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Abstract. Digital filters are simple yet ubiquitous components of aawdriety
of digital processing and control systems. Errors in theriltan be catastrophic.
Traditionally digital filters have been verified using metedrom control the-
ory and extensive testing. We study two alternative vetificatechniques: bit-
precise analysis and real-valued error approximationthitnpaper, we empiri-
cally evaluate several variants of these two fundamentaidagehes for verifying
fixed-point implementations of digital filters. We designr @omparison to re-
veal the best possible approach towards verifying realdvidesigns of infinite
impulse response (IIR) digital filters. Our study reveatsdater insights into cases
where bit-reasoning is absolutely necessary and sugdésisré approaches us-
ing modern satisfiability-modulo-theories (SMT) solvers.

1 Introduction

In this paper, we present an evaluation of techniques fafic@ion of fixed-point im-
plementations of digital filters. Digital filters are ubitmuis in a wide variety of sys-
tems, such as control systems, analog mixed-signal (AMS&EBys, and digital signal
processing systems. Their applications range from aut@enetectronic components
and medical devices to record players and musical instrtsn&a get them right, the
design of digital filters is guided by a rich theory that irdis a deep understanding of
their behavior in terms of the frequency and time domain prigs. Filter designers
rely on a floating-point-based design and validation toothsas Matlab.

But there is a serious disconnect between filter designs Bedifnplementations.
Implementations often use fixed-point arithmetics so they tan be implemented us-
ing special purpose digital signal processors (DSPs) at fisblgrammable gate arrays
(FPGAS) that do not support floating-point arithmetics. M&hile, the design tools are
using floating-point arithmetics for validation. Does thisconnect between floating-
point designs and fixed-point implementations matter?

The transition from floating-point to fixed-point arithmetian lead to undesirable
effects such as overflows and instabilities (e.g., limilege-see Section 2). They arise
due to (a) the quantization of the filter coefficients, (blibguantization, and (c) round-
off errors for multiplications and additions. Thus, the fixgoint representations need
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to be sufficiently accurate—have adequate bits to repreélseribteger and fraction so
that undesirable effects are not observed in implememtatiaturally, an implementer
faces the question whether a given design is sufficient toagui@e correctness.

Extensive testing using a large number of input signals isramum requirement.
However, it is well-known from other types of hardware desighat testing can fall
short of a full verification or an exhaustive depth-boundearsh over the input space,
even for relatively small depths. Therefore, the questiisea whether extensive test-
ing is good enough for filter validation or more exhaustivehteques are necessary. If
we choose to perform bounded verification of fixed-pointffilleplementations, there
are roughly two different sets of approaches. The bit-gpeeapproach encodes the op-
eration of the fixed-point filter to precisely capture theseffof quantization, round-
offs and overflows as they happen on real hardware impleriiensa\We then perform
a bounded-depth model checking (BMC) [5] usibiirvector andinteger arithmetic
solvers to detect the presence of overflows and limit cyci=fjon 3). An alterna-
tive approach consists of encoding the filter state usints f@a over-approximating
the errors conservatively. We perform an error analysishimasthat such an over-
approximation can be addressed usiffinearithmetic simulations [6] or BMC using
linearreal arithmetic constraints (Section 4).

Our primary contribution is a set of experimental evaluadidesigned to elucidate
the trade-offs between the testing and verification tealescputlined above. Specifi-
cally, we implemented the four verification approachesioedtl above, as well as ran-
dom testing simulators using uniform random simulationrdke input signals or sim-
ulation by selecting the maximal or minimal input at eachetistep. We empirically
compare these approaches on a set of filter implementatisigreed using Matlab’s
filter design toolbox. Overall, our experimental companiseeks to answer four basic
questions (Section 5):

1. Is simulation sufficient to find bugs in filter§® observe that simulation is efficient
overall but seldom successful in finding subtle bugs in didilters.

2. Is bit-precise reasoning more precise in practice than eowative real-arithmetic
reasoningn highly optimized filters, conservatively tracking es@roduces many
spurious alarms. Bit-precise reasoning seems to yield omeful results.

3. Are bit-precise analyses usefully scalabM/ find that while less scalable than
some abstract analyses, bit-precise analyses find witéaster than other ap-
proaches and are capable of exploring complex filters.

4. Do bit-precise analyses allow us to address types of bugswkacould not oth-
erwise find”Bit-precise methods seem to be effective for discoverimit lcycles
(Cf. Section 2), which are hard to discover otherwise.

