
Realizing ConCert

Tom Murphy

Evan Chang

Margaret DeLap

Jason Liszka

February 19, 2002
February 26, 2002

1



Realizing ConCert

ConCert

The ConCert project seeks to develop programming language and
type theoretic technology for Grid Computing in a trustless setting.

Our team develops a real framework (ConCert-v1) to:

• Motivate theoretical work

• Provide a source of technical ideas and problems to solve

• Provide a testbed for implementation

February 19, 2002
February 26, 2002

Carnegie Mellon University 2



Realizing ConCert

Our Strategy

We use a two-pronged approach to the problem.

Margaret and Jason: Low-level to discover implementation issues.

• Conductor

• Raytracer

Evan and Tom: High-level to discover programming issues.

• ML interface

• New programming language?

• Parallel Theorem Prover

February 19, 2002
February 26, 2002

Carnegie Mellon University 3



Realizing ConCert

This Talk

• This Week

– Cilk-NOW

– Programmer’s Interface

– Low-level Interface

– Node Discovery and Work Distribution

• Next Week

– Leftovers

– Application Design
∗ Raytracer
∗ Theorem Prover

– Demos

February 19, 2002
February 26, 2002

Carnegie Mellon University 4



Realizing ConCert

Intended Applications

Characteristics of the network:

• Low communication (no shared memory)

• Trustless ⇒ High Failure

• Very high parallelism

• Non-homogeneous network

• Potential for mobile code, run-time code generation

Appropriate sorts of applications:

• Prime search (GIMPS), alien search (SETI@home), etc.

• Game-tree search?

February 19, 2002
February 26, 2002

Carnegie Mellon University 5



Realizing ConCert

Cilk-NOW

Cilk-NOW is an implementation of Cilk version 2 (a parallel C
variant) for networks of workstations.

• Distributed scheduler

• Work-stealing

• Failure recovery

• Process mobility

• Functional-like programming style

February 19, 2002
February 26, 2002

Carnegie Mellon University 6



Realizing ConCert

Some Cilk-2 code

thread Fib (cont int k, int n) {

if (n < 2) {

send_argument (k, n);

} else {

cont int x, y;

spawn_next Sum(k, ?x, ?y);

spawn Fib (x, n - 1);

spawn Fib (y, n - 2);

}

}

thread Sum (cont int k, int x, int y) {

send argument(k, x + y);

}

February 19, 2002
February 26, 2002

Carnegie Mellon University 7



Realizing ConCert

Cilk-NOW cont’d

Cilk’s programming model is rudimentary, yet they were able to
develop several significant applications.

• Protein folding

• A chess engine

• Fibonacci number calculator

We intend to provide a richer language in a similar execution
environment, all in a trustless setting.

February 19, 2002
February 26, 2002

Carnegie Mellon University 8



Realizing ConCert

Programming: Jobs and Tasks

Job

Task Task Task

Job: A whole-program that is injected into the network from
the command-line.

Task: The unit of computation from the programmer’s point of
view. Consists of piece of closed code along with its argu-
ments. The code should restartable.

February 19, 2002
February 26, 2002

Carnegie Mellon University 9



Realizing ConCert

Injecting a Task into the Network

type ’a taskId

exception InvalidTaskId

type (’a, ’b) task = (’b -> ’a) * ’b

val injectTask : bool -> (’a, ’b) task -> ’a taskId

val enableTask : ’a taskId -> unit

• A task can optionally be injected into the network in a
suspended state (i.e. disabled).

• If disabled, the task will not run until an explicit enable
instruction is issued.

February 19, 2002
February 26, 2002

Carnegie Mellon University 10



Realizing ConCert

Retrieving Results

val recvResult : ’a taskId -> ’a

• Returning a result and asking for results from other tasks are
the only form of communication between tasks.

• Blocks the calling task until the result can be obtained.

• Let t be the task that we seek the result from. Task t could be
in four possible states:

1. t has already completed execution successfully.
2. t is currently executing.
3. t has failed (or appears to have failed).

4. t is currently disabled.

February 19, 2002
February 26, 2002

Carnegie Mellon University 11



Realizing ConCert

Events

type ’a event

val recvResultEvt : ’a taskId -> ’a event

val sync : ’a event -> ’a

val choose : ’a event list -> ’a event

val select : ’a event list -> ’a

val wrap : (’a event * (’a -> ’b)) -> ’b event

val guard : (unit -> ’a event) -> ’a event

val neverEvt : ’a event

val alwaysEvt : ’a -> ’a event

• Separate asking for the result from the actual operation of
synchronizing on the result of some other task (like in CML).

