fix

patch

repair
specification

probabilistic repair
specification

semantic
delta

Deltar: Inferring Semantic 
Deltas and Repair 

Specifications

Prepair: Deriving 
Probabilistic 

Repair Specifications

Harvestr: Social Validation 
and Mining of Fixes

Patchr: Detecting Potential 
Bugs and Synthesizing 

Patches

MUSE

social
delta

Component: Harvestr maps commits and 
patches to candidate fixes
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Problem: How do we find relevant bugfixes?

Approach: Mine meta-data artifacts
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evaluation of the Fixr loop

• Effectiveness of Bugfix Transfer: Given an 
isolated bugfix, can we derive high-quality 
repair specifications to lead to useful 
patches?

• Effectiveness of Bugfix Seeding: Can we 
isolate likely bugfixes from source 
repositories?

Deltar Prepair
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Deltar
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Prepair for Fixr
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