Motivating Digital Filter Verification  In essence, a digital filter is a function from
an input signal to an output signal. A signal is a sequencesalf values viewed as
arriving over time. For our purposes, a digital filter is caushat is, a value in the
output signal at time is a function of the input values at tinteor before (and the
previously computed output values). The construction gitdi filters is typically based
on a number of design templates (using specifications inrdggiEncy domain) [16].
To design a filter, engineers select a template (e.g., “Oftem” filters) and then use
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tools such as Matlab to compute coefficients that are usetstaritiate these templates.
Many templates yield linear filters (i.e., an output valua iinear combination of the
preceding input values and previously computed outputegliBecause linear filters
are so pervasive, they are an ideal target for verificatiotstavhich have good support
for linear arithmetic reasoning. Section 2 gives some Basit digital filters, but its
contents are not needed to follow this example.
We used Matlab’s filter design toolbox to
construct a direct form | implementation of a
Butterworth 1IR filter with a corner frequency
of 9600 Hz for a sampling frequency of 48000
Hz.! To the right, we compare a floating-pointg
based design and a fixed-point-based implemeg—
tation of this filter by examining its magnitude® 40
response as a function of input frequency (top) _
and its impulse response (bottom). The fixed- 0% Foayid P
point implementation is the result of quantizing o
the filter coefficients (as discussed beldw).

Magnitude Response

10 15
Frequency (kHz)

Magnitude response and impulse response Impulse Response
are standard characterizations of filters [16]. o5 ‘ [~ TFioating Pointr
—= Fixed Point

Using these responses computed during design, ,
time the designer deduces some nice properties

such as stability. Furthermore, the responses gf°'3
the fixed-point implementation are often com= 02
pared with the floating-pointimplementation. In 0.1

the plots, the fixed-point implementation’s re- t :
sponse is seen to be quite “close” to the origi- l
nal floating-point design (certainly, where there ° S T

is little attenuation—say> —20 dB). Further-
more, we see from the impulse response that the filter isestatle output asymptoti-
cally approaches zero. Furthermore, if the inputs are bedimdthe rangé—1.6, 1.6],
the outputs will remain in the estimated range2, 2] (Cf. Section 2). It is based
on this information that the designer may choose a fixedtpeiresentation for the
implementation that use® integer bits and fractional bits allowing all numbers
in the range[—2, 1.96875] be represented with an approximation error in the range
(—0.03125,0.03125); this representation leads to the quantization of the fdtesffi-
cients mentioned above.

But there are a number of problems that this popular filtefgme®olbox is not
telling the designer, as we mention below.

Is simulation sufficient to find bugs in this filtev?e estimated a range 6f2, 2]
for the output and our design allows for a rangg-e2, 1.96875]. Yet, the theory used
to calculate this range does not account for the presencerafsedue to rounding.

! Specifically, Matlab yields coefficients = 0.2066, b1 = 0.4131, by = 0.2066 anda; =
—0.3695, a2 = 0.1958 based on floating-point calculations.

2 Specifically, the coefficients are quantizedgo= 0.21875, b1 = 0.40625, by = 0.21875 and
a1 = —0.375, a2 = 0.1875.
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Therefore, we carried out extensive testing using a contibimaf uniformly random
inputs vectors or randomly choosing either the maximum arimmim input value.
Roughly107 inputs were tested ih5 minutes. Yet, no overflows were detected.

Is bit-precise reasoning more useful in practice than covestive real-arithmetic
reasoning?The conservative real-arithmetic model that tracks thgeaof overflow
errors (Cf. Section 4) finds a spurious overflow at delptyet no such overflow exists.
On the other hand, bit-precise reasoning discovers an sggutence of lengthcausing
an actual overflow. The solver required less than a secorehfdr unrolling.

The difficulty of discovering this sequence
through simulation or a conservative model is  [=°nput = Output ~ Expected Outpu
highlighted by the fact that small variations on g %

i

this input sequence do not yield an overflowg
The inset figure shows a failing input, the result= ° l i l l i l j;

ing output (fixed point) and the expected output

(floating point) from the filter. We notice that o 50 100 150 200
there seems to be very little relation between the Time (useconds)
floating-point and the fixed-point simulations beyand 100us.

