Bio-CONCUR 2003

PML: Toward a High-Level Formal Language
for Biological Systems

Bor-Yuh Evan Chang! Manu Sridharan®

Computer Science Division
University of California, Berkeley
Berkeley, CA, U.S.A.

Abstract

Documentation of knowledge about biological pathways is often informal and vague, making it difficult
to efficiently synthesize the work of others into a holistic understanding of a system. Several researchers
have proposed solving this problem by modeling pathways using formal languages, which have a precise
and consistent semantics. While precise, many of these languages may be too low-level to model feasibly
complex pathways. We have developed the Pathway Modeling Language (PML), a high-level language for
modeling pathways. PML is based on a biological metaphor of molecules with binding sites and has special
constructs for handling compartment changes in pathways. Our preliminary work has shown that PML’s
language constructs serve as a promising basis for modeling complex pathways in a readable and composable
manner.

Keywords: Modeling language, biological systems, pathways

1 Introduction

Biological processes are highly complex systems of which our understanding is vague
at best. Decades of experimentation to understand biological pathways in cells and
recent advances in genomics have led to a wealth of information but only in a very
fragmented form. In this paper, we investigate the use of formal languages for de-
scribing biological pathways. Currently, biological pathways are conveyed through
prose or graph-like diagrams with loose semantics. The ambiguity and informal-
ity of such representations can make their interpretation error-prone. The use of
formal languages in describing pathways would oblige the modeler to make im-
portant assumptions explicit, allow him to directly run simulations based on the
description (catching obvious errors early), and possibly generate human-readable

* This research was supported in part by the National Science Foundation Grants No. CCR-9875171, No.
CCR-0081588, and No. CCR-0085949, a California Microelectronics Fellowship, and a National Defense
Science and Engineering Graduate Fellowship. The information presented here does not necessarily reflect
the position or the policy of the Government and no official endorsement should be inferred.

I E-mail: bec@cs.berkeley.edu
2 E-mail: manu_s@cs.berkeley.edu

This paper is electronically published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

mailto:bec@cs.berkeley.edu
mailto:manu_s@cs.berkeley.edu

CHANG AND SRIDHARAN

graphical representations. Moreover, since formal languages have consistent seman-
tics, models written in these languages by different research groups should be more
composable than informal models.

McAdams and Shapiro have integrated the traditional biochemical kinetic mod-
eling with circuit diagrams and simulations akin to circuits in electrical engineer-
ing [8] to help elucidate timing relationships between chemical equations. Pathway
databases [6] organize and store information about molecules and their interactions
in a symbolic form and provide various ways of querying the database. Our work is
complementary to this in that we seek suitable representations that clearly capture
the dynamic behavior of pathways, while databases are currently more suitable for
describing static configurations. Petri nets is a formalism that attempts to better
capture the dynamic behavior of biological systems [4]. However, Petri nets still
have a drawback similar to chemical kinetic models in that each state of a molec-
ular species is represented by a place (rather than simply the biological entity).
Recently, several researchers have proposed modeling biological pathways as con-
current computational processes utilizing mathematical formalisms, such as process
algebras [13,10,12,3]. Regev et al. have suggested various forms of the m-calculus [9]
as a framework for abstracting biological pathways in this manner. This approach
combines many of the advantages of the other modeling methodologies. Like Petri
nets, the m-calculus has well-defined operational semantics that crisply describes
the dynamic behavior of the system and facilitates simulation in a straightforward
manner, but like pathway databases, the focus is on describing locally the properties
of a biological entity.

While the m-calculus seems to be an entirely appropriate formalism as an un-
derlying machine model, we believe that it is too low-level to directly model in.
Thus, we have designed a high-level modeling language for pathways called PML
(Pathway Modeling Language) that translates into the m-calculus. PML is more
structured than previously proposed formal languages, leading to more readable
and composable models. PML constructs also have a fairly consistent biological
metaphor. Finally, we have also developed a novel method for modeling biological
compartments.

We present PML through some example models of biological systems in Sec. 2,
followed by a full presentation of PML and its semantics in Sec. 3. Then, we
give a model of cotranslational translocation on the endoplasmic reticulum (ER)
membrane to demonstrate the composability of PML in Sec. 4. Finally, we discuss
the benefits of PML and future work in Sec. 5.

2 PML Models

Michaelis-Menten Model. PML is largely inspired by an informal graphical
style for presenting reactions used in Regev and Shapiro [12]. A Michaelis-Menten
reaction is depicted in this style in Fig. 1. Initially, the protein and enzyme have
compatible binding sites, indicated by the complementary notches in the molecules,
allowing them to react. When reacting, the enzyme and protein molecule are “at-
tached” and can therefore perform further private interactions. If the reaction goes
forward, the protein is transformed to have a new binding site; it can no longer bind

2

CHANG AND SRIDHARAN

k-1
— (Protein <
k kcal

Fig. 1. A graphical view of a Michaelis-Menten reaction.

to the enzyme, but it has a new capability to bind to other molecules.

