
Fissile Type Analysis:
Modular Checking of Almost

Everywhere Invariants

National Taiwan University 國⽴立臺灣⼤大學
August 1, 2014

Devin Coughlin
University of Colorado Boulder

Bor-Yuh Evan Chang 張博⾀聿
University of Colorado Boulder

Lab: Program analysis in the whole bug mitigation process

Lab: Program analysis in the whole bug mitigation process

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Lab: Program analysis in the whole bug mitigation process

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Manual
Triaging

Lab: Program analysis in the whole bug mitigation process

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Manual
Triaging

Lab: Program analysis in the whole bug mitigation process

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Manual
Triaging

Thresher: Assisting Triage by
Refutation Analysis

[Blackshear+ PLDI’13, Blackshear+ SAS’11, under review]

Lab: Program analysis in the whole bug mitigation process

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Program-
ming

Manual
Triaging

Thresher: Assisting Triage by
Refutation Analysis

[Blackshear+ PLDI’13, Blackshear+ SAS’11, under review]

Lab: Program analysis in the whole bug mitigation process

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Program-
ming

Manual
Triaging

Thresher: Assisting Triage by
Refutation Analysis

[Blackshear+ PLDI’13, Blackshear+ SAS’11, under review]

Enforcement
Windows: Measuring

Bug Avoidance
[Coughlin+ ISSTA’12]

Lab: Program analysis in the whole bug mitigation process

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Program-
ming

Manual
Triaging

Spec-
ification

Thresher: Assisting Triage by
Refutation Analysis

[Blackshear+ PLDI’13, Blackshear+ SAS’11, under review]

Enforcement
Windows: Measuring

Bug Avoidance
[Coughlin+ ISSTA’12]

Lab: Program analysis in the whole bug mitigation process

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Program-
ming

Manual
Triaging

Spec-
ification

Thresher: Assisting Triage by
Refutation Analysis

[Blackshear+ PLDI’13, Blackshear+ SAS’11, under review]

Enforcement
Windows: Measuring

Bug Avoidance
[Coughlin+ ISSTA’12]

Fissile Types:
Checking Almost

Everywhere
Invariants

[Coughlin+ POPL’14, in prep]

Lab: Program analysis in the whole bug mitigation process

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Program-
ming

Manual
Triaging

RunnerTest
Input

Test
Output

Spec-
ification

Thresher: Assisting Triage by
Refutation Analysis

[Blackshear+ PLDI’13, Blackshear+ SAS’11, under review]

Enforcement
Windows: Measuring

Bug Avoidance
[Coughlin+ ISSTA’12]

Fissile Types:
Checking Almost

Everywhere
Invariants

[Coughlin+ POPL’14, in prep]

Lab: Program analysis in the whole bug mitigation process

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Program-
ming

Manual
Triaging

RunnerTest
Input

Test
Output

Spec-
ification

Thresher: Assisting Triage by
Refutation Analysis

[Blackshear+ PLDI’13, Blackshear+ SAS’11, under review]

Enforcement
Windows: Measuring

Bug Avoidance
[Coughlin+ ISSTA’12]

Fissile Types:
Checking Almost

Everywhere
Invariants

[Coughlin+ POPL’14, in prep]

Static Incrementalization of
Data Structure Checks

[under review]

Lab: Program analysis in the whole bug mitigation process

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Program-
ming

Manual
Triaging

RunnerTest
Input

Test
Output

Spec-
ification

Thresher: Assisting Triage by
Refutation Analysis

[Blackshear+ PLDI’13, Blackshear+ SAS’11, under review]

Enforcement
Windows: Measuring

Bug Avoidance
[Coughlin+ ISSTA’12]

Fissile Types:
Checking Almost

Everywhere
Invariants

[Coughlin+ POPL’14, in prep]

Jsana: Abstract Domain Combinators
for Dynamic Languages

[Cox+ ECOOP’13, Cox+ SAS’14, under review]

Static Incrementalization of
Data Structure Checks

[under review]

Lab: Program analysis in the whole bug mitigation process

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Program-
ming

Manual
Triaging

RunnerTest
Input

Test
Output

Spec-
ification

Thresher: Assisting Triage by
Refutation Analysis

[Blackshear+ PLDI’13, Blackshear+ SAS’11, under review]

Enforcement
Windows: Measuring

Bug Avoidance
[Coughlin+ ISSTA’12]

Fissile Types:
Checking Almost

Everywhere
Invariants

[Coughlin+ POPL’14, in prep]

Jsana: Abstract Domain Combinators
for Dynamic Languages

[Cox+ ECOOP’13, Cox+ SAS’14, under review]

Static Incrementalization of
Data Structure Checks

[under review]

This Talk

Fissile Type Analysis:
Modular Checking of Almost

Everywhere Invariants

National Taiwan University 國⽴立臺灣⼤大學
August 1, 2014

Devin Coughlin
University of Colorado Boulder

Bor-Yuh Evan Chang 張博⾀聿
University of Colorado Boulder

Fissile Type Analysis:
Modular Checking of Almost

Everywhere Invariants

National Taiwan University 國⽴立臺灣⼤大學
August 1, 2014

Devin Coughlin
University of Colorado Boulder

Bor-Yuh Evan Chang 張博⾀聿
University of Colorado Boulder

Types and Separation Logic,
Better Together

How to type check
a program that is

almost well-
typed?

Specification system:
dependent-refinement types

In this talk

Example property of interest:
safety of reflective method calls

Reflective method call dispatches based on
runtime string value

class Callback
var sel : Str
var obj : Obj

def call()
this.obj.[this.sel]()

Reflective method call dispatches based on
runtime string value

class Callback
var sel : Str
var obj : Obj

def call()
this.obj.[this.sel]()

Calls method with name
(selector) stored in sel on

object stored in obj

Reflective method call dispatches based on
runtime string value

class Callback
var sel : Str
var obj : Obj

def call()
this.obj.[this.sel]()

Calls method with name
(selector) stored in sel on

object stored in obj

If sel held string
“notifyDidClick” would call
notifyDidClick() on obj.

Reflective method call dispatches based on
runtime string value

class Callback
var sel : Str
var obj : Obj

def call()
this.obj.[this.sel]()

Calls method with name
(selector) stored in sel on

object stored in obj

Run time error if obj does not
respond to sel — i.e., method does

not exist

Method Reflection and the Great Divide

Method Reflection and the Great Divide

object.[string]()

Method Reflection and the Great Divide

object.[string]()

reflective method call: dispatch based on run-time value (in string)

Method Reflection and the Great Divide

object.[string]()

reflective method call: dispatch based on run-time value (in string)

“static” folks “web 2.0” developers

Method Reflection and the Great Divide

object.[string]()

reflective method call: dispatch based on run-time value (in string)

“static” folks “web 2.0” developers

“Static” folks, like type system
designers, worry.

What gets called? What if object
has no method named by
string?

Method Reflection and the Great Divide

object.[string]()

reflective method call: dispatch based on run-time value (in string)

“static” folks “web 2.0” developers

“Static” folks, like type system
designers, worry.

What gets called? What if object
has no method named by
string?

“Web 2.0” developers think it’s
cool.

I can write flexible and compact
code, so I will take it over static
safety.

Method Reflection and the Great Divide

object.[string]()

reflective method call: dispatch based on run-time value (in string)

“static” folks “web 2.0” developers

“Static” folks, like type system
designers, worry.

What gets called? What if object
has no method named by
string?

“Web 2.0” developers think it’s
cool.

I can write flexible and compact
code, so I will take it over static
safety.

