
Fixr: Mining and Understanding
Bug Fixes for App-Framework

Protocol Defects (TA2)

MUSE Kickoff
October 15, 2014

Tom YehPavol Cerny Sriram SankaranarayananBor-Yuh Evan Chang Ken Anderson

University of Colorado Boulder

A bug that manifests
spectacularly …

A bug that manifests
spectacularly …

A bug that manifests
spectacularly …

A bug that manifests
spectacularly …

Crash

A bug that manifests
spectacularly …

Crash
caused by an app-created memory leak

Ask framework devs ...

Ask framework devs ...

Ask framework devs ...
“Do not keep long-lived references to a context-activity”

Ask framework devs ...
“Do not keep long-lived references to a context-activity”

I don’t know how I created a
long-lived reference to an
Activity!

Ask framework devs ...
“Do not keep long-lived references to a context-activity”

I don’t know how I created a
long-lived reference to an
Activity!

Often: A
misunderstanding
of a library causes
the library to keep
the Activity
reference.

Ask framework devs ...
“Do not keep long-lived references to a context-activity”

I don’t know how I created a
long-lived reference to an
Activity!

Often: A
misunderstanding
of a library causes
the library to keep
the Activity
reference.

Bug from violating
(implicit) framework protocol rules

Imagining a post-MUSE
scenario ...

for xxxxxxxxxxxx
I don’t know how I created a
long-lived reference to an
Activity!

Elsewhere, following the state of practice
for debugging leaks ...

Elsewhere, following the state of practice
for debugging leaks ...

1. Run the app

Elsewhere, following the state of practice
for debugging leaks ...

1. Run the app
2. Watch the heap usage

Elsewhere, following the state of practice
for debugging leaks ...

1. Run the app
2. Watch the heap usage
3. Dump the heap. Dig around

and finally find the culprit!

Elsewhere, following the state of practice
for debugging leaks ...

1. Run the app
2. Watch the heap usage
3. Dump the heap. Dig around

and finally find the culprit!

Elsewhere, following the state of practice
for debugging leaks ...

1. Run the app
2. Watch the heap usage
3. Dump the heap. Dig around

and finally find the culprit!
4. Commit a bugfix

Elsewhere, following the state of practice
for debugging leaks ...

1. Run the app
2. Watch the heap usage
3. Dump the heap. Dig around

and finally find the culprit!
4. Commit a bugfix
5. Bugfix is picked up by Fixr Fixr

A Fixr-enabled IDE responds ...

I don’t know how I created a
long-lived reference to an
Activity!

A Fixr-enabled IDE responds ...

I don’t know how I created a
long-lived reference to an
Activity!

A Fixr-enabled IDE responds ...

I don’t know how I created a
long-lived reference to an
Activity!

It looks like you’ve created a memory leak like and

100,000 others. Would you like to apply ?

A Fixr-enabled IDE responds ...

I don’t know how I created a
long-lived reference to an
Activity!

It looks like you’ve created a memory leak like and

100,000 others. Would you like to apply ?

the bugfix is “transferred”

One Sentence Summary: Mine
specifications of framework rules

(indirectly) from bugfixes

Leverage volume and variety of bugfixes made
by the crowd of client app developers

One Sentence Summary: Mine
specifications of framework rules

(indirectly) from bugfixes

Leverage volume and variety of bugfixes made
by the crowd of client app developers

One Sentence Summary: Mine
specifications of framework rules

(indirectly) from bugfixes

Leverage volume and variety of bugfixes made
by the crowd of client app developers

“toolify” stackoverflow

Simple motivating example:
A well-understood

Android bug

Simple motivating example:
A well-understood

Android bug

a common misuse of the framework

aView.setTag(..., anObject)Bug
(on Android <4)

aView.setTag(..., anObject)

if anObject can reach aView

Bug
(on Android <4)

aView.setTag(..., anObject)

if anObject can reach aView

class View {
 static WeakHashMap<View, SparseArray<Object>> sTags;
 Object mTag;
}

Bug
(on Android <4)