This view of path-
ways, as reactions that
change the binding ca-
pabilities of molecules,

1 group MichaelisMenten = grp O
2 create (bind_s, bind p)
3 domain Enzyme = dom ()

underlies PML In 4 create (release_s, release_p)
PML. each deiaendent 5 bind_s # put (release_s, releasep) —>
’ 6 [release_s, release p]

set of binding sites is

modeled as a domain (a 7 release.s # put () —> init
molecule can in general s releasep # put () —> init
consist of multiple inde- ’ init = [bind_s]

10 end

pendent domains). The

enzyme in a Michaclis- 11 domain Protein = dom ()

Menten reaction is mod- 12 bind_s # get (release.s, releasep) —>
cled as a domain as 13 [release_s, release_p]
shown in Fig. 2 (lines 3 14 with N
10). At any point in " release.s # get () —> init
time, each domain has 16 release.p # get () —> [bind p]
a set of active bind- 1 er?d
ing sites. Initially, the ~* ~ Pind-p # ...
Enzyme domain has the 19 init = [bind_s]
20 end

bind_s site active (spec-
ified by the init decla-
ration); this is the site
through which the en-
zyme can bind to the
protein in Fig. 1. The behavior of an enzyme after it binds with a protein is
defined by the rule for the bind_s site (lines 5 and 6). Here, the enzyme “puts”
two binding sites, release_s and release_p, that it has created locally and then
activates those two binding sites (specified after the —>). Binding sites are created
locally to perform reactions with individual molecules, as opposed to an arbitrary
molecule in a particular class.

21 compose <Enzyme(), Protein()>
22 end

Fig. 2. Michaelis-Menten reaction.

As Fig. 1 shows, there are two possible results after the protein and enzyme
bind; in either case, the enzyme remains unchanged. This behavior is reflected in
the rules for the release_s and release_p sites (lines 7 and 8). After a reaction at
either site, the enzyme returns to its init state (with only the bind_s site active).
A non-deterministic choice determines whether a reaction occurs on the release_s
site or on the release_p site, corresponding to the reverse and forward reactions,
respectively. An extension of PML could allow for annotating the rules for these
sites with reaction rates to more accurately reflect the probability of each reaction
direction, but we do not yet deal with this issue.

3

CHANG AND SRIDHARAN

The behavior of the protein molecule is encapsulated in its own domain (Fig. 2,
lines 11-20). Initially, the protein has its bind_s site active, allowing it to bind
to the enzyme. When it binds to an enzyme on the site, it gets the release_s
and release_p sites from the enzyme and then activates those sites. Depending on
which of these sites is used for the next reaction, the protein either returns to its
initial state (line 15), re-enabling the bind_s site, or it progresses (line 16), enabling
a new bind_p site that will allow reactions with new molecules (elided). We declare
the rules for the release_s and release_p sites in a with construct, as they are
bound in the get construct.

We then use a group construct to simply group together these two domains.
The compose declaration indicates that the initial state of the system is one enzyme
molecule and one protein molecule.

Compartments. PML
has special syntactic
constructs for com-
partments. Ideally,
molecules are speci-
fied independently of
their compartment
membership, so that
different compartment

group CompExample = grp O
create (bind_a, bind_b)
domain MolA = dom Q)
bind_a # put () —> init
init = [bind_a]
end
domain MolB = dom ()
bind_a # get () —> [bind_b]

memberships can then ’.bi.nd,b #.
be employed in differ- ('jn't = [bind a]
en

ent pathways without
changing the specifica-
tion of the molecule.
In Fig. 3, the Cytosol
compartment contains
one MolA molecule, and
the ER compartment
contains one MolB
molecule (declared

compartment Cytosol = com ()
compose <MolA()> end

compartment ER = com ()
compose <MolB()> end

domain CytERBridge = bridge dom ()
{CytERTrans} Cytosol bind.a to ER

get O —> init

init = [CytERTrans]

with compose, just end .
as in groups). The ;:ompose <ER(),Cytosol(),CytERBridge () >
en

CytERBridge molecule
bridges the Cytosol
and ER compartment
allowing molecules to be transported across the membrane that separates the
compartments. Since bridge domains are not contained in a single compartment,
we must explicitly declare in which compartment its binding sites are exposed. In
this case, its bind_a site is exposed to the Cytosol compartment. We also give
the bind_a rule in CytERBridge an explicit name CytERTrans. Explicit names can
be added to any rule for clarity, and they are necessary in the more general case
where there are multiple rules for a single binding site. Any molecule binding on
the bind_a site of a CytERBridge molecule (in this case, MolA) will be transported
from the Cytosol compartment to the ER compartment, as indicated with the

Fig. 3. Compartments example.