Bridge the divide to support both first-class
reflective method call and static checking

of reflection safety

class Callback
var sel : Str
var obj : Obj

def call()
this.obj.[this.sel]()

Ensure reflection safety with dependent-
refinement type expressing required
relationship

class Callback
var sel : Str
var obj : Obj

def call()
this.obj.[this.sel]()

Ensure reflection safety with dependent-
refinement type expressing required
relationship

| r2 sel

obj must “respond to” sel

class Callback
var sel : Str
var obj : Obj

def call()
this.obj.[this.sel]()

Ensure reflection safety with dependent-
refinement type expressing required
relationship

| r2 sel

obj must “respond to” sel

Shorthand for obj :: {⌫ : Obj | ⌫ r2 sel}

class Callback
var sel : Str
var obj : Obj

def call()
this.obj.[this.sel]()

Ensure reflection safety with dependent-
refinement type expressing required
relationship

| r2 sel

obj must “respond to” sel

Shorthand for obj :: {⌫ : Obj | ⌫ r2 sel}

Guarantees no
MethodNotFound error in

call()

class Iterator
var idx : Int
var buf : Obj[]

def get(): Obj
return this.buf[this.idx]

Similar relationship for array bounds
safety

| indexedBy idx

class Iterator
var idx : Int
var buf : Obj[]

def get(): Obj
return this.buf[this.idx]

Similar relationship for array bounds
safety

| indexedBy idx

idx must be a valid
index into buf

class Iterator
var idx : Int
var buf : Obj[]

def get(): Obj
return this.buf[this.idx]

Similar relationship for array bounds
safety

| indexedBy idx

idx must be a valid
index into buf

Guarantees no
“ArrayOutOfBounds”

error

class Iterator
var idx : Int
var buf : Obj[]

def get(): Obj
return this.buf[this.idx]

Similar relationship for array bounds
safety

| indexedBy idx

idx must be a valid
index into buf

These kinds of relationships are
important to many safety

properties

class Callback
var sel : Str
var obj : Obj | r2 sel

def update(s : Str, o : Obj | r2 s)
this.sel = s
this.obj = o

def call()
this.obj.[this.sel]()

Updating relationship causes type error

class Callback
var sel : Str
var obj : Obj | r2 sel

def update(s : Str, o : Obj | r2 s)
this.sel = s
this.obj = o

def call()
this.obj.[this.sel]()

Field type says: obj must
always respond to sel

Updating relationship causes type error

class Callback
var sel : Str
var obj : Obj | r2 sel

def update(s : Str, o : Obj | r2 s)
this.sel = s
this.obj = o

def call()
this.obj.[this.sel]()

 o guaranteed to
respond to s

Field type says: obj must
always respond to sel

Updating relationship causes type error

class Callback
var sel : Str
var obj : Obj | r2 sel

def update(s : Str, o : Obj | r2 s)
this.sel = s
this.obj = o

def call()
this.obj.[this.sel]()

 o guaranteed to
respond to s

Type error: old obj may
not respond to new sel

Field type says: obj must
always respond to sel

Updating relationship causes type error

class Callback
var sel : Str
var obj : Obj | r2 sel

def update(s : Str, o : Obj | r2 s)
this.sel = s
this.obj = o

def call()
this.obj.[this.sel]()

 o guaranteed to
respond to s

Type error: old obj may
not respond to new sel

False alarm: no runtime error

Field type says: obj must
always respond to sel

Updating relationship causes type error

| r2 s

class Callback
var sel : Str
var obj : Obj

def update(s : Str, o : Obj)
this.sel = s
this.obj = o

def call()
this.obj.[this.sel]()

Two styles of reasoning to determine false
alarm

| r2 sel

| r2 s

class Callback
var sel : Str
var obj : Obj

def update(s : Str, o : Obj)
this.sel = s
this.obj = o

def call()
this.obj.[this.sel]()

Two styles of reasoning to determine false
alarm

Reasoning by global
invariant: call safe if
relationship holds

| r2 sel

| r2 s

class Callback
var sel : Str
var obj : Obj

def update(s : Str, o : Obj)
this.sel = s
this.obj = o

def call()
this.obj.[this.sel]()

Two styles of reasoning to determine false
alarm

Reasoning by global
invariant: call safe if
relationship holds

| r2 sel

| r2 s

class Callback
var sel : Str
var obj : Obj

def update(s : Str, o : Obj)
this.sel = s
this.obj = o

def call()
this.obj.[this.sel]()

Two styles of reasoning to determine false
alarm

Reasoning by global
invariant: call safe if
relationship holds

| r2 selReasoning about effects of
imperative updates

| r2 s

class Callback
var sel : Str
var obj : Obj

def update(s : Str, o : Obj)
this.sel = s
this.obj = o

def call()
this.obj.[this.sel]()

Two styles of reasoning to determine false
alarm

Reasoning by global
invariant: call safe if
relationship holds

Relationship violated

| r2 selReasoning about effects of
imperative updates

| r2 s

class Callback
var sel : Str
var obj : Obj

def update(s : Str, o : Obj)
this.sel = s
this.obj = o

def call()
this.obj.[this.sel]()

Two styles of reasoning to determine false
alarm

Reasoning by global
invariant: call safe if
relationship holds

Relationship violated

Relationship restored

| r2 selReasoning about effects of
imperative updates

Idea: Selectively
alternate between
reasoning styles

in verification

Fissile Type Analysis combines two styles
of reasoning

Automated reasoning
about global
invariants

Fissile Type Analysis combines two styles
of reasoning

Automated reasoning
about global
invariants

Flow-
Insensitive Type

Systems

� ` · · ·

Fissile Type Analysis combines two styles
of reasoning

Automated reasoning
about global
invariants

Automated reasoning
about execution

Flow-
Insensitive Type

Systems

� ` · · ·

Fissile Type Analysis combines two styles
of reasoning

Automated reasoning
about global
invariants

Automated reasoning
about execution

Flow-
Insensitive Type

Systems

� ` · · ·

Abstract
Interpretation/
Flow Analysis/
Model Checking

�(·) = · · ·

Fissile Type Analysis combines two styles
of reasoning

Verification of almost-everywhere invariants
with intertwined type and flow analysis

Verification of almost-everywhere invariants
with intertwined type and flow analysis

types violated
type analysis

Switch to symbolic
analysis when global

type invariant violated

Verification of almost-everywhere invariants
with intertwined type and flow analysis

symbolic flow
analysis

types violated
type analysis

types restored

Switch to symbolic
analysis when global

type invariant violated

Back to types when
invariant restored

Verification of almost-everywhere invariants
with intertwined type and flow analysis

symbolic flow
analysis

types violated
type analysis

types restored
type analysis

types violated

Switch to symbolic
analysis when global

type invariant violated

Back to types when
invariant restored

Verification of almost-everywhere invariants
with intertwined type and flow analysis

symbolic flow
analysis

types violated
type analysis

types restored
type analysis

symbolic flow
analysis

types violated

types restored

Switch to symbolic
analysis when global

type invariant violated

Back to types when
invariant restored

Verification of almost-everywhere invariants
with intertwined type and flow analysis

symbolic flow
analysis

types violated
type analysis

type analysis

types restored
type analysis

symbolic flow
analysis

types violated

types restored

Switch to symbolic
analysis when global

type invariant violated

Back to types when
invariant restored

Verification of almost-everywhere invariants
with intertwined type and flow analysis

symbolic flow
analysis

types violated
type analysis

type analysis

types restored
type analysis

symbolic flow
analysis

types violated

types restored

Switch to symbolic
analysis when global

type invariant violated

Not changing type analysis at all:
just when applied

Back to types when
invariant restored

Verification of almost-everywhere invariants
with intertwined type and flow analysis

symbolic flow
analysis

types violated
type analysis

type analysis

types restored
type analysis

symbolic flow
analysis

types violated

types restored

Effective when global
type invariant holds

most of the time

Verification of almost-everywhere invariants
with intertwined type and flow analysis

symbolic flow
analysis

types violated
type analysis

type analysis

types restored
type analysis

symbolic flow
analysis

types violated

types restored

Effective when global
type invariant holds

most of the time

•Relationship updates

Verification of almost-everywhere invariants
with intertwined type and flow analysis

symbolic flow
analysis

types violated
type analysis

type analysis

types restored
type analysis

symbolic flow
analysis

types violated

types restored

Effective when global
type invariant holds

most of the time

•Relationship updates

•Occurrence typing

Verification of almost-everywhere invariants
with intertwined type and flow analysis

symbolic flow
analysis

types violated
type analysis

type analysis

types restored
type analysis

symbolic flow
analysis

types violated

types restored

Effective when global
type invariant holds

most of the time

•Relationship updates

•Occurrence typing

•Tagged unions

Play to the strengths of each intertwined
analysis

Play to the strengths of each intertwined
analysis

Flow-Insensitive Types
Easy to specify global invariants
Fast
Natural for modular reasoning
Good error reporting

Play to the strengths of each intertwined
analysis

Flow-Insensitive Types
Easy to specify global invariants
Fast
Natural for modular reasoning
Good error reporting

Symbolic Flow Analysis
Natural for local reasoning
about heap mutation
Precise
Can be disjunctive/path-
sensitive

Play to the strengths of each intertwined
analysis

Flow-Insensitive Types
Easy to specify global invariants
Fast
Natural for modular reasoning
Good error reporting

Symbolic Flow Analysis
Natural for local reasoning
about heap mutation
Precise
Can be disjunctive/path-
sensitive

flow-sensitive
typing?
ownership types?
alias types?
permissions?
effects?