Do bit-precise analyses allow us to address types of bugsathacould not other-
wise find?The quantized filter's impulse response seems to rule oypaksibility of
limit cycles. But then again, the impulse response did rk tato account the effect
of round-offs and overflows. The presence of limit cycles patentially lead to large
amplitude oscillations in the output that need furtherfiittg. The search process for
limit cycles is non-trivial and is heavily dependent on theagtization of the filter.

2 Preliminaries: Digital Filter Basics

In this section, we present some of the relevant backgrownfilter theory. Further
details on the mathematical theory of filters are discussateindard texts [16, 19].

A discrete-time signat(t) is a functionZ — R. By convention, the signal values
x(t) for timest < 0 are set to a constant default value giveniy.

Definition 1 (Single-Stage Digital Filter). A single-stage digital filters a recursive
function that maps a discrete-time input signdt) to an output discrete-time signal
y(t) for ¢t € Z. The filter is specified in one of tveirect forms A direct form | filteris
described by the tuplé, b, I, y_,), such that

N M
y(t) = D obia(t—i) =Y ajyt—j) i t=0
1=0 J=1

Y<o if t<O0

The vectorsa: (ai,...,apn) € RM andb: (by,...,bx) € RN*! are the coeffi-
cients of the filter and describe the input-output relatiuipsof the filter. The range
I: [l,u] C Risaclosed and bounded interval and is the range of the inpgience:.
The constany_, € R represents the initial state of the filter. Likewisedieect form I
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filter is described by the tupl@, b, I, s_, ), such that

M
N . .
y(t) = bis(t i) sy = 4 ¥~ ;21 ajs(t—j) ift>0
=0 S<o if t<0

The role of the coefficients b, the input rangd, and the initial state ., are analogous
to the corresponding components in a direct form I filter.

A filter is said to have finite impulse response (FIR) whenever 0 and infi-
nite impulse response (IIR), otherwise. Filters can be @m@nted in a single stage or
multiple stages by composing individual filter stages asvshioelow:

2(t) [input| »1() [ Stage#1 | Stage #k | ¥(t)
Stage (Intermediate (Output)

Note that in a multi-stage filter implementation, the rangestraint/ is elided for the
intermediate and final stages, but is retained just for tiseifiput stage of the filter.

Theunit impulseis defined by the functiofi(t) = 1if ¢ = 0, ord(¢t) = 0if ¢ # 0.
The impulse responsé(t) of a digital filter F' is the output produced by the unit
impulsed [16]. FIR filters have an impulse responsg(t) = 0 for all ¢ > N, whereas
IIR filters may have an impulse response that is non-zeraitefynoften.

Definition 2 (Stability). A digital filter is bounded-input bounded-output (BIBO) sta-
ble if whenever the input is bounded by some interval, the ouspalso bounded.

It can be easily shown that a filtér is BIBO stable if and only if thé.; norm of
the impulse responsg ” |hr(t)| converges.

Let H = > |hr(t)| be theL; norm of the impulse response of a stable filker
The impulse response can be used to bound the output of agitem its input range
1.

Lemma 1. If the inputs lie in the rangd : [—/, ¢] then the outputs lie in the interval
[—H¢, HY).

Instability often manifests itself as a zero-inpintit cycle Given an input, the se-
guence of outputs forms a limit cycle if and only if there ¢xig numberV > 0 and a
periodo > 0 wherein

Vt> N, y(t+9)=y(t) and y(t) # 0 infinitely often and z(¢t) = 0 for all time ¢

In general, zero-input limit cycles are considered unaédér and manifest themselves
as noise in the output. Further filtering may be needed toirdita this noise.

Fixed-Point Filter Implementations In theory, filters have real-valued coefficients
and have behaviors defined over real-valued discrete-timat iand output signals. In
practice, implementations of these filters have to appraiéthe input and output sig-
nals by means of fixed- or floating-point numbers. Whereasifiggoint numbers are
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commonly available in general-purpose processors, mesiappurpose DSP proces-
sors and/or realizations of the filters using FPGAs use fp@idt arithmetic implemen-
tations of filters.