Framework
Invariant

aView.setTag(..., anObject)

if anObject can reach aView

class View {
 static WeakHashMap<View, SparseArray<Object>> sTags;
 Object mTag;
}

Bug
(on Android <4)

because of an unspecified class invariant: sTags’
values (:Object) must not reach their keys (:View)

Framework
Invariant

aView.setTag(..., anObject)

if anObject can reach aView

class View {
 static WeakHashMap<View, SparseArray<Object>> sTags;
 Object mTag;
}

Bug
(on Android <4)

because of an unspecified class invariant: sTags’
values (:Object) must not reach their keys (:View)

Framework
Invariant

A Fix aView.setTag(..., anObject)
aView.setTag(anObject)

aView.setTag(..., anObject)

if anObject can reach aView

class View {
 static WeakHashMap<View, SparseArray<Object>> sTags;
 Object mTag;
}

Bug
(on Android <4)

because of an unspecified class invariant: sTags’
values (:Object) must not reach their keys (:View)

Framework
Invariant

A Fix aView.setTag(..., anObject)
aView.setTag(anObject)

uses mTag instead

aView.setTag(..., anObject)

if anObject can reach aView

class View {
 static WeakHashMap<View, SparseArray<Object>> sTags;
 Object mTag;
}

Bug
(on Android <4)

because of an unspecified class invariant: sTags’
values (:Object) must not reach their keys (:View)

Framework
Invariant

A Fix aView.setTag(..., anObject)
aView.setTag(anObject)

bug pre

invariant

uses mTag instead

Goal: Produce this repair specification: bug pre,
framework invariant, fix suggestion

Mining framework specifications with
bugfixes

Prior Hypothesis
of a

Framework
Invariant/Rule

Observe a Bugfix

Posterior
Hypothesis

Bayesian
Update

Mining framework specifications with
bugfixes

Prior Hypothesis
of a

Framework
Invariant/Rule

Observe a Bugfix

Posterior
Hypothesis

Bayesian
Update

The Fixr Loop:
Create as many observations as possible

The Fixr Loop:
Component by

Component

Fixr: Proposed System

MUSE

Fixr: Proposed System

fix MUSE

Fixr: Proposed System

fix MUSEE.g., Two successive
versions of source

code

Fixr: Proposed System

fix MUSE

Fixr: Proposed System

fix

Deltar: Inferring Semantic
Deltas and Repair

Specifications

MUSE

Fixr: Proposed System

fix

semantic
delta

Deltar: Inferring Semantic
Deltas and Repair

Specifications

MUSE

Fixr: Proposed System

fix

semantic
delta

Deltar: Inferring Semantic
Deltas and Repair

Specifications

MUSE

E.g., Diff in relevant
flow-insensitive

summary

Fixr: Proposed System

fix

semantic
delta

Deltar: Inferring Semantic
Deltas and Repair

Specifications

MUSE

Fixr: Proposed System

fix

repair
specification

semantic
delta

Deltar: Inferring Semantic
Deltas and Repair

Specifications

MUSE

Fixr: Proposed System

fix

repair
specification

semantic
delta

Deltar: Inferring Semantic
Deltas and Repair

Specifications

MUSE

E.g., framework
invariant + app “bug
pre” + suggestions

Fixr: Proposed System

fix

repair
specification

semantic
delta

Deltar: Inferring Semantic
Deltas and Repair

Specifications

MUSE

E.g., framework
invariant + app “bug
pre” + suggestions

Component: Deltar maps fixes to semantic
difference summaries and candidate repair

specifications

Deltar

Deltar
A Fix aView.setTag(..., anObject)

aView.setTag(anObject)

Deltar
A Fix aView.setTag(..., anObject)

aView.setTag(anObject)
Problem: Need to mine and check
candidate framework invariants

Deltar
A Fix aView.setTag(..., anObject)

aView.setTag(anObject)
Problem: Need to mine and check
candidate framework invariants

Delta WeakHashMap$Entry MyView

Deltar
A Fix aView.setTag(..., anObject)

aView.setTag(anObject)
Problem: Need to mine and check
candidate framework invariants