• Non-trivial events can only be introduced by recvResultEvt.

February 19, 2002
February 26, 2002

Carnegie Mellon University 12



Realizing ConCert

Application Optimizations

val kill : ’a taskId -> unit

val exit : ’a -> ’b

datatype Status =

Disabled

| Failed

| Finished

| Running

| Waiting

val status : ’a taskId -> Status

• kill is simply hint to the scheduler that the task is no longer
needed.

February 19, 2002
February 26, 2002

Carnegie Mellon University 13



Realizing ConCert

Example: Merge Sort

1 (* Point at which we stop parallelizing subproblems *)

2 val PAR_CUTOFF = 5

3

4 (* mergesort : int list -> int list *)

5 fun mergesort l =

6 let

7 (* mergesort’ : int list * int -> int list *)

8 fun mergesort’ (nil, _) = nil

9 | mergesort’ ([x], _) = [x]

10 | mergesort’ (l, cutoff) =

11 let

...

33 in

...

54 end

55 in

56 mergesort’ (l, PAR_CUTOFF)

57 end

February 19, 2002
February 26, 2002

Carnegie Mellon University 14



Realizing ConCert

Example: Merge Sort (cont’d)

7 (* mergesort’ : int list * int -> int list *)

8 fun mergesort’ (nil, _) = nil

9 | mergesort’ ([x], _) = [x]

10 | mergesort’ (l, cutoff) =

11 let

12 (* partition : int * int list -> int list * int list *)

...

21

22 (* merge : int list * int list -> int list *)

...

30

31 val len = List.length l

32 val (lt,rt) = partition (len div 2, l)

33 in

34 if (len <= cutoff) then

35 merge (mergesort’ (lt,cutoff), mergesort’ (rt,cutoff))

36 else

...

54 end

February 19, 2002
February 26, 2002

Carnegie Mellon University 15



Realizing ConCert

Example: Merge Sort (cont’d)

33 in

34 if (len <= cutoff) then

35 merge (mergesort’ (lt,cutoff), mergesort’ (rt,cutoff))

36 else

37 let

38 open CCTasks

39

40 (* Start sorting each partition *)

41 val tid1 = injectTask true (mergesort’, (lt, cutoff))

42 val tid2 = injectTask true (mergesort’, (rt, cutoff))

43

44 (* Get the results of the two child tasks *)

45 val (sortlt, sortrt) = select [

46 wrap (recvResultEvt tid1,

47 fn sortlt => (sortlt, recvResult tid2)),

48 wrap (recvResultEvt tid2,

49 fn sortrt => (recvResult tid1, sortrt))

50 ]

51 in

52 merge (sortlt, sortrt)

53 end

54 end

February 19, 2002
February 26, 2002

Carnegie Mellon University 16



Realizing ConCert

Modeling a stream of results

 suspension of task 2)

(1st result,

Task 0 Task 1 Task 2

(1st result,

Task 0 Task 1 Task 2

 suspension of enable(2))

enable

• Necessary for the theorem prover application.

February 19, 2002
February 26, 2002

Carnegie Mellon University 17



Realizing ConCert

Jobs, Tasks, and Cords

Job

Cord

Task Task Task

Cord

Cord

Cord

Cord

Cord

Cord

Cord

Cord

Cord: The unit of computation scheduled by the ConCert archi-
tecture (Conductor).

February 19, 2002
February 26, 2002

Carnegie Mellon University 18



Realizing ConCert

Structure of a Cord

A cord consists of:

• Code (we will want some way to cache code across cords)

• An environment

• A set of dependencies on the answers of other cords

• Safety policy, Certificate

February 19, 2002
February 26, 2002

Carnegie Mellon University 19



Realizing ConCert

Invariants

To simplify implementation and allow for failure recovery and
program mobility, we impose strong invariants on cords:

1. A cord is deterministic, or any possible result is “as good as”
any other.

2. Cords do not communicate except through explicit
dependencies.

3. Once its dependencies are filled, a cord is able to run to
completion.

Are these invariants really necessary, and what sorts of applications
do they preclude?

February 19, 2002
February 26, 2002

Carnegie Mellon University 20



Realizing ConCert

Distributing and Scheduling Cords

1. Peer-to-peer network (Gnutella)

2. Security Policies

3. Work-stealing

4. Failure tolerance

February 19, 2002
February 26, 2002

Carnegie Mellon University 21



Realizing ConCert

Finding Other Nodes: Example (1)

xena.cmu.edu

fred::hosts

yuliya.cmu.edu

fred.cmu.edu

HELLO(1,3,fred.IP,7)

quentin.cmu.edu

fred joins the network.