A (k,1) fixed-point representation of a rational number consistarointeger part
represented by binary bits and a fractional part represented bynary bits. Given an
m-bitwordb: b,,,_1 - - - by, we can define fob its valueV (b) and itstwo’s complement
valueV(?)(b) as follows:

m—1 i
. V(b_"'b) if bp—1 =0
B i (2) o m—2 0 m—1
V() = Zfl s Ve {V<bm_2---bo> SEARLCUS I

Let (b, f) be the integer and fractional words fof/a !) fixed-point representation. The
rational represented is given B(b, f) = V3 (b) + % The maximum value repre-
sentable is given bg* — 2—11 and the minimum value representable-&*. The arithmetic
operations of addition, subtraction, multiplication andgion can be carried out over
fixed-point representations, and the result approximatdaiey as it is guaranteed to be
within the representable range. When this constraint iktgd, an overflow happens.
Overflows are handled saturatingwherein out-of-range values are represented by the
maximum or minimum value, or byrapping aroundgoing from either the maximum
value to the minimum, or from the minimum to the maximum uporogerflow.

A fixed-point digital filter is a digital filter where all valgeare represented by fixed
bit-width integer and fractional parts. In general, the liempentation of a fixed-point
digital filter uses standard registers to store input anguwtutalues along with adders,
multipliers and delays. It is possible that a fixed-point iempentation is unstable even
if the original filter it seeks to implement is stable.

3 Bit-Precise Encoding

In theory, bit-precise reasoning can be implemented bystasing all operations at the
bit level into a propositional logic formula and solving tiarmula using a SAT solver.
Practically, however, there are many simplifications tlzat lse made at the word level.
Therefore, we consider encodings of the fixed-point opanatinvolved in a digital
filter in the theory of bit-vectors as well as linear integettanetic. We assume @&, [)
bit representation witlk integral bits and fractional bits. In particular, the bit-vector
representation uses the uppgebits of a bit-vector for the integer part and the lovier
bits for the fractional part. For the integer representatéince there is no a priori limit
to its size, an integet is interpreted ag;; then, we separately check for overflow.

Encoding Multiplication Fixed-point multiplication potentially doubles the numbe
of bits in the intermediate representation. The multiglamaof two numbers witH{%, 1)
bits produces a result gk, 21) bits. To use this result a8, [)-bit value, we must
truncate or round the number. We must remove most significdits of the integer
part and thé least significant bits of the fractional part.

In the theory of bit-vectors, this truncation is a bit extrac. We extract the bits
in the bit ranggk + 21 — 1 : [] from the intermediate result (i.e., extract ttfeto the
k + 21 — 15t bits). In the theory of integers, we remove the lowbits by performing an
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integer division by2!. Because there is no size limit, we do not need to drop theruppe
k bits, but we perform an overflow check that simply assertsttigresult fits within
the permissible range at the end of each operation. Thatisheck if the intermediate
(2k, 21)-bit value lies in the permissible range of ttie [)-bit representation.

Encoding Addition The treatment of addition is similar. Adding two fixed-paitm-
bers with(k, I) bits produces a result ¢k + 1, [) bits. To use this resultin as(&, {)-bit
value operation, the top bit needs to be dropped.

For bit-vectors, we extract the bits in the rafjge-i—1 : 0]. For linear integer arith-
metic, we allow the overflow to happen and check using an tieseDetecting over-
flow for additions involves checking whether the interméeli@alue usingk + 1,1)
bits lies inside the range of values permissible ift &)-bit representation.

Overflow and Wrap Around A subtlety lies in using wrap-around versus satura-
tion semantics for overflow. For saturation, it is an erraarify operation results in an
overflow (and thus our encoding must check for it after eadtratmon). But for wrap
around, intermediate results of additions may overflow aildasrive at the correct
final result, which may be in bounds. Thus, checking for overfhfter each addition
is incorrect in implementations that use wrap-around seicgfor overflows. In terms
of our encoding, if the final result of successive additiorsifi the (k,[) bit range,
overflows while computing intermediate results do not matt&e handle this behavior
in the bit-vector encoding by allowing extra bits to reprashe integer part of inter-
mediate results (as many ast n wheren is the number of additions) and checking
whether the result after the last addition fits inside thgearepresentable by(a, [)-bit
representation. For the integer arithmetic represemtatie simply avoid asserting the
overflow condition for intermediate addition results.

Unrolling Filter Execution The unrolling of the filter execution takes in an argument
n for the number of time steps and encodes the step-by-steptixe of the filter (i.e.,
computey(0) up toy(n — 1)). At each step, we assert the disjunction of the overflow
conditions from the additions, multiplications, and thefioutput value.

Finding Limit Cycles To find a limit cycle ofn steps, we compare a window of the
output with another window of the outputsteps later. The lengths of the windows are
defined to be the maximum length of the coefficient vectoes, he order of the filter).