Delta

sTags == null ∧ mTag != nullCandidate
Invariant

WeakHashMap$Entry MyView

Deltar
A Fix aView.setTag(..., anObject)

aView.setTag(anObject)
Problem: Need to mine and check
candidate framework invariants

Delta

sTags == null ∧ mTag != nullCandidate
Invariant

WeakHashMap$Entry MyView

Approach: Refine coarse, global summaries and
verify candidate invariant on fixed version

(scalably with “almost everywhere type analysis”)

Fixr: Proposed System

fix

repair
specification

semantic
delta

Deltar: Inferring Semantic
Deltas and Repair

Specifications

Prepair: Deriving
Probabilistic

Repair Specifications

MUSE

E.g., framework
invariant + app “bug

pre” + fixes

Fixr: Proposed System

fix

repair
specification

semantic
delta

Deltar: Inferring Semantic
Deltas and Repair

Specifications

Prepair: Deriving
Probabilistic

Repair Specifications

MUSE

E.g., framework
invariant + app “bug

pre” + fixes

Fixr: Proposed System

fix

repair
specification

semantic
delta

Deltar: Inferring Semantic
Deltas and Repair

Specifications

Prepair: Deriving
Probabilistic

Repair Specifications

MUSE

Fixr: Proposed System

fix

repair
specification

probabilistic repair
specification

semantic
delta

Deltar: Inferring Semantic
Deltas and Repair

Specifications

Prepair: Deriving
Probabilistic

Repair Specifications

MUSE

Fixr: Proposed System

fix

repair
specification

probabilistic repair
specification

semantic
delta

Deltar: Inferring Semantic
Deltas and Repair

Specifications

Prepair: Deriving
Probabilistic

Repair Specifications

MUSE

E.g., generalized
repair spec with

confidence measure

Fixr: Proposed System

fix

repair
specification

probabilistic repair
specification

semantic
delta

Deltar: Inferring Semantic
Deltas and Repair

Specifications

Prepair: Deriving
Probabilistic

Repair Specifications

MUSE

E.g., generalized
repair spec with

confidence measure

Component: Prepair reduces candidate repair
specifications to generalized probabilistic repair

specifications

Prepair

Prepair
Candidate
Invariant

sTags == null ∧ mTag != null

Prepair
Candidate
Invariant

sTags == null ∧ mTag != null
∀i. sTags[v][i] ↛ v

Prepair
Candidate
Invariant

sTags == null ∧ mTag != null
∀i. sTags[v][i] ↛ v
∀v. sTags[v][0] ↛* v

Prepair

Problem: Multiple (overly-specific or under-
specified) candidate repair specifications

Candidate
Invariant

sTags == null ∧ mTag != null
∀i. sTags[v][i] ↛ v
∀v. sTags[v][0] ↛* v

Prepair

Problem: Multiple (overly-specific or under-
specified) candidate repair specifications

Candidate
Invariant

Approach: Static analysis as a form of Bayesian
updating of priors to derive posteriors. Prevalence

of fixes in MUSE database provides priors.

sTags == null ∧ mTag != null
∀i. sTags[v][i] ↛ v
∀v. sTags[v][0] ↛* v

Prepair

Problem: Multiple (overly-specific or under-
specified) candidate repair specifications

Candidate
Invariant

Approach: Static analysis as a form of Bayesian
updating of priors to derive posteriors. Prevalence

of fixes in MUSE database provides priors.