Play to the strengths of each intertwined
analysis

Flow-Insensitive Types
Easy to specify global invariants
Fast
Natural for modular reasoning
Good error reporting

Symbolic Flow Analysis
Natural for local reasoning
about heap mutation
Precise
Can be disjunctive/path-
sensitive

flow-sensitive
typing?
ownership types?
alias types?
permissions?
effects?

Goal: keep types as
simple as possible

Play to the strengths of each intertwined
analysis

Flow-Insensitive Types
Easy to specify global invariants
Fast
Natural for modular reasoning
Good error reporting

Symbolic Flow Analysis
Natural for local reasoning
about heap mutation
Precise
Can be disjunctive/path-
sensitive

flow-sensitive
typing?
ownership types?
alias types?
permissions?
effects?

Goal: keep types as
simple as possible

Complexity lies in handoff
between analyses and in symbolic

analysis

Key Contributions
1 Translate type invariant into

symbolic state via
“symbolization” of type
environment

type
analysis

symbolic
flow

analysis

type
analysis

2 Leverage heap type invariant
during symbolic analysis via
type-consistent
materialization and
summarization

Key Contributions
1 Translate type invariant into

symbolic state via
“symbolization” of type
environment

type
analysis

symbolic
flow

analysis

type
analysis

2 Leverage heap type invariant
during symbolic analysis via
type-consistent
materialization and
summarization

Reason precisely only when type
invariant violated

Key Contributions
1 Translate type invariant into

symbolic state via
“symbolization” of type
environment

type
analysis

symbolic
flow

analysis

type
analysis

2 Leverage heap type invariant
during symbolic analysis via
type-consistent
materialization and
summarization

Reason precisely only when type
invariant violated

Reason precisely only for locations
where type invariant violated

Key Contributions
1 Translate type invariant into

symbolic state via
“symbolization” of type
environment

type
analysis

symbolic
flow

analysis

type
analysis

2 Leverage heap type invariant
during symbolic analysis via
type-consistent
materialization and
summarization

1

Reason precisely only when type
invariant violated

Reason precisely only for locations
where type invariant violated

Symbolization splits a type environment into
facts about values and storage for those
values

Symbolization splits a type environment into
facts about values and storage for those
values

def update(s:Str, o:Obj | r2 s)
this.sel = s
this.obj = o

Symbolization splits a type environment into
facts about values and storage for those
values

def update(s:Str, o:Obj | r2 s)
this.sel = s
this.obj = o

✘

Symbolization splits a type environment into
facts about values and storage for those
values

def update(s:Str, o:Obj | r2 s)
this.sel = s
this.obj = o

Type environment

� this : Callback

s : Str
o : Obj | r2 s

Maps local variables
to dependent types

Refinements
refer to

variables

Symbolization splits a type environment into
facts about values and storage for those
values

def update(s:Str, o:Obj | r2 s)
this.sel = s
this.obj = o

Type environment

symbolize� this : Callback

s : Str
o : Obj | r2 s

Symbolic state

this : et
o : eo
s : es

eo : Obj | r2 es
es : Str

et : Callback
e�
eE

Maps local variables
to dependent types

Refinements
refer to

variables

Symbolization splits a type environment into
facts about values and storage for those
values

def update(s:Str, o:Obj | r2 s)
this.sel = s
this.obj = o

Type environment

symbolize� this : Callback

s : Str
o : Obj | r2 s

Symbolic state

this : et
o : eo
s : es

eo : Obj | r2 es
es : Str

et : Callback
e�
eE

Maps local variables
to dependent types

Maps local
variables to

symbolic values

Refinements
refer to

variables

Symbolization splits a type environment into
facts about values and storage for those
values

def update(s:Str, o:Obj | r2 s)
this.sel = s
this.obj = o

Type environment

symbolize� this : Callback

s : Str
o : Obj | r2 s

Symbolic state

this : et
o : eo
s : es

eo : Obj | r2 es
es : Str

et : Callback
e�
eE

Maps local variables
to dependent types

Maps local
variables to

symbolic values

Maps symbolic values
to dependent types
lifted to symbolic

values (symbolic facts)

Refinements
refer to

variables

Symbolization splits a type environment into
facts about values and storage for those
values

def update(s:Str, o:Obj | r2 s)
this.sel = s
this.obj = o

Type environment

symbolize� this : Callback

s : Str
o : Obj | r2 s

Symbolic state

this : et
o : eo
s : es

eo : Obj | r2 es
es : Str

et : Callback
e�
eE

Maps local variables
to dependent types

Maps local
variables to

symbolic values

Maps symbolic values
to dependent types
lifted to symbolic

values (symbolic facts)

Refinements
refer to
values

Refinements
refer to

variables

Symbolization splits a type environment into
facts about values and storage for those
values

def update(s:Str, o:Obj | r2 s)
this.sel = s
this.obj = o

� this : Callback

s : Str
o : Obj | r2 s

def update(s:Str, o:Obj | r2 s)
this.sel = s
this.obj = o

Symbolization allows local variables to hold
values inconsistent with declared types

heap

this

o

s

this.obj this.sel

� this : Callback

s : Str
o : Obj | r2 s

def update(s:Str, o:Obj | r2 s)
this.sel = s
this.obj = o

Symbolization allows local variables to hold
values inconsistent with declared types

A type environment
constrains local

variables

heap

this

o

s

this.obj this.sel

� this : Callback

s : Str
o : Obj | r2 s

def update(s:Str, o:Obj | r2 s)
this.sel = s
this.obj = o

Symbolization allows local variables to hold
values inconsistent with declared types

A type environment
constrains local

variables

heap

this

o

s

this.obj this.sel

But also constrains the reachable heap to
be type-consistent: fields must conform

to declared types

� this : Callback

s : Str
o : Obj | r2 s

def update(s:Str, o:Obj | r2 s)
this.sel = s
this.obj = o

Symbolization allows local variables to hold
values inconsistent with declared types

A type environment
constrains local

variables

heap

this

o

s

this.obj this.sel

But also constrains the reachable heap to
be type-consistent: fields must conform

to declared types

This picture captures the fully
type-consistent concrete state

� this : Callback

s : Str
o : Obj | r2 s

def update(s:Str, o:Obj | r2 s)
this.sel = s
this.obj = o

Symbolization allows local variables to hold
values inconsistent with declared types

symbolize eE e�
heap

this.obj this.sel

s

o

this

� this : Callback

s : Str
o : Obj | r2 s

def update(s:Str, o:Obj | r2 s)
this.sel = s
this.obj = o

Symbolization allows local variables to hold
values inconsistent with declared types

symbolize eE e�
heap

this.obj this.sel

s

o

this

Symbolic environment
allows, e.g., int in s

� this : Callback

s : Str
o : Obj | r2 s

def update(s:Str, o:Obj | r2 s)
this.sel = s
this.obj = o

Symbolization allows local variables to hold
values inconsistent with declared types

symbolize eE e�
heap

this.obj this.sel

s

o

this

Symbolic environment
allows, e.g., int in s

Immediately type-inconsistent: value stored
without dereferences violates a type constraint

� this : Callback

s : Str
o : Obj | r2 s

def update(s:Str, o:Obj | r2 s)
this.sel = s
this.obj = o

Symbolization allows local variables to hold
values inconsistent with declared types

symbolize eE e�

Symbolic environment
allows, e.g., int in s

s heap
this.obj this.selo

this

Immediately type-inconsistent: value stored
without dereferences violates a type constraint

� this : Callback

s : Str
o : Obj | r2 s

def update(s:Str, o:Obj | r2 s)
this.sel = s
this.obj = o

Symbolization allows local variables to hold
values inconsistent with declared types

symbolize eE e�

Symbolic environment
allows, e.g., int in s

s heap
this.obj this.selo

this

Immediately type-inconsistent: value stored
without dereferences violates a type constraint