If these windows are equal and non-zero (for all zero inpthen there is a limit cycle.
To implement limit cycle search, we try a bounded number dfesforn.

4 Real-Arithmetic Encoding

The real-valued encoding for a filter models each state bigriaf a fixed-point filter by
a real number, while approximating the effects of quanitireaind round-off errors con-
servatively. As a result, the model includes a conservataatment of the two sources
of errors: (a)quantization errorsdue to the approximation of the filter coefficients to
fit in the fixed bit-width representations and ¢bund-off errorsthat happen for each
multiplication and addition operation carried out for eéiahe step.

Abstractly, a filter can be viewed asMIMO system(multiple-input, multiple-
output) with an internal state vectar, a control input scalat and an output (scalar)



8 Arlen Cox et al.

y, wherein at each iterative step, the state is transforméallaw/s:
w(t+1)=Aw(t)+z@t)d and y(t+1l)=c-w(t+1). (1)

Note that the state vectan(t) for a direct form | filter implementation includes the
current and previous output valug&), ..., y(t — M), as well as the previous input
valuesz(t — 1),...,x(t — N). The matrixA4 includes the computation of the output
and the shifting of previous output and input values to maldeldelay elements. The
dot-product with vector: simply selects the appropriate componeniify + 1) that
represents the output at the current time.

Quantized Filter First, we note that the quantization error in the filter cagdfits is
known a priori. LetA, d, ¢ be the quantized filter coefficients. We can write the resglti
filter as

wit+1)=Aowlt)di{t)od and Jt+1)=c¢wit+1). (2)

Here® and® denote the multiplication and addition with possible rowftlerrors.

Note that since the matrid represents the arithmetic operations with the filter
coefficients as well as the action of shifting the historyrgfiits and outputs, the quan-
tization error affects the non-zero and non-unit entriehématrix A, leaving all the
other entries unaltered. Likewise, the additive and miidiipive round-off errors apply
only to multiplications and additions that involve congtaather thar) and1. Com-
paring the original filter (1) to the quantized filter in (2)ewvritew = w + Aw to
be the error accumulated #. This leads to a non-deterministic iteration that jointly
determines possible values®ft + 1) and Aw(¢ + 1) at each time step as follows:

w(t+1) = Aw(t) + z(t)d
Aw(t+1) € AA(w(t) + Aw(t)) + z(t) Ad + [-1,1](¢q|(d + Ad)| + )
yt+1)=c-w(t+1)
Ay(t+1) € Ac-w(t+1)+ (c+ Ac) - Aw(t+ 1) + [-1, 1]/

3)

whereing is the maximal input quantization error, ancand+’ refer to the estimated
maximal round off errors accumulated due to the additionrantiplication operations
carried out at time step+ 1 for each of the entries iw(t+1) andy(t+1), respectively.
Note that|d + Ad| refers to the vector obtained by taking the absolute valusaoh
elementind+ Ad. The round-off error for multiplication/addition of tw@, {) bit fixed
point numbers is estimated to be'. We bound the maximum magnitude of round off
errors forK arithmetic operations i&2 .

Our goal is to check if for a given depth bound and bounds/, u] for overflow,
there exist values for the input sequend@), z(1),...,z(N) such the statev(t) ¢
[¢,u] for some time. Note that the values o A, Ad, ¢, v, ' are available to us once
the quantized coefficients and the bit-widths of the staggsters, the multipliers and
adders are known. As a result, the search for an input thatpotgntially causean
overflow is encoded by a linear programming problem.

Lemma 2. Given filter coefficient§A4, d, ¢), quantization errors(AA, Ad, Ac), an
over-estimation of the round-off, v’ and input quantization errorg, there exists a
set of linear constraintg such that ify is unsatisfiable then no input may cause an
overflow at depthV.
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Proof. Proof consists of unrolling the iteration in Equation (3h€lvariables in the LP
consist of input(1), ..., z(N), the state values(1), ..., w(N) and finally the out-
putsy(1),...,y(N) along with error termsAw(t) and Ay(t) for ¢ € [1, N]. Note
that for each step, we have a linear constraint for the statahlesw(t + 1) =
Aw(t) + z(t)d. Likewise, we obtain linear inequality constraints thatibd the values
of Aw(t + 1) using Equation (3). We conjoin the bounds on the input vahresthe
overflow bounds on the outputs for each time step.