sTags == null ∧ mTag != null
∀i. sTags[v][i] ↛ v
∀v. sTags[v][0] ↛* v

⊔

0.9

Fixr: Proposed System

fix

repair
specification

probabilistic repair
specification

semantic
delta

Deltar: Inferring Semantic
Deltas and Repair

Specifications

Prepair: Deriving
Probabilistic

Repair Specifications

Patchr: Detecting Potential
Bugs and Synthesizing

Patches

MUSE

E.g., generalized
repair spec with

confidence measure

Fixr: Proposed System

fix

repair
specification

probabilistic repair
specification

semantic
delta

Deltar: Inferring Semantic
Deltas and Repair

Specifications

Prepair: Deriving
Probabilistic

Repair Specifications

Patchr: Detecting Potential
Bugs and Synthesizing

Patches

MUSE

E.g., generalized
repair spec with

confidence measure

Fixr: Proposed System

fix

repair
specification

probabilistic repair
specification

semantic
delta

Deltar: Inferring Semantic
Deltas and Repair

Specifications

Prepair: Deriving
Probabilistic

Repair Specifications

Patchr: Detecting Potential
Bugs and Synthesizing

Patches

MUSE

Fixr: Proposed System

fix

patch

repair
specification

probabilistic repair
specification

semantic
delta

Deltar: Inferring Semantic
Deltas and Repair

Specifications

Prepair: Deriving
Probabilistic

Repair Specifications

Patchr: Detecting Potential
Bugs and Synthesizing

Patches

MUSE

Fixr: Proposed System

fix

patch

repair
specification

probabilistic repair
specification

semantic
delta

Deltar: Inferring Semantic
Deltas and Repair

Specifications

Prepair: Deriving
Probabilistic

Repair Specifications

Patchr: Detecting Potential
Bugs and Synthesizing

Patches

MUSE

E.g., bug evidence
and patch

Fixr: Proposed System

fix

patch

repair
specification

probabilistic repair
specification

semantic
delta

Deltar: Inferring Semantic
Deltas and Repair

Specifications

Prepair: Deriving
Probabilistic

Repair Specifications

Patchr: Detecting Potential
Bugs and Synthesizing

Patches

MUSE

E.g., bug evidence
and patch

Component: Patchr
maps (likely buggy)

apps to patches

Patchr

Patchr
Candidate
Invariant sTags == null ∧ mTag != null 0.9

Patchr

Problem: How do we validate repair specifications?

Candidate
Invariant sTags == null ∧ mTag != null 0.9

Patchr

Problem: How do we validate repair specifications?

Candidate
Invariant

Approach: Synthesize patches for human validation
(easier to understand and immediately useful)

sTags == null ∧ mTag != null 0.9

Patchr

Problem: How do we validate repair specifications?

Candidate
Invariant

Approach: Synthesize patches for human validation
(easier to understand and immediately useful)

A Patch otherView.setTag(..., o)
otherView.setTag(o)

sTags == null ∧ mTag != null 0.9

Patchr

Problem: How do we validate repair specifications?

Candidate
Invariant

Approach: Synthesize patches for human validation
(easier to understand and immediately useful)

A Patch otherView.setTag(..., o)
otherView.setTag(o)

sTags == null ∧ mTag != null

need to find apps satisfying “bug pre”