4

CHANG AND SRIDHARAN

declaration to ER in the CytERTrans rule. Our compartment syntax admits a clean
separation between molecule behavior and compartment membership and allows
for simple modeling of compartment changes through bridges.

3 Semantics of PML

We define the semantics of PML in terms of the semantics of the w-calculus via
two translations: from a PML model to CorePML, a subset of PML that does not
have compartment and bridge constructs along with some other simplifications, and
from CorePML to the m-calculus. A complete description of the syntax of PML
and a formal presentation of the CorePML to w-calculus translation is given in the
appendix. We assume some basic well-formedness conditions on PML models as
input to our translation. All references to named entities (rules, domains, groups,
etc.) must be resolvable with identifiers being lexically-scoped.

PML to CorePML. CorePML has the following properties: all rules have explicit
rule names, there is at most one create declaration in each domain or group and
appears first, and there are no compartment or bridge constructs. Any well-formed
PML model can be transformed to satisfy the first two properties in a straightfor-
ward manner. For the last property, a model output from this translation must
satisfy the following two conditions: (1) two molecules initially in different com-
partments must not be able to interact with each other; (2) an interaction between
a molecule m and a bridge must respect the compartment change declaration in
the bridge; after the interaction, m can interact with molecules in the target com-
partment and cannot interact with molecules in the source compartment. Together,
these properties imply that at any time, molecules in different compartments cannot
interact.
We satisfy prop-

erty 1 with a simple domain MolA Cytosol = dom ()

renaming of domains 2 bind_a Cytosol # put () —> init

and binding sites. For ° bind_a ER # put () —> init_ER

each domain D com- * bind_a_CytERBridge # put () —> init_ER
posed or spawned in ° ruleset init ER = [bind a ER]

some compartment C, ° init = [bind_a Cytosol]

we create a new domain end

D_C specific to C. All non-local binding sites b mentioned in D_C (those that are
not created in the domain or received in some rule) are renamed b_C' to ensure that
reactions on that site can only occur with other molecules in C'. We also change
all spawn constructs to spawn domains particular to the initial compartment. For
example, these transformations applied to MolA in the Cytosol from Fig. 3 is
shown above (lines 1,2,6). Since MolB only appears in the ER, there will be no MolB
molecules with a bind_a _Cytosol site, and therefore the MolA and MolB molecules
in different compartments will not be able to react initially.

Satisfying property 2 is slightly more complicated. First, for each non-bridge
domain that can change compartments, we add rules to allow it to interact appropri-
ately in any compartment where it may eventually reside (how this is determined is
discussed further in the extended version [2]). For MolA, the possible compartments

5

CHANG AND SRIDHARAN

are Cytosol, its initial compartment, and ER, its compartment after interacting
with the CytERBridge domain on the bind_a site. We then add the necessary rules
for that domain to interact in all of those compartments. For the MolA Cytosol
domain, we need to add a rule so that it can interact in the ER domain (line 3). We
must also create new rule sets for the new compartment (e.g. init_ER). In general,
any set of rules can be named with this declaration.

Finally, we must add rules to domains to properly handle the actual compart-
ment change. For each compartment change site S in bridge B, we rename S
to a fresh name S_B. In our example, we rename the bind a Cytosol site in
CytERBridge (already renamed once to satisfy property 1) to bind_a CytERBridge.
We make a copy of the rule for the compartment change site as previously named,
change the name to match the new compartment change site, and change the right-
hand site of the rule to refer to binding sites and domains (if any are spawned) for the
new compartment. For example, in MolA _Cytosol, we add the bind_a_CytERBridge
rule (line 4). Now, when a MolA Cytosol domain interacts with the CytERBridge
domain, it activates its bind_a_ER site, indicating its compartment change from
Cytosol to ER.

To perform the above transformation, we must restrict the way in which com-
partment change sites are used. The translation relies on a syntactic analysis
being able to identify precisely all potential interactions on compartment change
sites. Therefore, compartment change sites cannot be “put” onto other sites in
any rule, since the receiver of the compartment change site may also receive other
sites through that reaction, and we cannot distinguish these cases syntactically. In
our example, no rule can put the bind_a site. For similar reasons, bridge domains
cannot receive compartment change sites through a reaction. Sites are generally
transferred between molecules to facilitate further private reactions and thus are
created locally. Therefore, it seems that these restrictions on transferring non-local
sites do not significantly hinder expressiveness.