Grey indicates storage that is
not immediately type-

inconsistent

�

Type
environment

Symbolic
fact map

symbolize
this : Callback

s : Str
o : Obj | r2 s eo : Obj | r2 es

es : Str

et : Callback
e�

Symbolization unpacks local cells, but
symbolic facts about values still constrain
the heap

heap
this.obj this.sel

s

o

this

�

Type
environment

Symbolic
fact map

symbolize
this : Callback

s : Str
o : Obj | r2 s eo : Obj | r2 es

es : Str

et : Callback
e�

Base types same
on both sides

Symbolization unpacks local cells, but
symbolic facts about values still constrain
the heap

heap
this.obj this.sel

s

o

this

�

Type
environment

Symbolic
fact map

symbolize
this : Callback

s : Str
o : Obj | r2 s eo : Obj | r2 es

es : Str

et : Callback
e�

Callback , {sel : Str, obj : Obj | r2 sel}

Base types same
on both sides

Symbolization unpacks local cells, but
symbolic facts about values still constrain
the heap

heap
this.obj this.sel

s

o

this

Base type field
refinements still
refer to fields

Summarize heap locations that are not
immediately type-inconsistent with okheap

Concrete State

Symbolic Heap

eH okheap

def update(s:Str, o:Obj | r2 s)
this.sel = s
this.obj = o

heap
this.obj this.sel

s

o

this

Summarize heap locations that are not
immediately type-inconsistent with okheap

Concrete State

Symbolic Heap

eH okheap

def update(s:Str, o:Obj | r2 s)
this.sel = s
this.obj = o

Formula literal: concretization
includes every subheap that is not
immediately type inconsistent

heap
this.obj this.sel

s

o

this

Summarize heap locations that are not
immediately type-inconsistent with okheap

Concrete State

Symbolic Heap

eH okheap

def update(s:Str, o:Obj | r2 s)
this.sel = s
this.obj = o

Describes storage without
explicitly enumerating it

Formula literal: concretization
includes every subheap that is not
immediately type inconsistent

heap
this.obj this.sel

s

o

this

Summarize heap locations that are not
immediately type-inconsistent with okheap

Concrete State

Symbolic Heap

eH okheap

def update(s:Str, o:Obj | r2 s)
this.sel = s
this.obj = o

Describes storage without
explicitly enumerating it

Formula literal: concretization
includes every subheap that is not
immediately type inconsistent