Limit Cycles The real-arithmetic model cannot be used directly to calebhe pres-
ence or absence of limit cycles. Limit cycles in the fixedrpanplementation often
exist due to the presence of round-off errors and overfloaswhap around from the
largest representable value to the smallest. In practiesgteffects cannot be modeled
using the real-arithmetic filter implementations in a gthdiorward manner, without
introducing complex conditional expression and possiloly-finear terms.

5 Experimental Evaluation

We generated twelve filter designs in Matlab using a numbetesfgn patterns, in-

cluding low-pass, band-pass and band-stop filters usindpyaiev, Butterworth, and

elliptic designs. We used both multi- and single-stagegiesiThe designs are shown
in Table 1. The nominal bit-widths of the filters were chosanbsthat they were the

smallest that could contain the coefficients and inputs énrttnge]—1, 1], except for

| p2, whose design rationale is presented in Section 1. Our erpats also consider

the effect of variations in the bit-widths.

Our experiments compare four approaches to filter verioatia) bit-vector en-
coding BV) described in Section 3, (b) the integer linear arithmeticaaling (1) de-
scribed in Section 3, (c) a real-arithmetic encodiRgd\ into linear arithmetic described
in Section 4, and (d) affine arithmetic [6)Q) to track possible ranges of state and out-
put variables conservatively. The tests were run on an Gueé i5 750 processor with
8 GB of RAM running Ubuntu Linux. Processes were memorytaito 1 GB and

Table 1. Benchmarks used in the experiments are designed using ttabMdlter Design and
Analysis Tool. The Type column is a choice of a function ansiigow Pass,Band Stop, and
BandPass and a design pattern amonBstterworth,Elliptic, Max Flat, andChebyshev. The
Order column is the order the filter, # Stages denotes the euoflstages, and the Freq. column
gives the cut-off or band frequencies in kHz.

[Name [Type [Ordel# StagefFreq]  [Name [Type [Ordef# StagefFreq. |

[p2 |(LP,B) 2 1 96 [ p10cni(LP, MF)] 2 5 0.1
Ipd |(LP,B)| 4 1 96 [pl0Om |(LP,MF)| 10 | 1 [0.1
I pde |(LP,E)| 4 1 |96 bs10 [BSC) | 10 | 1 [9.6-12
Ip6 |(LP,E)| 6 1 |96 bs10c |(BS.C) | 2 5 9.6-12
Ip6c |(LPE)| 2 3 |96 bp8  |(BPE) | 8 1 0.2-0.5
I pl0c|(LP, B)| 2 5 (9.6 bpsc |(BP.E) | 2 4 [0.2:05
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Fig. 1. Plot showing outcome for various methods on benchmarksedimwas set to 300 sec-
onds and a maximum depth of 16 is shown by the dashed line

time-limited to 60 seconds for the unrolling test and 3000seks for other tests. No
processes ran out of memory.

We use the SMT solver Z3 version 3.2 [7], as it is currentlyfdstest known solver
for both the bit-vector theory and the linear integer ari¢himtheory. The framework is
implemented in OCaml.

Is simulation sufficient to find bugs in filters? We tested all of the filters using
traditional simulation based methods. To do this, we exgaldhree possible input gen-
eration methods: (a) uniform random selection of valuemftbe filter's input range;
(b) selecting the maximum value until the output stabilifgtbwed by the minimum
value; and (c) selecting the minimum value until the outpabgized followed by the
maximum value. Choices (b,c) attempt to maximize the ovesim the filters in order
to cause a potential overflow.

The filters are simulated on a fixed-point arithmetic sinadatsing the three input
generation methods described above. The simulation wat® sdiort if an overflow
were to be found. Each simulation was run for the standarddirhof 300 seconds.
During this time filters were able to run between two and fiviliom inputs.

There were zero overflows found by the simulations.

Is bit-precise reasoning more precise in practice than comsvative real-arithmetic
reasoning? Figure 1 compares the outcomes of all the four techniquesiobench-
marks in finding overflows. The conservative techniques,andRA, can yield false
alarms, whereas any overflow warning raised by the bit-pesteichnique®V andLl,
must be true bugs. A time-out or depth-out means no bugs wearrgdfin the allotted
time or depth but of course says nothing about whether theréugs further on. An
alarm raised by the conservative techniques can be clakagibeing false (i.e., spuri-
ous) when a bit-precise technique is able to exceed thattsdapth without raising an
alarm. In six out of the twelve tests (i.dop8, bs10, | p10c, | p10m | p4de, | p6),
both conservative approaches raised false alarms. Atdeadtit-precise technique was
able to search deep enough to label the alarms from the a@tiseranalyses as true
(i.e., bug) or false (i.e., spurious).