0.9

Fixr: Proposed System

fix

patch

repair
specification

probabilistic repair
specification

semantic
delta

Deltar: Inferring Semantic
Deltas and Repair

Specifications

Prepair: Deriving
Probabilistic

Repair Specifications

Harvestr: Social Validation
and Mining of Fixes

Patchr: Detecting Potential
Bugs and Synthesizing

Patches

MUSE

E.g., bug evidence
and patch

Fixr: Proposed System

fix

patch

repair
specification

probabilistic repair
specification

semantic
delta

Deltar: Inferring Semantic
Deltas and Repair

Specifications

Prepair: Deriving
Probabilistic

Repair Specifications

Harvestr: Social Validation
and Mining of Fixes

Patchr: Detecting Potential
Bugs and Synthesizing

Patches

MUSE

E.g., bug evidence
and patch

Fixr: Proposed System

fix

patch

repair
specification

probabilistic repair
specification

semantic
delta

Deltar: Inferring Semantic
Deltas and Repair

Specifications

Prepair: Deriving
Probabilistic

Repair Specifications

Harvestr: Social Validation
and Mining of Fixes

Patchr: Detecting Potential
Bugs and Synthesizing

Patches

MUSE

Fixr: Proposed System

fix

patch

repair
specification

probabilistic repair
specification

semantic
delta

Deltar: Inferring Semantic
Deltas and Repair

Specifications

Prepair: Deriving
Probabilistic

Repair Specifications

Harvestr: Social Validation
and Mining of Fixes

Patchr: Detecting Potential
Bugs and Synthesizing

Patches

MUSE

social
delta

Fixr: Proposed System

fix

patch

repair
specification

probabilistic repair
specification

semantic
delta

Deltar: Inferring Semantic
Deltas and Repair

Specifications

Prepair: Deriving
Probabilistic

Repair Specifications

Harvestr: Social Validation
and Mining of Fixes

Patchr: Detecting Potential
Bugs and Synthesizing

Patches

MUSE

social
delta

E.g., bugfix
confirmation

Fixr: Proposed System

interaction

fix

patch

repair
specification

probabilistic repair
specification

semantic
delta

Deltar: Inferring Semantic
Deltas and Repair

Specifications

Prepair: Deriving
Probabilistic

Repair Specifications

Harvestr: Social Validation
and Mining of Fixes

Patchr: Detecting Potential
Bugs and Synthesizing

Patches

MUSE

social
delta

E.g., bugfix
confirmation

Fixr: Proposed System

interaction

fix

patch

repair
specification

probabilistic repair
specification

semantic
delta

Deltar: Inferring Semantic
Deltas and Repair

Specifications

Prepair: Deriving
Probabilistic

Repair Specifications

Harvestr: Social Validation
and Mining of Fixes

Patchr: Detecting Potential
Bugs and Synthesizing

Patches

MUSE

social
delta

E.g., bugfix
confirmation

Fixr: Proposed System

interaction

fix

patch

repair
specification

probabilistic repair
specification

semantic
delta

Deltar: Inferring Semantic
Deltas and Repair

Specifications

Prepair: Deriving
Probabilistic

Repair Specifications

Harvestr: Social Validation
and Mining of Fixes

Patchr: Detecting Potential
Bugs and Synthesizing

Patches

MUSE

social
delta

Fixr: Proposed System

interaction

fix

patch

repair
specification

probabilistic repair
specification

semantic
delta

Deltar: Inferring Semantic
Deltas and Repair

Specifications

Prepair: Deriving
Probabilistic

Repair Specifications

Harvestr: Social Validation
and Mining of Fixes

Patchr: Detecting Potential
Bugs and Synthesizing

Patches

MUSE

social
delta

Fixr: Proposed System

Code

interaction

commit

fix

patch

repair
specification

probabilistic repair
specification

semantic
delta

Deltar: Inferring Semantic
Deltas and Repair

Specifications

Prepair: Deriving
Probabilistic

Repair Specifications

Harvestr: Social Validation
and Mining of Fixes

Patchr: Detecting Potential
Bugs and Synthesizing

Patches

MUSE

social
delta

Fixr: Proposed System

Code

interaction

commit

fix

patch

repair
specification

probabilistic repair
specification

semantic
delta

Deltar: Inferring Semantic
Deltas and Repair

Specifications

Prepair: Deriving
Probabilistic

Repair Specifications

Harvestr: Social Validation
and Mining of Fixes

Patchr: Detecting Potential
Bugs and Synthesizing

Patches

MUSE

social
delta

Component: Harvestr maps commits and
patches to candidate fixes

Harvestr

Harvestr

Harvestr

Problem: How do we find relevant bugfixes?

Harvestr

Problem: How do we find relevant bugfixes?

Harvestr

Problem: How do we find relevant bugfixes?

Approach: Mine meta-data artifacts

Fixr: Proposed System

Code

interaction

commit

fix

patch

repair
specification

probabilistic repair
specification

semantic
delta

Deltar: Inferring Semantic
Deltas and Repair

Specifications

Prepair: Deriving
Probabilistic

Repair Specifications

Harvestr: Social Validation
and Mining of Fixes

Patchr: Detecting Potential
Bugs and Synthesizing

Patches

MUSE

social
delta

Fixr: Proposed System

Code

interaction

commit

fix

patch

repair
specification

probabilistic repair
specification

semantic
delta

Deltar: Inferring Semantic
Deltas and Repair

Specifications

Prepair: Deriving
Probabilistic

Repair Specifications

Harvestr: Social Validation
and Mining of Fixes

Patchr: Detecting Potential
Bugs and Synthesizing

Patches

MUSE

social
delta

Fixr: Proposed System

Code

interaction

commit

fix

patch

repair
specification

probabilistic repair
specification

semantic
delta

Deltar: Inferring Semantic
Deltas and Repair

Specifications

Prepair: Deriving
Probabilistic

Repair Specifications

Harvestr: Social Validation
and Mining of Fixes

Patchr: Detecting Potential
Bugs and Synthesizing

Patches

MUSE

social
delta

Goal: Create a positive feedback loop to
derive high-confidence repair specifications