heap
this.obj this.sel

s

o

this

Immediately after switch, type
invariants still hold so okheap

represents entire heap

Key Contributions
1 Translate type invariant into

symbolic state via
“symbolization” of type
environment

type
analysis

symbolic
flow

analysis

type
analysis

2 Leverage heap type invariant
during symbolic analysis via
type-consistent
materialization and
summarization

1

Key Contributions
1 Translate type invariant into

symbolic state via
“symbolization” of type
environment

type
analysis

symbolic
flow

analysis

type
analysis

2 Leverage heap type invariant
during symbolic analysis via
type-consistent
materialization and
summarization

2

Leverage heap type invariant via type-
consistent materialization

Concrete State

Symbolic State

eH okheap

def update(s:Str, o:Obj | r2 s)
this.sel = s
this.obj = o

heap
this.obj this.sel

s

o

this

Leverage heap type invariant via type-
consistent materialization

Concrete State

Symbolic State

eH okheap

def update(s:Str, o:Obj | r2 s)
this.sel = s
this.obj = o

fsel f
obj

⇤ g
this 7! {sel 7! ⇤ obj 7! }

Materialize onto standard
separation-logic explicit heap

heap
this.obj this.sel

s

o

this

Leverage heap type invariant via type-
consistent materialization

Concrete State

Symbolic State

eH okheap

def update(s:Str, o:Obj | r2 s)
this.sel = s
this.obj = o

fsel f
obj

⇤ g
this 7! {sel 7! ⇤ obj 7! }

Materialize onto standard
separation-logic explicit heap

Must-alias and disalias guarantee
requires case split on materialization

heap
this.obj this.sel

s

o

this

Leverage heap type invariant via type-
consistent materialization

Concrete State

Symbolic State

eH okheap

def update(s:Str, o:Obj | r2 s)
this.sel = s
this.obj = o

fsel f
obj

⇤ g
this 7! {sel 7! ⇤ obj 7! }

Materialize onto standard
separation-logic explicit heap

Must-alias and disalias guarantee
requires case split on materialization

Materialized storage
guaranteed to be not
immediately type-

inconsistent

heap
this.obj this.sel

s

o

this

Leverage heap type invariant via type-
consistent materialization

Concrete State

Symbolic State

eH okheap

def update(s:Str, o:Obj | r2 s)
this.sel = s
this.obj = o

fsel f
obj

⇤ g
this 7! {sel 7! ⇤ obj 7! }

Materialize onto standard
separation-logic explicit heap

Must-alias and disalias guarantee
requires case split on materialization

Materialized storage
guaranteed to be not
immediately type-

inconsistent

Value stored in obj
responds to value

stored in sel

heap
this.obj this.sel

s

o

this

Leverage heap type invariant via type-
consistent materialization

Concrete State

Symbolic State

eH okheap

def update(s:Str, o:Obj | r2 s)
this.sel = s
this.obj = o

fsel f
obj

⇤ g
this 7! {sel 7! ⇤ obj 7! }

Materialize onto standard
separation-logic explicit heap

Must-alias and disalias guarantee
requires case split on materialization

Materialized storage
guaranteed to be not
immediately type-

inconsistent

Value stored in obj
responds to value

stored in sel

heap
this.obj this.sel

s

o

this

Represent
materialized
storage with

Leverage heap type invariant via type-
consistent materialization

Concrete State

Symbolic State

eH okheap

def update(s:Str, o:Obj | r2 s)
this.sel = s
this.obj = o

fsel f
obj

⇤ g
this 7! {sel 7! ⇤ obj 7! }

Materialize onto standard
separation-logic explicit heap

Must-alias and disalias guarantee
requires case split on materialization

Materialized storage
guaranteed to be not
immediately type-

inconsistent

Value stored in obj
responds to value

stored in sel

heap
this.obj this.sel

s

o

this

Analysis can assume that type invariant
initially holds on all materialized

storage

heap
this.obj this.sel

s

o

this

Strong updates on materialized storage to
detect invariant restoration

Concrete State

Symbolic State

eH okheap

def update(s:Str, o:Obj | r2 s)
this.sel = s
this.obj = o

fsel f
obj

⇤ g
this 7! {sel 7! ⇤ obj 7! }

Strong updates on materialized storage to
detect invariant restoration

Concrete State

Symbolic State

eH okheap

def update(s:Str, o:Obj | r2 s)
this.sel = s
this.obj = o

f
obj

⇤ g
this 7! {sel 7! ⇤ obj 7! }es

heap
this.obj this.sel

s

o

this

Strong updates on materialized storage to
detect invariant restoration

Concrete State

Symbolic State

eH okheap

def update(s:Str, o:Obj | r2 s)
this.sel = s
this.obj = o

f
obj

⇤ g
this 7! {sel 7! ⇤ obj 7! }es

heap
this.obj this.sel

s

o

this

Type invariant violated

Strong updates on materialized storage to
detect invariant restoration

Concrete State

Symbolic State

eH okheap

def update(s:Str, o:Obj | r2 s)
this.sel = s
this.obj = o

f
obj

⇤ g
this 7! {sel 7! ⇤ obj 7! }es

heap
this.obj this.sel

s

o

this

Type invariant violated
Surprising: can soundly permit pointers

in and out of the region that is not
immediately type-inconsistent

Strong updates on materialized storage to
detect invariant restoration

Concrete State

Symbolic State

eH okheap

def update(s:Str, o:Obj | r2 s)
this.sel = s
this.obj = o

⇤ g
this 7! {sel 7! ⇤ obj 7! }eoes

heap
this.obj this.sel

s

o

this

Strong updates on materialized storage to
detect invariant restoration

Concrete State

Symbolic State

eH okheap

def update(s:Str, o:Obj | r2 s)
this.sel = s
this.obj = o

⇤ g
this 7! {sel 7! ⇤ obj 7! }eoes

heap
this.obj this.sel

s

o

this

No longer immediately
type-inconsistent

Safely summarize storage that is not
immediately type inconsistent

Concrete State

Symbolic State

eH okheap

def update(s:Str, o:Obj | r2 s)
this.sel = s
this.obj = o

⇤ g
this 7! {sel 7! ⇤ obj 7! }eoes

heap
this.obj this.sel

s

o

this

Safely summarize storage that is not
immediately type inconsistent

Concrete State

Symbolic State

eH okheap

def update(s:Str, o:Obj | r2 s)
this.sel = s
this.obj = o

heap
this.obj this.sel

s

o

this

Safely summarize storage that is not
immediately type inconsistent

Concrete State

Symbolic State

eH okheap

def update(s:Str, o:Obj | r2 s)
this.sel = s
this.obj = o

Only need to reason precisely about
part of heap where invariant broken,

so helps manage alias explosion

heap
this.obj this.sel

s

o

this

Safely summarize storage that is not
immediately type inconsistent

Concrete State

Symbolic State

eH okheap

def update(s:Str, o:Obj | r2 s)
this.sel = s
this.obj = o

Only need to reason precisely about
part of heap where invariant broken,

so helps manage alias explosion

heap
this.obj this.sel

s

o

this

Entire heap is type
consistent so safe to

return to type checking

Safely summarize storage that is not
immediately type inconsistent

Concrete State

Symbolic State

eH okheap

def update(s:Str, o:Obj | r2 s)
this.sel = s
this.obj = o

Only need to reason precisely about
part of heap where invariant broken,

so helps manage alias explosion

heap

this

o

s

this.obj this.sel

Entire heap is type
consistent so safe to

return to type checking

Key Contributions
1 Translate type invariant into

symbolic state via
“symbolization” of type
environment

type
analysis

symbolic
flow

analysis

type
analysis

2 Leverage heap type invariant
during symbolic analysis via
type-consistent
materialization and
summarization

2

Key Contributions
1 Translate type invariant into

symbolic state via
“symbolization” of type
environment

type
analysis

symbolic
flow

analysis

type
analysis

2 Leverage heap type invariant
during symbolic analysis via
type-consistent
materialization and
summarization

Fissile Type Analysis is sound

Theorem (Soundness of Handoff).
The entire state is type-consistent iff all locations are not
immediately type-inconsistent.

Fissile Type Analysis is sound

heap

this

o

s

this.obj this.sel

heap
this.obj this.sel

s

o

this

Theorem (Soundness of Handoff).
The entire state is type-consistent iff all locations are not
immediately type-inconsistent.

Theorem (Soundness of Materialization/Summarization).
Storage that is not immediately type-inconsistent can be
safely materialized and summarized into okheap.

Fissile Type Analysis is sound

heap

this

o

s

this.obj this.sel

heap
this.obj this.sel

s

o

this

heap
this.obj this.sel

s

o

this

heap
this.obj this.sel

s

o

this

Precision: What is improvement over
flow-insensitive checking alone?

Cost: What is the cost of analysis in
running time?

Evaluation
Analysis mechanics: How often is
symbolic reasoning required?

9 Objective-C benchmarks

Case Study: Reflection in
Objective-C

76 r2 annotations on system libraries

6 libraries and 3 applications

136 annotations on benchmark code

Manual type annotations

1,000 to 176,000 lines of code

Plugin for clang static analyzer in C++

Prototype analysis implementation

9 Objective-C benchmarks

Case Study: Reflection in
Objective-C

76 r2 annotations on system libraries

6 libraries and 3 applications

136 annotations on benchmark code

Manual type annotations

1,000 to 176,000 lines of code

Plugin for clang static analyzer in C++

Prototype analysis implementation

Including Skim,
Adium, and
OmniGraffle

benchmark

size

(loc) symbolic
sections

maximum
materializations

OAUTH

SCRECORDER

ZIPKIT

SPARKLE

ASIHTTPREQUEST

OMNIFRAMEWORKS

VIENNA

SKIM

ADIUM

1248 7 1

2716 2 2

3301 0 0

5289 3 1

14620 59 2

160769 7 1

37327 28 2

60211 0 0

176629 16 1

combined 461080 125 2

Analysis mechanics

benchmark

size

(loc) symbolic
sections

maximum
materializations

OAUTH

SCRECORDER

ZIPKIT

SPARKLE

ASIHTTPREQUEST

OMNIFRAMEWORKS

VIENNA

SKIM

ADIUM

1248 7 1

2716 2 2

3301 0 0

5289 3 1

14620 59 2

160769 7 1

37327 28 2

60211 0 0

176629 16 1

combined 461080 125 2

Analysis mechanics

Number of successful
switches to symbolic
analysis and back

benchmark

size

(loc) symbolic
sections

maximum
materializations

OAUTH

SCRECORDER

ZIPKIT

SPARKLE

ASIHTTPREQUEST

OMNIFRAMEWORKS

VIENNA

SKIM

ADIUM

1248 7 1

2716 2 2

3301 0 0

5289 3 1

14620 59 2

160769 7 1

37327 28 2

60211 0 0

176629 16 1

combined 461080 125 2

Analysis mechanics

A significant number of switches:
Approach successfully handles when developers
break and restore global invariants

Number of successful
switches to symbolic
analysis and back

benchmark

size

(loc) symbolic
sections

maximum
materializations

OAUTH

SCRECORDER

ZIPKIT

SPARKLE

ASIHTTPREQUEST

OMNIFRAMEWORKS

VIENNA

SKIM

ADIUM

1248 7 1

2716 2 2

3301 0 0

5289 3 1

14620 59 2

160769 7 1

37327 28 2

60211 0 0

176629 16 1

combined 461080 125 2

Analysis mechanics

Maximum number of
simultaneous

materialized storage
locations

A significant number of switches:
Approach successfully handles when developers
break and restore global invariants

benchmark

size

(loc) symbolic
sections

maximum
materializations

OAUTH

SCRECORDER

ZIPKIT

SPARKLE

ASIHTTPREQUEST

OMNIFRAMEWORKS

VIENNA

SKIM

ADIUM

1248 7 1

2716 2 2

3301 0 0

5289 3 1

14620 59 2

160769 7 1

37327 28 2

60211 0 0

176629 16 1

combined 461080 125 2

Analysis mechanics

Maximum number of
simultaneous

materialized storage
locations

A significant number of switches:
Approach successfully handles when developers
break and restore global invariants

At most 2 simultaneous materializations:
Aliasing case splits will not blow up

benchmark

size

(loc) symbolic
sections

maximum
materializations

OAUTH

SCRECORDER

ZIPKIT

SPARKLE

ASIHTTPREQUEST

OMNIFRAMEWORKS

VIENNA

SKIM

ADIUM

1248 7 1

2716 2 2

3301 0 0

5289 3 1

14620 59 2

160769 7 1

37327 28 2

60211 0 0

176629 16 1

combined 461080 125 2

Analysis mechanics

A significant number of switches:
Approach successfully handles when developers
break and restore global invariants

At most 2 simultaneous materializations:
Aliasing case splits will not blow up

benchmark

size

(loc) symbolic
sections

maximum
materializations

OAUTH

SCRECORDER

ZIPKIT

SPARKLE

ASIHTTPREQUEST

OMNIFRAMEWORKS

VIENNA

SKIM

ADIUM

1248 7 1

2716 2 2

3301 0 0

5289 3 1

14620 59 2

160769 7 1

37327 28 2

60211 0 0

176629 16 1

combined 461080 125 2

Analysis mechanics

A significant number of switches:
Approach successfully handles when developers
break and restore global invariants

At most 2 simultaneous materializations:
Aliasing case splits will not blow up

Approaches limited to one-at-a-time
materialization not sufficient

benchmark

sizesize false alarmsfalse alarms

(loc) reflective call
sites

flow-
insensitiv

e

almost-
everywhere

OAUTH

SCRECORDER

ZIPKIT

SPARKLE

ASIHTTPREQUEST

OMNIFRAMEWORKS

VIENNA

SKIM

ADIUM

1248 7 7 2 (-71%)

2716 12 2 0 (-100%)

3301 28 0 0 (-)

5289 40 4 1 (-75%)

14620 68 50 10 (-80%)

160769 192 82 74 (-10%)

37327 186 59 38 (-36%)

60211 207 43 43 (-0%)

176629 587 87 70 (-20%)

combined 461080 1327 334 238 (-29%)

Precision

benchmark

sizesize false alarmsfalse alarms

(loc) reflective call
sites

flow-
insensitiv

e

almost-
everywhere

OAUTH

SCRECORDER

ZIPKIT

SPARKLE

ASIHTTPREQUEST

OMNIFRAMEWORKS

VIENNA

SKIM

ADIUM

1248 7 7 2 (-71%)

2716 12 2 0 (-100%)

3301 28 0 0 (-)

5289 40 4 1 (-75%)

14620 68 50 10 (-80%)

160769 192 82 74 (-10%)

37327 186 59 38 (-36%)

60211 207 43 43 (-0%)

176629 587 87 70 (-20%)

combined 461080 1327 334 238 (-29%)

