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Better Together



How to type check 
a program that is 

almost well-
typed?



Specification system:
dependent-refinement types

In this talk

Example property of interest:
safety of reflective method calls
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runtime string value

class Callback
var sel : Str
var obj : Obj         

def call()
this.obj.[this.sel]()

Calls method with name 
(selector) stored in sel on 

object stored in obj

Run time error if obj does not 
respond to sel — i.e., method does 

not exist
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object.[string]()

reflective method call: dispatch based on run-time value (in string)

“static” folks “web 2.0” developers

“Static” folks, like type system 
designers, worry.

What gets called? What if object 
has no method named by 
string?

“Web 2.0” developers think it’s 
cool.

I can write flexible and compact 
code, so I will take it over static 
safety.

Bridge the divide to support both first-class 
reflective method call and static checking 

of reflection safety
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class Callback
var sel : Str
var obj : Obj         

def call()
this.obj.[this.sel]()

Ensure reflection safety with dependent-
refinement type expressing required 
relationship

| r2 sel

obj must “respond to” sel

Shorthand for obj :: {⌫ : Obj | ⌫ r2 sel}

Guarantees no 
MethodNotFound error in 

call()
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class Iterator
var idx : Int 
var buf : Obj[]

def get(): Obj
return this.buf[this.idx]

Similar relationship for array bounds 
safety

| indexedBy idx

idx must be a valid 
index into  buf

These kinds of relationships are 
important to many safety 

properties
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class Callback
var sel : Str
var obj : Obj | r2 sel        

def update(s : Str, o : Obj | r2 s)
this.sel = s
this.obj = o

def call()
this.obj.[this.sel]()

 o guaranteed to 
respond to s

Type error: old obj may 
not respond to new sel

False alarm: no runtime error

Field type says:  obj must 
always respond to sel

Updating relationship causes type error
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class Callback
var sel : Str
var obj : Obj         

def update(s : Str, o : Obj       )
this.sel = s
this.obj = o

def call()
this.obj.[this.sel]()

Two styles of reasoning to determine false 
alarm

Reasoning by global 
invariant: call safe if 
relationship holds

Relationship violated

Relationship restored

| r2 selReasoning about effects of 
imperative updates



Idea: Selectively 
alternate between 
reasoning styles 

in verification
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Automated reasoning 
about global 
invariants

Automated reasoning 
about execution

Flow-
Insensitive Type 

Systems

� ` · · ·

Abstract 
Interpretation/
Flow Analysis/
Model Checking

�(·) = · · ·

Fissile Type Analysis combines two styles 
of reasoning
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analysis

types violated

types restored

Effective when global 
type invariant holds 

most of the time

•Relationship updates

•Occurrence typing
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Play to the strengths of each intertwined 
analysis

Flow-Insensitive Types
Easy to specify global invariants
Fast
Natural for modular reasoning
Good error reporting

Symbolic Flow Analysis
Natural for local reasoning 
about heap mutation 
Precise
Can be disjunctive/path-
sensitive

flow-sensitive 
typing?
ownership types?
alias types?
permissions?
effects?

Goal: keep types as 
simple as possible

Complexity lies in handoff 
between analyses and in symbolic 

analysis
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environment
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flow
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Reason precisely only when type 
invariant violated
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s
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But also constrains the reachable heap to 
be type-consistent: fields must conform 

to declared types

This picture captures the fully 
type-consistent concrete state
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immediately type-inconsistent with okheap

Concrete State

Symbolic Heap

eH okheap

def update(s:Str, o:Obj | r2 s)
this.sel = s
this.obj = o

Describes storage without 
explicitly enumerating it

Formula literal: concretization 
includes every subheap that is not 
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this.obj this.sel

s

o
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Immediately after switch, type 
invariants still hold so okheap 

represents entire heap
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Leverage heap type invariant via type-
consistent materialization
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this.obj = o

fsel f
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Strong updates on materialized storage to 
detect invariant restoration

Concrete State

Symbolic State
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this.obj = o

f
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Theorem (Soundness of Handoff). 
The entire state is type-consistent iff all locations are not 
immediately type-inconsistent.
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Theorem (Soundness of Handoff). 
The entire state is type-consistent iff all locations are not 
immediately type-inconsistent.

Theorem (Soundness of Materialization/Summarization). 
Storage that is not immediately type-inconsistent can be 
safely materialized and summarized into okheap.

Fissile Type Analysis is sound
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Precision: What is improvement over 
flow-insensitive checking alone?

Cost: What is the cost of analysis in 
running time?