February 19, 2002
February 26, 2002

Carnegie Mellon University 22



Realizing ConCert

Finding Other Nodes: Example (2)

xena.cmu.edu

HELLO(1,3,fred.IP,6)

fred::hosts

yuliya.cmu.edu

fred.cmu.edu

quentin.cmu.edu
fred::hosts

VERSION(2)
xena::hosts

HELLO response and forwarding

February 19, 2002
February 26, 2002

Carnegie Mellon University 23



Realizing ConCert

Finding Other Nodes: Example (3)

xena.cmu.edu

fred::hosts

yuliya.cmu.edu

fred::forward_hosts

quentin::xena::hosts

fred.cmu.edu

quentin.cmu.edu
fred::hosts

HELLO(1,3,fred.IP,5)

VERSION(3)

Direct VERSION response

February 19, 2002
February 26, 2002

Carnegie Mellon University 24



Realizing ConCert

Finding Other Nodes: Example (4)

xena.cmu.edu

fred::hosts

yuliya.cmu.edu

VERSION(6)

fred::forward_hosts

yuliya::forward_hosts
quentin::xena::hosts

fred.cmu.edu

quentin.cmu.edu
fred::hosts

Version differences

February 19, 2002
February 26, 2002

Carnegie Mellon University 25



Realizing ConCert

Applications in Development

1. Distributed Raytracer

2. Parallel Theorem Prover for Linear Logic

February 19, 2002
February 26, 2002

Carnegie Mellon University 26



Realizing ConCert

Distributed Raytracer

• based on the ICFP’00 raytracer specification:
http://www.cs.cornell.edu/icfp/

• in Popcorn, compiled to TAL

• manual “cordification”

• “one-level-deep” parallelism

• later, recursive raytracing parallelism

February 19, 2002
February 26, 2002

Carnegie Mellon University 27



Realizing ConCert

Parallel Theorem Prover for Linear Logic

• A subgoal-reduction based parallel theorem prover for
intuitionistic linear logic

– Advantages:
∗ focusing strategy helps with branching breadth
∗ able to check validity of results easily
∗ few existing linear logic provers

– Concerns:
∗ how to balance the cost of communication
∗ how to limit frivolous parallelism

February 19, 2002
February 26, 2002

Carnegie Mellon University 28



Realizing ConCert

Parallelism in Theorem Proving

• Independent Subproblems

···
Γ; ∆ =⇒ A ⊕R1

Γ; ∆ =⇒ A ⊕ B

···
Γ; ∆ =⇒ B ⊕R2

Γ; ∆ =⇒ A ⊕ B

• Non-Independent Subproblems
···

Γ; ∆1 =⇒ A

···
Γ; ∆2 =⇒ B ⊗R

Γ; ∆1, ∆2 =⇒ A ⊗ B

February 19, 2002
February 26, 2002

Carnegie Mellon University 29



Realizing ConCert

Core Algorithm

• Focusing Strategy [Andreoli ’92][Pfenning ’01]

– first apply invertible rules eagerly
– select a “focus” proposition and apply non-invertible rules

until reach invertible connective or atomic formula

• Resource-distribution via Boolean constraints
[Harland and Pym ’01]

···
Γ; ∆1 =⇒ A

···
Γ; ∆2 =⇒ B ⊗R

Γ; (∆1, ∆2) =⇒ A ⊗ B

– represent constraints using OBDDs

February 19, 2002
February 26, 2002

Carnegie Mellon University 30



Realizing ConCert

Focusing (Sequential)

February 19, 2002
February 26, 2002

Carnegie Mellon University 31



Realizing ConCert

Focusing (Sequential)

February 19, 2002
February 26, 2002

Carnegie Mellon University 32



Realizing ConCert

Focusing (Parallel)

February 19, 2002
February 26, 2002

Carnegie Mellon University 33



Realizing ConCert

Current Issues

1. Is it important for a grid computing language to support the

automatic marshaling of data, or is this a task that can only be

handled correctly by the application programmer?

2. What is the fastest path to a working implementation of our

proposed language extensions?

3. Which of our invariants are actually necessary, or what others do we

need? What classes of programs do we preclude with our invariants?

4. How scalable is our peer-to-peer network?

5. In a trustless network where anyone can spawn jobs, how do we

prevent a naive programmer from making very inefficient use of

everyone’s resources, or a malicious user from swamping the network

with worthless jobs?

6. What other applications?

7. How do we deal with incorrect or forged results?

February 19, 2002
February 26, 2002

Carnegie Mellon University 34