Precision

Baseline: standard, flow-insensitive type analysis – no
switching

benchmark

sizesize false alarmsfalse alarms

(loc) reflective call
sites

flow-
insensitiv

e

almost-
everywhere

OAUTH

SCRECORDER

ZIPKIT

SPARKLE

ASIHTTPREQUEST

OMNIFRAMEWORKS

VIENNA

SKIM

ADIUM

1248 7 7 2 (-71%)

2716 12 2 0 (-100%)

3301 28 0 0 (-)

5289 40 4 1 (-75%)

14620 68 50 10 (-80%)

160769 192 82 74 (-10%)

37327 186 59 38 (-36%)

60211 207 43 43 (-0%)

176629 587 87 70 (-20%)

combined 461080 1327 334 238 (-29%)

Precision

Baseline: standard, flow-insensitive type analysis – no
switching

benchmark

sizesize false alarmsfalse alarms

(loc) reflective call
sites

flow-
insensitiv

e

almost-
everywhere

OAUTH

SCRECORDER

ZIPKIT

SPARKLE

ASIHTTPREQUEST

OMNIFRAMEWORKS

VIENNA

SKIM

ADIUM

1248 7 7 2 (-71%)

2716 12 2 0 (-100%)

3301 28 0 0 (-)

5289 40 4 1 (-75%)

14620 68 50 10 (-80%)

160769 192 82 74 (-10%)

37327 186 59 38 (-36%)

60211 207 43 43 (-0%)

176629 587 87 70 (-20%)

combined 461080 1327 334 238 (-29%)

Precision

Baseline: standard, flow-insensitive type analysis – no
switching

Almost everywhere techniques show
29% improvement in false alarms

benchmark

sizesize false alarmsfalse alarms

(loc) reflective call
sites

flow-
insensitiv

e

almost-
everywhere

OAUTH

SCRECORDER

ZIPKIT

SPARKLE

ASIHTTPREQUEST

OMNIFRAMEWORKS

VIENNA

SKIM

ADIUM

1248 7 7 2 (-71%)

2716 12 2 0 (-100%)

3301 28 0 0 (-)

5289 40 4 1 (-75%)

14620 68 50 10 (-80%)

160769 192 82 74 (-10%)

37327 186 59 38 (-36%)

60211 207 43 43 (-0%)

176629 587 87 70 (-20%)

combined 461080 1327 334 238 (-29%)

Precision

Baseline: standard, flow-insensitive type analysis – no
switching

Almost everywhere techniques show
29% improvement in false alarms

Also found a real
reflection bug in Vienna,
which we reported and

which was fixed

benchmark

size analysis timeanalysis time

(loc) Time Rate
(kloc/s)

OAUTH

SCRECORDER

ZIPKIT

SPARKLE

ASIHTTPREQUEST

OMNIFRAMEWORKS

VIENNA

SKIM

ADIUM

1248 0.24s 5.3

2716 0.28s 10.8

3301 0.10s 33.0

5289 0.67s 7.9

14620 0.50s 27.2

160769 4.25s 37.8

37327 2.79s 13.4

60211 2.49s 24.1

176629 8.79s 20.1

combined 461080 20.09s 23.0

Cost: Analysis time

benchmark

size analysis timeanalysis time

(loc) Time Rate
(kloc/s)

OAUTH

SCRECORDER

ZIPKIT

SPARKLE

ASIHTTPREQUEST

OMNIFRAMEWORKS

VIENNA

SKIM

ADIUM

1248 0.24s 5.3

2716 0.28s 10.8

3301 0.10s 33.0

5289 0.67s 7.9

14620 0.50s 27.2

160769 4.25s 37.8

37327 2.79s 13.4

60211 2.49s 24.1

176629 8.79s 20.1

combined 461080 20.09s 23.0

Includes analysis time
but not parsing, base

type checking

Cost: Analysis time

benchmark

size analysis timeanalysis time

(loc) Time Rate
(kloc/s)

OAUTH

SCRECORDER

ZIPKIT

SPARKLE

ASIHTTPREQUEST

OMNIFRAMEWORKS

VIENNA

SKIM

ADIUM

1248 0.24s 5.3

2716 0.28s 10.8

3301 0.10s 33.0

5289 0.67s 7.9

14620 0.50s 27.2

160769 4.25s 37.8

37327 2.79s 13.4

60211 2.49s 24.1

176629 8.79s 20.1

combined 461080 20.09s 23.0

Includes analysis time
but not parsing, base

type checking

Cost: Analysis time

Does not
include system

headers

benchmark

size analysis timeanalysis time

(loc) Time Rate
(kloc/s)

OAUTH

SCRECORDER

ZIPKIT

SPARKLE

ASIHTTPREQUEST

OMNIFRAMEWORKS

VIENNA

SKIM

ADIUM

1248 0.24s 5.3

2716 0.28s 10.8

3301 0.10s 33.0

5289 0.67s 7.9

14620 0.50s 27.2

160769 4.25s 37.8

37327 2.79s 13.4

60211 2.49s 24.1

176629 8.79s 20.1

combined 461080 20.09s 23.0

Cost: Analysis time

Fast: 5 to 38 kloc/s with most time spent
analyzing system headers

benchmark

size analysis timeanalysis time

(loc) Time Rate
(kloc/s)

OAUTH

SCRECORDER

ZIPKIT

SPARKLE

ASIHTTPREQUEST

OMNIFRAMEWORKS

VIENNA

SKIM

ADIUM

1248 0.24s 5.3

2716 0.28s 10.8

3301 0.10s 33.0

5289 0.67s 7.9

14620 0.50s 27.2

160769 4.25s 37.8

37327 2.79s 13.4

60211 2.49s 24.1

176629 8.79s 20.1

combined 461080 20.09s 23.0

Cost: Analysis time

Fast: 5 to 38 kloc/s with most time spent
analyzing system headers Interactive

speeds

benchmark

size analysis timeanalysis time

(loc) Time Rate
(kloc/s)

OAUTH

SCRECORDER

ZIPKIT

SPARKLE

ASIHTTPREQUEST

OMNIFRAMEWORKS

VIENNA

SKIM

ADIUM

1248 0.24s 5.3

2716 0.28s 10.8

3301 0.10s 33.0

5289 0.67s 7.9

14620 0.50s 27.2

160769 4.25s 37.8

37327 2.79s 13.4

60211 2.49s 24.1

176629 8.79s 20.1

combined 461080 20.09s 23.0

Higher rate for projects with larger translation
units

Cost: Analysis time

Fast: 5 to 38 kloc/s with most time spent
analyzing system headers

benchmark

size analysis timeanalysis time

(loc) Time Rate
(kloc/s)

OAUTH

SCRECORDER

ZIPKIT

SPARKLE

ASIHTTPREQUEST

OMNIFRAMEWORKS

VIENNA

SKIM

ADIUM

1248 0.24s 5.3

2716 0.28s 10.8

3301 0.10s 33.0

5289 0.67s 7.9

14620 0.50s 27.2

160769 4.25s 37.8

37327 2.79s 13.4

60211 2.49s 24.1

176629 8.79s 20.1

combined 461080 20.09s 23.0

Higher rate for projects with larger translation
units

Cost: Analysis time

Fast: 5 to 38 kloc/s with most time spent
analyzing system headersMaintains key benefit of flow-

insensitive analyses: speed

Theorem (Soundness of Handoff).
The entire state is type-consistent iff all locations are not
immediately type-inconsistent.

Theorem (Soundness of Materialization/Summarization).
Storage that is not immediately type-inconsistent can be
safely materialized and summarized into okheap.

Reiteration: Fissile Type Analysis is sound

heap

this

o

s

this.obj this.sel

heap
this.obj this.sel

s

o

this

heap
this.obj this.sel

s

o

this

heap
this.obj this.sel

s

o

this

Theorem (Soundness of Handoff).
The entire state is type-consistent iff all locations are not
immediately type-inconsistent.

Theorem (Soundness of Materialization/Summarization).
Storage that is not immediately type-inconsistent can be
safely materialized and summarized into okheap.

Reiteration: Fissile Type Analysis is sound

heap

this

o

s

this.obj this.sel

heap
this.obj this.sel

s

o

this

heap
this.obj this.sel

s

o

this

heap
this.obj this.sel

s

o

this

Theorem (Soundness of Handoff).
The entire state is type-consistent iff all locations are not
immediately type-inconsistent.

Theorem (Soundness of Materialization/Summarization).
Storage that is not immediately type-inconsistent can be
safely materialized and summarized into okheap.