Fixr: Proposed System

Code

interaction

commit

fix

patch

repair
specification

probabilistic repair
specification

semantic
delta

Deltar: Inferring Semantic
Deltas and Repair

Specifications

Prepair: Deriving
Probabilistic

Repair Specifications

Harvestr: Social Validation
and Mining of Fixes

Patchr: Detecting Potential
Bugs and Synthesizing

Patches

MUSE

social
delta

syntactic

statistical-semantic

semantic

social

Goal: Create a positive feedback loop to
derive high-confidence repair specifications

Fixr
Infrastructure

Fixr
Capabilities

Fixr
Data Modeling

Column Familes

ApplicationsSemantic Deltas …

PatchrDeltar Prepair Harvestr

Fixr

CassandraCassandraCassandraHadoop Solr

Repair Specifications

Code

interaction

commit

fix

patch

repair
specification

probabilistic repair
specification

semantic
delta

Deltar: Inferring Semantic
Deltas and Repair

Specifications

Prepair: Deriving
Probabilistic

Repair Specifications

Harvestr: Social Validation
and Mining of Fixes

Patchr: Detecting Potential
Bugs and Synthesizing

Patches

MUSE

social
delta

syntactic

statistical-semantic

semantic

social

Team

Code

interaction

commit

fix

patch

repair
specification

probabilistic repair
specification

semantic
delta

Deltar: Inferring Semantic
Deltas and Repair

Specifications

Prepair: Deriving
Probabilistic

Repair Specifications

Harvestr: Social Validation
and Mining of Fixes

Patchr: Detecting Potential
Bugs and Synthesizing

Patches

MUSE

social
delta

syntactic

statistical-semantic

semantic

social

symbolic
program analysis

numerical-probabilistic
program analysis

program synthesisuser-centered
big data analytics

software engineering
for big data

Tom Yeh Pavol Cerny

Sriram SankaranarayananBor-Yuh Evan Chang

Ken Anderson

Evaluation Questions

Evaluation Questions

• Iterative and incremental design and
evaluation of the Fixr loop

Evaluation Questions

• Iterative and incremental design and
evaluation of the Fixr loop

• Effectiveness of Bugfix Transfer: Given an
isolated bugfix, can we derive high-quality
repair specifications to lead to useful
patches?

Evaluation Questions

• Iterative and incremental design and
evaluation of the Fixr loop

• Effectiveness of Bugfix Transfer: Given an
isolated bugfix, can we derive high-quality
repair specifications to lead to useful
patches?

Deltar Prepair

Patchr

Evaluation Questions

• Iterative and incremental design and
evaluation of the Fixr loop

• Effectiveness of Bugfix Transfer: Given an
isolated bugfix, can we derive high-quality
repair specifications to lead to useful
patches?

• Effectiveness of Bugfix Seeding: Can we
isolate likely bugfixes from source
repositories?

Deltar Prepair

Patchr

Evaluation Questions

• Iterative and incremental design and
evaluation of the Fixr loop

• Effectiveness of Bugfix Transfer: Given an
isolated bugfix, can we derive high-quality
repair specifications to lead to useful
patches?

• Effectiveness of Bugfix Seeding: Can we
isolate likely bugfixes from source
repositories?