Are bit-precise analyses usefully scalable?Figure 2 shows the performance of dif-
ferent methods of analysis on all twelve test filters acrossliings of 5, 8, 10 and 15.
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Fig. 2. Performance comparison of different analysis methodsggugimollings of 5, 8, 10 and 15.

In the plot of BV vs. LI (right), we see thaBV is, in general, faster thdd (above the
line). However, the advantage is not overwhelming, sugugsbat neither approach is
inherently better than the other.

For bothBV andLl, the unrolling depth did not have a pronounced effect on the
time taken to solve benchmark instances for small unrdlingstances whereiBV
was faster at unrolling depth 5 also tended to faB®rat unrolling depth 8. Therefore,
we conclude that the nature of the coefficients in the filtet iés1 overall architecture
may have a larger effect on the performanc8WugfandLI than the unrolling depth.

We see in thdV vs. RA plot (left), the bit-precise methddV is competitive with
the conservative methd®lA. Whereas bit-vector theories are NP-complete, linear pro-
grams are well known to have efficient polynomial time algoris in practice. We
hypothesize that the use of an SMT solver to reason with kreg¢ions using arbitrary
precision arithmetic has a significant performance oveth&ais may be a good area of
application for techniques that use floating-point solterselp obtain speedups while
guaranteeing precise results [15].

The AA approximate method is very fast in comparison to all the mthethods
presented here. It is elided because this speed comes ah adsgin precision [18].
Furthermore, the affine arithmetic technique does not, @s, $ield concrete witnesses.
Therefore, it is not readily comparable to precise methods.

Effect of Unrolling Length on the Analysis We now look deeper into the perfor-
mance of encodings. We first consider how unrolling affeeisgrmance by varying
the amount of unrolling from 1 to 50 on select filters.

According to Figure 3BV, RA andLlI are heavily affected by the unrolling depth.
RA, even for short unrollings, times out if it does not find aroerDue to some details
of implementations, th®A encoding incrementally searches for the shortest possible
error unlike theBV andLI encodings. Because of this, if an error is found edrl,
appears to scale well, as seet p6. AA scales well with unrolling depth, as expected.
Note that the unrolling is stopped once overflow is found.

The bit-precise method3V andLlI both exhibit more unpredictable behavior. This
is due to the nature of the encoding (one single monolithemdimg that searches for
all paths up to a given depth limit) and the SMT solvers usexth®& unrolling becomes
longer, the solver is not bound to search for the shortehtfpat. The results frorhp2
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Fig. 3. Performance analysis of analysis methods as a functionrofliny depth.

andl p10c show that longer unrollings may be faster than shorter lingd, but there
is a general trend of increasing time with unrolling depth.

Performance Impact of Bit-Widths We also need to consider the effect that chang-
ing the precision of filters has on the analysis performalicgire 4 shows performance
for both BV andLl on two different tests across a range of bit-widths. The fest,
| p2, is “pre-quantized” so that adding more fractional bitss=aithe coefficients to
gain more zeros in their least significant bits. The secosillitp6, has large fractions
in the coefficient, so meaningful bits are added when thdifmasize is increased.

The first conclusion is that the total number of bits does meictly affect the time
taken. BottBV andLl are faster with more integer bits. As more integer bits ackedd
it is possible that the abstractions used internally withenSMT solver can be coarser
allowing it to come up with answers faster. As more fractldnits are added, thBV
andLl approaches diverg8V becomes much slower, aid is not heavily affected.
Once again, this behavior seems to depend critically ondkéicients in the filter.

As bit-widths are varied, the outcome typically varies framoverflow found at a
low depth to unsatisfiable answers at all depths. In this,dhseperformance dfl is
poor whenever the bit-width selectedrmarginal or nearly insufficient. If the system
you are trying to analyze is marginal, but small, B3¢ and if it is relatively safe, but
large, use.l.