Reiteration: Fissile Type Analysis is sound

heap

this

o

s

this.obj this.sel

heap
this.obj this.sel

s

o

this

heap
this.obj this.sel

s

o

this

heap
this.obj this.sel

s

o

this

entire

Theorem (Soundness of Handoff).
The entire state is type-consistent iff all locations are not
immediately type-inconsistent.

Theorem (Soundness of Materialization/Summarization).
Storage that is not immediately type-inconsistent can be
safely materialized and summarized into okheap.

Reiteration: Fissile Type Analysis is sound

heap

this

o

s

this.obj this.sel

heap
this.obj this.sel

s

o

this

heap
this.obj this.sel

s

o

this

heap
this.obj this.sel

s

o

this

entire

No locality or framing

Next Steps: Gated Separation

heap

this

o

s

this.obj this.sel

heap
this.obj this.sel

s

o

this

The entire state is type-consistent iff all locations are not
immediately type-inconsistent.

Next Steps: Gated Separation

heap

this

o

s

this.obj this.sel

heap
this.obj this.sel

s

o

this

The entire state is type-consistent iff all locations are not
immediately type-inconsistent.

priv

Next Steps: Gated Separation

heap

this

o

s

this.obj this.sel

heap
this.obj this.sel

s

o

this

The entire state is type-consistent iff all locations are not
immediately type-inconsistent.

priv

no pointer from top to bottom

Next Steps: Gated Separation

heap

this

o

s

this.obj this.sel

heap
this.obj this.sel

s

o

this

The entire state is type-consistent iff all locations are not
immediately type-inconsistent.

priv

Next Steps: Gated Separation

heap

this

o

s

this.obj this.sel

heap
this.obj this.sel

s

o

this

The entire state is type-consistent iff all locations are not
immediately type-inconsistent.

priv priv

Next Steps: Gated Separation

heap

this

o

s

this.obj this.sel

heap
this.obj this.sel

s

o

this

The entire state is type-consistent iff all locations are not
immediately type-inconsistent.

priv priv

Next Steps: Gated Separation

heap

this

o

s

this.obj this.sel

heap
this.obj this.sel

s

o

this

The entire state is type-consistent iff all locations are not
immediately type-inconsistent.

priv priv

foregate

Next Steps: Gated Separation

heap

this

o

s

this.obj this.sel

heap
this.obj this.sel

s

o

this

The entire state is type-consistent iff all locations are not
immediately type-inconsistent.

priv priv

aftgate

foregate

Next Steps: Gated Separation

heap

this

o

s

this.obj this.sel

heap
this.obj this.sel

s

o

this

The entire state is type-consistent iff all locations are not
immediately type-inconsistent.

“foregate”

priv priv

aftgate

foregate

Next Steps: Gated Separation

heap

this

o

s

this.obj this.sel

heap
this.obj this.sel

s

o

this

The entire state is type-consistent iff all locations are not
immediately type-inconsistent.

“foregate”

� ✏V M1 /⇤ M2 i↵ � = �1 [�2 for some �1, �2

where �1 ✏V M1 and �2 ✏V M2

and dom(�1) \ dom(�2) = ;
and rng(�1) \ dom(�2) = ;

priv priv

aftgate

foregate

Next Steps: Gated Separation

heap

this

o

s

this.obj this.sel

heap
this.obj this.sel

s

o

this

The entire state is type-consistent iff all locations are not
immediately type-inconsistent.

“foregate”

� ✏V M1 /⇤ M2 i↵ � = �1 [�2 for some �1, �2

where �1 ✏V M1 and �2 ✏V M2

and dom(�1) \ dom(�2) = ;
and rng(�1) \ dom(�2) = ;

priv priv

aftgate

foregate

concrete

Next Steps: Gated Separation

heap

this

o

s

this.obj this.sel

heap
this.obj this.sel

s

o

this

The entire state is type-consistent iff all locations are not
immediately type-inconsistent.

“foregate”

� ✏V M1 /⇤ M2 i↵ � = �1 [�2 for some �1, �2

where �1 ✏V M1 and �2 ✏V M2

and dom(�1) \ dom(�2) = ;
and rng(�1) \ dom(�2) = ;

priv priv

aftgate

foregate

concrete abstract

Next Steps: Gated Separation

heap

this

o

s

this.obj this.sel

heap
this.obj this.sel

s

o

this

The entire state is type-consistent iff all locations are not
immediately type-inconsistent.

“foregate”

� ✏V M1 /⇤ M2 i↵ � = �1 [�2 for some �1, �2

where �1 ✏V M1 and �2 ✏V M2

and dom(�1) \ dom(�2) = ;
and rng(�1) \ dom(�2) = ;

priv priv

aftgate

foregate

concrete abstract separated

Next Steps: Gated Separation

heap

this

o

s

this.obj this.sel

heap
this.obj this.sel

s

o

this

The entire state is type-consistent iff all locations are not
immediately type-inconsistent.

“foregate”

� ✏V M1 /⇤ M2 i↵ � = �1 [�2 for some �1, �2

where �1 ✏V M1 and �2 ✏V M2

and dom(�1) \ dom(�2) = ;
and rng(�1) \ dom(�2) = ;

priv priv

aftgate

foregate

concrete abstract separated

Next Steps: Gated Separation

heap

this

o

s

this.obj this.sel

heap
this.obj this.sel

s

o

this

The entire state is type-consistent iff all locations are not
immediately type-inconsistent.

“foregate”

� ✏V M1 /⇤ M2 i↵ � = �1 [�2 for some �1, �2

where �1 ✏V M1 and �2 ✏V M2

and dom(�1) \ dom(�2) = ;
and rng(�1) \ dom(�2) = ;

Slightly stronger than :
No direct pointers from “foregate” to “aftgate”

priv priv

aftgate

foregate

concrete abstract separated

Next Steps: Type-Intertwined Framing
The entire state is type-consistent iff all locations are not
immediately type-inconsistent.

“foregate”

heap

this

o

s

this.obj this.sel

priv

Next Steps: Type-Intertwined Framing
The entire state is type-consistent iff all locations are not
immediately type-inconsistent.

“foregate”

symbolic
flow

analysisheap

this

o

s

this.obj this.sel

priv

Next Steps: Type-Intertwined Framing
The entire state is type-consistent iff all locations are not
immediately type-inconsistent.

“foregate”

symbolic
flow

analysis

type
analysis

heap

this

o

s

this.obj this.sel

priv

Next Steps: Type-Intertwined Framing
The entire state is type-consistent iff all locations are not
immediately type-inconsistent.

“foregate”

symbolic
flow

analysis

type
analysis

heap

this

o

s

this.obj this.sel

priv

Next Steps: Type-Intertwined Framing
The entire state is type-consistent iff all locations are not
immediately type-inconsistent.

“foregate”

�

symbolic
flow

analysis

type
analysis

heap

this

o

s

this.obj this.sel

priv

Next Steps: Type-Intertwined Framing
The entire state is type-consistent iff all locations are not
immediately type-inconsistent.

“foregate”

�

symbolic
flow

analysis

type
analysis

heap

this

o

s

this.obj this.sel

priv

Next Steps: Type-Intertwined Framing
The entire state is type-consistent iff all locations are not
immediately type-inconsistent.

“foregate”

�

symbolic
flow

analysis

type
analysis

heap

this

o

s

this.obj this.sel

priv

heap

this

o

s

this.obj this.sel�

Next Steps: Type-Intertwined Framing
The entire state is type-consistent iff all locations are not
immediately type-inconsistent.

“foregate”

�

symbolic
flow

analysis

type
analysis

heap

this

o

s

this.obj this.sel

priv

heap

this

o

s

this.obj this.sel�

Next Steps: Type-Intertwined Framing
The entire state is type-consistent iff all locations are not
immediately type-inconsistent.

“foregate”

�

symbolic
flow

analysis

type
analysis

heap

this

o

s

this.obj this.sel

priv

heap

this

o

s

this.obj this.sel

priv

Next Steps: Type-Intertwined Framing
The entire state is type-consistent iff all locations are not
immediately type-inconsistent.

“foregate”

�

symbolic
flow

analysis

type
analysis

heap

this

o

s

this.obj this.sel

priv

heap

this

o

s

this.obj this.sel

priv

Type-intertwined framing is sound because
“aftgate” is not reachable.

• Check almost everywhere heap
invariants with intertwined type and
symbolic flow analysis

• Translate type environment into
symbolic state with symbolization

• Leverage heap type invariant during
symbolic analysis via type-consistent
materialization and summarization

• Approach is very fast and scales to large
programs

Summary

Fissile Type Analysis yields
significant precision

improvement at little cost in
performance

Fissile Type Analysis yields
significant precision

improvement at little cost in
performance

Why?