Evaluation
Analysis mechanics: How often is 
symbolic reasoning required?
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Plugin for clang static analyzer in C++

Prototype analysis implementation
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Case Study: Reflection in 
Objective-C

76 r2 annotations on system libraries

6 libraries and 3 applications

136 annotations on benchmark code

Manual type annotations

1,000 to 176,000 lines of code

Plugin for clang static analyzer in C++

Prototype analysis implementation

Including Skim, 
Adium, and 
OmniGraffle



benchmark

size

(loc) symbolic
sections

maximum
materializations

OAUTH

SCRECORDER

ZIPKIT

SPARKLE

ASIHTTPREQUEST

OMNIFRAMEWORKS

VIENNA

SKIM

ADIUM

1248 7 1

2716 2 2

3301 0 0

5289 3 1

14620 59 2

160769 7 1

37327 28 2

60211 0 0

176629 16 1

combined 461080 125 2

Analysis mechanics



benchmark

size

(loc) symbolic
sections

maximum
materializations

OAUTH

SCRECORDER

ZIPKIT

SPARKLE

ASIHTTPREQUEST

OMNIFRAMEWORKS

VIENNA

SKIM

ADIUM

1248 7 1

2716 2 2

3301 0 0

5289 3 1

14620 59 2

160769 7 1

37327 28 2

60211 0 0

176629 16 1

combined 461080 125 2

Analysis mechanics

Number of successful 
switches to symbolic 
analysis and back



benchmark

size

(loc) symbolic
sections

maximum
materializations

OAUTH

SCRECORDER

ZIPKIT

SPARKLE

ASIHTTPREQUEST

OMNIFRAMEWORKS

VIENNA

SKIM

ADIUM

1248 7 1

2716 2 2

3301 0 0

5289 3 1

14620 59 2

160769 7 1

37327 28 2

60211 0 0

176629 16 1

combined 461080 125 2

Analysis mechanics

A significant number of switches:
Approach successfully handles when developers 
break and restore global invariants

Number of successful 
switches to symbolic 
analysis and back



benchmark

size

(loc) symbolic
sections

maximum
materializations

OAUTH

SCRECORDER

ZIPKIT

SPARKLE

ASIHTTPREQUEST

OMNIFRAMEWORKS

VIENNA

SKIM

ADIUM

1248 7 1

2716 2 2

3301 0 0

5289 3 1

14620 59 2

160769 7 1

37327 28 2

60211 0 0

176629 16 1

combined 461080 125 2

Analysis mechanics

Maximum number of 
simultaneous 

materialized storage 
locations

A significant number of switches:
Approach successfully handles when developers 
break and restore global invariants



benchmark

size

(loc) symbolic
sections

maximum
materializations

OAUTH

SCRECORDER

ZIPKIT

SPARKLE

ASIHTTPREQUEST

OMNIFRAMEWORKS

VIENNA

SKIM

ADIUM

1248 7 1

2716 2 2

3301 0 0

5289 3 1

14620 59 2

160769 7 1

37327 28 2

60211 0 0

176629 16 1

combined 461080 125 2

Analysis mechanics

Maximum number of 
simultaneous 

materialized storage 
locations

A significant number of switches:
Approach successfully handles when developers 
break and restore global invariants

At most 2 simultaneous materializations: 
Aliasing case splits will not blow up



benchmark

size

(loc) symbolic
sections

maximum
materializations

OAUTH

SCRECORDER

ZIPKIT

SPARKLE

ASIHTTPREQUEST

OMNIFRAMEWORKS

VIENNA

SKIM

ADIUM

1248 7 1

2716 2 2

3301 0 0

5289 3 1

14620 59 2

160769 7 1

37327 28 2

60211 0 0

176629 16 1

combined 461080 125 2

Analysis mechanics

A significant number of switches:
Approach successfully handles when developers 
break and restore global invariants

At most 2 simultaneous materializations: 
Aliasing case splits will not blow up



benchmark

size

(loc) symbolic
sections

maximum
materializations

OAUTH

SCRECORDER

ZIPKIT

SPARKLE

ASIHTTPREQUEST

OMNIFRAMEWORKS

VIENNA

SKIM

ADIUM

1248 7 1

2716 2 2

3301 0 0

5289 3 1

14620 59 2

160769 7 1

37327 28 2

60211 0 0

176629 16 1

combined 461080 125 2

Analysis mechanics

A significant number of switches:
Approach successfully handles when developers 
break and restore global invariants

At most 2 simultaneous materializations: 
Aliasing case splits will not blow up
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combined 461080 20.09s 23.0

Higher rate for projects with larger translation 
units

Cost: Analysis time

Fast: 5 to 38 kloc/s with most time spent 
analyzing system headersMaintains key benefit of flow-

insensitive analyses: speed
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Slightly stronger than     :
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Next Steps: Type-Intertwined Framing
The entire state is type-consistent iff all locations are not 
immediately type-inconsistent.
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Type-intertwined framing is sound because 
“aftgate” is not reachable.



• Check almost everywhere heap 
invariants with intertwined type and 
symbolic flow analysis

• Translate type environment into 
symbolic state with symbolization

• Leverage heap type invariant during 
symbolic analysis via type-consistent 
materialization and summarization

• Approach is very fast and scales to large 
programs 

Summary
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in-between for applications and large 
frameworks (which do both)



class MyButton {
var cb : Callback = ...

  def setState(s : Str)
  var m = “draw” + s
cb.update(self, m)

end

def draw()
cb.call()

end

def drawUp() ... end
def drawDown() ... end

}

class Callback {
var sel : Str = ...
var obj : Obj = ...

def update(s : Str,
 o : Obj)

  this.sel = s
this.obj = o

end

def call()
  this.obj.[this.sel]()
end

}

application 
code

library 
code

Idiomatic reflection decouples 
callbacks and avoids boilerplate
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