Do bit-precis_e analyses al- [Unroll]|Pas$Fail| Timeouf|Mean (s]Median (s}Std Dev (s)
low us to find bugs we

. . 2 2| 10 0 1.22 0.35 4.8

?
E(.)UId npt Other\llee flncljl' ] 5 0 7 5 22.6 10.3 89.8
It-precise analyses allow 8 G 6 558 217 133.8

us to easily find limit cycles
in fixed-point lIR filters. Limit cycles are prevalent in fixgobint lIR filters as the inset
table below shows. From our twelve test cases, the tablestmvnumber of exam-
ples where we did not find a limit cycle (column Pass), the nemmihere we found
one (column Fail), and the remaining that timed out. The iemg columns show the
mean, median, and standard deviation of the running timkénfidircycle detection. Due
to their prevalence, most limit cycles are quite easy forSMT solver to find (using
the bit-vector theory). Most limit cycles are found with stnrollings, quickly.
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Fig. 4. Performance of bit-precise analysis methods as a funcfitmeaumber of bits.

Because limit cycles can be detected efficiently, the desigan make informed
decisions about those situations. Often designers willeddh circuitry to eliminate
limit cycles, but if the designer knew the kinds of limit cgslthat exist, the designer
may elect to simplify the design and not add that circuitrg Méve discovered limit
cycles varying from small, 1-2 least significant bits, tagaroscillating from near the
maximum value to near the minimum value. In the latter cdsedesigner may elect to
design a different circuit.

6 Related Work

Verification of fixed-point digital filters has focused mgsbin the problem of discover-
ing safe bit-widths for the implementation. While verificeat for a specific bit-width is
one method for solving this problem, other works have carsid interval arithmetic,
affine arithmetic [8, 13], spectral techniques [17], and borations thereof [18].

Approaches based on SMT solvers, on the other hand, offertimeise of enhanced
accuracy and exhaustive reasoning. Kinsman and NicoleBuSMT solver to search
for a precise range for each variable in fixed-point impletatons of more general
MIMO systems [12]. Their analysis uses the non-linear qaiirst solver HySAT [10]
using a real-arithmetic model without modeling the erraecsely. Furthermore, since
HySAT converges on an interval for each input variable rthealysis potentially lacks
the ability to reason about specific values of inputs.
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We have focused on comparing against some simple techrfiquesst input gen-
eration in this paper. Others have considered more advdraeiktics for tackling this
problem [20], which may be worthy of further study.

Several researchers have tackled the difficult problem dfyweg floating-point
digital filters as part of larger and more complex system449, The static analysis ap-
proach to proving numerical properties of control systemglémented using floating
point has had some notable successes [3, 11]. In partitieanalysis of digital filters
has inspired specialized domains such as the ellipsoidabdo[2, 9]. While floating-
point arithmetic is by no means easy to reason with, the ssfamed therein are com-
pletely different from the ones considered here for fixedvparithmetics. Whereas we
focus on analyzing overflows and limit cycles, these are mptificant problems for
floating-point implementations. The use of bit-precisesogdng for floating-point C
programs has recently been explored by Kroening et al. [4].

Yet another distinction is that of proving safety versusrmyto find bugs. The ap-
proaches considered in this paper clearly focus on bug findging bounded-depth
verification. While a similar study for techniques to proveerties may be of interest,
the conservative nature of the real-arithmetic model ssiggdat its utility in proving
highly optimized implementations may also be limited.

One approach to verifying digital filters is to perform a mahproof using a the-
orem prover [1]. Such approaches tend to be quite generaésedsible. However,
they are mostly manual and often unsuitable for use by DSRymes, who may be
unfamiliar with these tools.

7 Conclusion

Our results show that fixed-point digital filters designethgsndustry standard tools
may sometimes suffer from overflow problems. Commonly usegifency-domain de-
sign techniques and extensive simulations are insuffiéterfinding overflows. In this
work, we have compared different formal verification tecjugs based on bounded-
model checking using SMT solvers.

We have shown that error approximation using real-aritioreztn alert designers
to otherwise unknown issues in filters. These alarms are afp@rious and may lead
the designer to draw false conclusions about their des@®gsondly, in spite of funda-
mental complexity considerations, the real-arithmetigess can often be slower than
bit-precise approaches, possibly due to the need for arpipirecision arithmetic. The
use of floating-point simplex in conjunction with arbitrgecision numbers may be a
promising remedy [15].

Finally, we demonstrated that bit-precise verificationasgible and efficient using
modern SMT solvers. Also, bit-precise verification is albléind situations where error
approximations would have otherwise prevented a desigoer §hrinking a filter by
one more bit. We also saw that both integer and bit-vectoedasethods are required
to achieve maximum performance.
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