Deltar Prepair

Patchr

Deltar

Harvestr Patchr

www.cs.colorado.edu/~bec
pl.cs.colorado.edu

Prepair for Fixr

http://www.cs.colorado.edu/~bec
http://www.cs.colorado.edu/~bec

Deltar
Blackshear, Sam, Bor-Yuh Evan Chang, and Manu Sridharan. 2013. “Thresher: Precise Refutations for Heap Reachability.” In Proceedings of the 34th ACM SIGPLAN Conference on

Programming Language Design and Implementation, 275–86. PLDI ’13. ACM. doi:10.1145/2491956.2462186.
Coughlin, Devin, and Bor-Yuh Evan Chang. 2014. “Fissile Type Analysis: Modular Checking of Almost Everywhere Invariants.” In Proceedings of the 41st ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, 73–85. POPL ’14. ACM. doi:10.1145/2535838.2535855.

Prepair
Ivancic, F., G. Balakrishnan, A. Gupta, S. Sankaranarayanan, N. Maeda, H. Tokuoka, T. Imoto, and Y. Miyazaki. 2011. “DC2: A Framework for Scalable, Scope-Bounded Software

Verification.” In 2011 26th IEEE/ACM International Conference on Automated Software Engineering (ASE), 133–42. doi:10.1109/ASE.2011.6100046.
Sankaranarayanan, Sriram, Aleksandar Chakarov, and Sumit Gulwani. 2013. “Static Analysis for Probabilistic Programs: Inferring Whole Program Properties from Finitely Many

Paths.” In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation, 447–58. PLDI ’13. ACM. doi:10.1145/2491956.2462179.
Sankaranarayanan, Sriram, Swarat Chaudhuri, Franjo Ivančić, and Aarti Gupta. 2008. “Dynamic Inference of Likely Data Preconditions over Predicates by Tree Learning.” In

Proceedings of the 2008 International Symposium on Software Testing and Analysis, 295–306. ISSTA ’08. ACM. doi:10.1145/1390630.1390666.
Sankaranarayanan, Sriram, Franjo Ivančić, and Aarti Gupta. 2008. “Mining Library Specifications Using Inductive Logic Programming.” In Proceedings of the 30th International

Conference on Software Engineering, 131–40. ICSE ’08. ACM. doi:10.1145/1368088.1368107.

Patchr
Černý, Pavol, Krishnendu Chatterjee, Thomas A. Henzinger, Arjun Radhakrishna, and Rohit Singh. 2011. “Quantitative Synthesis for Concurrent Programs.” In Computer Aided

Verification, 243–59. Lecture Notes in Computer Science 6806. Springer Berlin Heidelberg.
Černý, Pavol, Thomas A. Henzinger, Arjun Radhakrishna, Leonid Ryzhyk, and Thorsten Tarrach. 2013. “Efficient Synthesis for Concurrency by Semantics-Preserving

Transformations.” In Computer Aided Verification, 951–67. Lecture Notes in Computer Science 8044. Springer Berlin Heidelberg.

Harvestr
Alharbi, Khalid, Sam Blackshear, Emily Kowalczyk, Atif M. Memon, Bor-Yuh Evan Chang, and Tom Yeh. 2014. “Android Apps Consistency Scrutinized.” In CHI ’14 Extended

Abstracts on Human Factors in Computing Systems, 2347–52. CHI EA ’14. ACM. doi:10.1145/2559206.2581352.
Yeh, Tom, Brandyn White, Jose San Pedro, Boriz Katz, and Larry S. Davis. 2011. “A Case for Query by Image and Text Content: Searching Computer Help Using Screenshots

and Keywords.” In Proceedings of the 20th International Conference on World Wide Web, 775–84. WWW ’11. ACM. doi:10.1145/1963405.1963513.

Fixr Database
Anderson, Kenneth Mark, Aaron Schram, Ali Alzabarah, and Leysia Palen. 2013. “Architectural Implications of Social Media Analytics in Support of Crisis Informatics Research.”

IEEE Data Eng. Bull. 36 (3): 13–20.
Schram, Aaron, and Kenneth M. Anderson. 2012. “MySQL to NoSQL: Data Modeling Challenges in Supporting Scalability.” In Proceedings of the 3rd Annual Conference on

Systems, Programming, and Applications: Software for Humanity, 191–202. SPLASH ’12. ACM. doi:10.1145/2384716.2384773.

Most Relevant References