Fissile Type Analysis yields
significant precision

improvement at little cost in
performance

Because almost-everywhere
invariants hold almost

everywhere

Why?

Fissile Type Analysis yields
significant precision

improvement at little cost in
performance

Because almost-everywhere
invariants hold almost

everywhere

Why?

www.cs.colorado.edu/~bec
pl.cs.colorado.edu

http://www.cs.colorado.edu/~bec
http://www.cs.colorado.edu/~bec

Fissile Type Analysis yields
significant precision

improvement at little cost in
performance

Because almost-everywhere
invariants hold almost

everywhere

Why?

www.cs.colorado.edu/~bec
pl.cs.colorado.edu

Sankaranaryananan SomenziChangCerny

http://www.cs.colorado.edu/~bec
http://www.cs.colorado.edu/~bec

benchmark

sizesize false alarmsfalse alarms analysis timeanalysis time

(loc) reflective
call sites

annotation
count

flow-
insens.

almost-
everwhere

symbolic
sections

max. mat-
erializations Time Rate

(kloc/s)

OAUTH

SCRECORDER

ZIPKIT

SPARKLE

ASIHTTPREQUEST

OMNIFRAMEWORKS

VIENNA

SKIM

ADIUM

1248 7 5 7 2 (-71%) 7 1 0.30s 4.1

2716 12 9 2 0 (-100%) 2 2 0.28s 9.8

3301 28 0 0 0 (-) 0 0 0.10s 33.8

5289 40 0 4 1 (-75%) 3 1 0.78s 6.8

14620 68 2 50 10 (-80%) 59 2 0.15s 90.2

160769 192 49 82 74 (-10%) 7 1 4.61s 34.9

37327 186 24 59 38 (-36%) 28 2 2.57s 14.5

60211 207 7 43 43 (-0%) 0 0 2.55s 23.6

176629 587 40 87 70 (-20%) 16 1 7.50s 23.6

combined 461080 1327 136 334 238 (-29%) 125 2 18.83 24.5

Manual annotation burden

benchmark

sizesize false alarmsfalse alarms analysis timeanalysis time

(loc) reflective
call sites

annotation
count

flow-
insens.

almost-
everwhere

symbolic
sections

max. mat-
erializations Time Rate

(kloc/s)

OAUTH

SCRECORDER

ZIPKIT

SPARKLE

ASIHTTPREQUEST

OMNIFRAMEWORKS

VIENNA

SKIM

ADIUM

1248 7 5 7 2 (-71%) 7 1 0.30s 4.1

2716 12 9 2 0 (-100%) 2 2 0.28s 9.8

3301 28 0 0 0 (-) 0 0 0.10s 33.8

5289 40 0 4 1 (-75%) 3 1 0.78s 6.8

14620 68 2 50 10 (-80%) 59 2 0.15s 90.2

160769 192 49 82 74 (-10%) 7 1 4.61s 34.9

37327 186 24 59 38 (-36%) 28 2 2.57s 14.5

60211 207 7 43 43 (-0%) 0 0 2.55s 23.6

176629 587 40 87 70 (-20%) 16 1 7.50s 23.6

combined 461080 1327 136 334 238 (-29%) 125 2 18.83 24.5

essentially zero for clients of reflection

Manual annotation burden

benchmark

sizesize false alarmsfalse alarms analysis timeanalysis time

(loc) reflective
call sites

annotation
count

flow-
insens.

almost-
everwhere

symbolic
sections

max. mat-
erializations Time Rate

(kloc/s)

OAUTH

SCRECORDER

ZIPKIT

SPARKLE

ASIHTTPREQUEST

OMNIFRAMEWORKS

VIENNA

SKIM

ADIUM

1248 7 5 7 2 (-71%) 7 1 0.30s 4.1

2716 12 9 2 0 (-100%) 2 2 0.28s 9.8

3301 28 0 0 0 (-) 0 0 0.10s 33.8

5289 40 0 4 1 (-75%) 3 1 0.78s 6.8

14620 68 2 50 10 (-80%) 59 2 0.15s 90.2

160769 192 49 82 74 (-10%) 7 1 4.61s 34.9

37327 186 24 59 38 (-36%) 28 2 2.57s 14.5

60211 207 7 43 43 (-0%) 0 0 2.55s 23.6

176629 587 40 87 70 (-20%) 16 1 7.50s 23.6

combined 461080 1327 136 334 238 (-29%) 125 2 18.83 24.5

essentially zero for clients of reflection
higher for frameworks exporting reflective
interfaces

Manual annotation burden

benchmark

sizesize false alarmsfalse alarms analysis timeanalysis time

(loc) reflective
call sites

annotation
count

flow-
insens.

almost-
everwhere

symbolic
sections

max. mat-
erializations Time Rate

(kloc/s)

OAUTH

SCRECORDER

ZIPKIT

SPARKLE

ASIHTTPREQUEST

OMNIFRAMEWORKS

VIENNA

SKIM

ADIUM

1248 7 5 7 2 (-71%) 7 1 0.30s 4.1

2716 12 9 2 0 (-100%) 2 2 0.28s 9.8

3301 28 0 0 0 (-) 0 0 0.10s 33.8

5289 40 0 4 1 (-75%) 3 1 0.78s 6.8

14620 68 2 50 10 (-80%) 59 2 0.15s 90.2

160769 192 49 82 74 (-10%) 7 1 4.61s 34.9

37327 186 24 59 38 (-36%) 28 2 2.57s 14.5

60211 207 7 43 43 (-0%) 0 0 2.55s 23.6

176629 587 40 87 70 (-20%) 16 1 7.50s 23.6

combined 461080 1327 136 334 238 (-29%) 125 2 18.83 24.5

essentially zero for clients of reflection
higher for frameworks exporting reflective
interfaces

Manual annotation burden

in-between for applications and large
frameworks (which do both)

class MyButton {
var cb : Callback = ...

 def setState(s : Str)
 var m = “draw” + s
cb.update(self, m)

end

def draw()
cb.call()

end

def drawUp() ... end
def drawDown() ... end

}

class Callback {
var sel : Str = ...
var obj : Obj = ...

def update(s : Str,
 o : Obj)

 this.sel = s
this.obj = o

end

def call()
 this.obj.[this.sel]()
end

}

application
code

library
code

Idiomatic reflection decouples
callbacks and avoids boilerplate

class MyButton {
var cb : Callback = ...

 def setState(s : Str)
 var m = “draw” + s
cb.update(self, m)

end

def draw()
cb.call()

end

def drawUp() ... end
def drawDown() ... end

}

class Callback {
var sel : Str = ...
var obj : Obj = ...

def update(s : Str,
 o : Obj)

 this.sel = s
this.obj = o

end

def call()
 this.obj.[this.sel]()
end

}

application
code

library
code

Idiomatic reflection decouples
callbacks and avoids boilerplate

class MyButton {
var cb : Callback = ...

 def setState(s : Str)
 var m = “draw” + s
cb.update(self, m)

end

def draw()
cb.call()

end

def drawUp() ... end
def drawDown() ... end

}

class Callback {
var sel : Str = ...
var obj : Obj = ...

def update(s : Str,
 o : Obj)

 this.sel = s
this.obj = o

end

def call()
 this.obj.[this.sel]()
end

}

application
code

library
code

Idiomatic reflection decouples
callbacks and avoids boilerplate

class MyButton {
var cb : Callback = ...

 def setState(s : Str)
 var m = “draw” + s
cb.update(self, m)

end

def draw()
cb.call()

end

def drawUp() ... end
def drawDown() ... end

}

class Callback {
var sel : Str = ...
var obj : Obj = ...

def update(s : Str,
 o : Obj)

 this.sel = s
this.obj = o

end

def call()
 this.obj.[this.sel]()
end

}

application
code

library
code

Idiomatic reflection decouples
callbacks and avoids boilerplate

class MyButton {
var cb : Callback = ...

 def setState(s : Str)
 var m = “draw” + s
cb.update(self, m)

end

def draw()
cb.call()

end

def drawUp() ... end
def drawDown() ... end

}

class Callback {
var sel : Str = ...
var obj : Obj = ...

def update(s : Str,
 o : Obj)

 this.sel = s
this.obj = o

end

def call()
 this.obj.[this.sel]()
end

}

application
code

library
code

Idiomatic reflection decouples
callbacks and avoids boilerplate