CorePML to the m-calculus. In this section, we present informally our trans-
lation from CorePML to the w-calculus; a formal presentation is given in Sec. B.
At the top-level, a CorePML model consists of several group and domain decla-
rations with a compose statement, corresponding to all of these entities existing
simultaneously in the pathway. In the m-calculus, this behavior corresponds to a
parallel composition of the translations of the groups and domains. For example,
the Michaelis-Menten model in Fig. 2 would be translated to [Enzyme] | [Protein],
where [Enzyme] and [Protein] are the m-calculus translations of the Enzyme and
Protein domains, respectively.

For translating domains, we adopt the strategy of uniformly making each rule
a “function”. For example, the m-calculus term for the bind_s rule of the Enzyme
domain in Fig. 2 is

I(bsToken().bind_s(release_s, release_p).rsToken() + rpToken())

We create a token channel for each function, e.g. bsToken, to be used for calling a
function; a call is performed by sending on the token channel, and the function does
not perform its action until receiving on the token channel. We translate binding
sites as m-calculus channels, put actions as m-calculus sends, and get actions as -

CHANG AND SRIDHARAN

calculus receives. After performing its put or get action, the rule function enables
the new set of binding sites with the choice operator that non-deterministically
calls one of the newly enabled site’s rule function. In this example, we send on
either the rsToken channel or the rpToken channel, corresponding to calling either
the rule function for release_s or release_p. Finally, we encapsulate the entire
rule function in the mw-calculus replication operator; this allows the function to be
called any number of times (i.e. an unrestricted function). One nice aspect of this
translation is that it handles both recursive and non-recursive references to rules
uniformly.

The translation of a domain is a parallel composition of all its rule functions
with a non-deterministic choice of sends on the token channels corresponding to
rules in the init set. Here is the full translation of the Enzyme domain:

(bsToken().bind_s(release_s, release_p).rsToken() + rpToken())
| W(rsToken().release_s{).bsToken()) | |(rpToken().release_p{).bsToken()) | bsToken()

Note that we ignore handling the scoping of channel names properly here; this issue
and other details are handled fully in the formal presentation.

4 Example: Cotranslational Translocation

In this section, we present an abstract model of the cotranslational translocation of
a general secretory protein across the ER membrane [7, page 698]. We then modify
this model to describe the synthesis and insertion into the ER, membrane of the
GLUT1 glucose transporter [7, page 706] to emphasize the few changes that need
to be made.

Targeting the ER Lumen. In this model, an arbitrary protein is translated
by a ribosome and transferred from the cytosol of a cell into the lumen of the
endoplasmic reticulum (ER) cotranslationally. In our abstraction, a ribosome begins
translating some mRNA exposing a signal sequence. The signal sequence attracts
an SRP (signal recognition particle) that binds to the signal sequence, suspending
translation. The SRP and SRP receptor (located on the ER membrane) interaction
drags the ribosome complex close to the membrane. The signal sequence then
interacts with the translocon gate, opening it as SRP disassociates from the complex.
Translation resumes into the translocon pore, transporting the growing polypeptide
into ER lumen. In the ER lumen, a signal peptidase cleaves the signal sequence,
and then Hsc70 chaperones bind to the growing polypeptide, facilitating the proper
transport and folding of the nascent chain.

The mRNA is ab- domain mrna = dom ()

st'racted as 4 'domain translate # get (done) —> done
with a single site that with done # get () —> translate end
initiates translation. init = [translate]

Degradation of mRNA
is ignored but could be
introduced as another site. ~ Upon reacting on the translate site, the mRNA
instance gets a done site that is used by the bound ribosome to signal when
translation has completed.

end

CHANG AND SRIDHARAN

An abstract

.) ; domain ribosome = dom ()
ribosome in this

create (mrnaDone, ppDone, ppSusp)
translate # put (mrnaDone) —>
[mrnaDone, pptideSusp]
<growingPolypeptide (ppDone, ppSusp)>
mrnaDone # put () —> [ppDone]
ppDone # put () —> [translate,ppDone]
ppSusp # get (restart) —> [restart]
with restart #get () —> [mrnaDone,ppSusp]

model can only
interact with
an mRNA to
begin translation
(indicated by
having one global
site translate),
which instanti-

end
ates/creates a init = [translate]
growingPoly- end

peptide with
two private sites for signaling completion and suspension. Upon interacting with
an mRNA, a private site mrnaDone is exchanged between these particular instances
of the ribosome and the mRNA for indicating completion of translation.

The growing
polypeptide is an
abstraction for
the polypeptide
while it is being
translated that
interacts with

domain growingPolypeptide = dom (done,suspend)
{badDone} done # get () —> [l<badProtein()>
{goodDone} done # get () —> [l<goodProtein()>
srpSigseq # get (sigsegBound) —> [suspend]
with sigseqBound # get () —> [restart] end
create (restart)
suspend # put (restart) —> [sigseqBound]
restart # put O —>
[badDone, transloconSigseq,cleaveSigseq]
transloconSigseq # get (transloconBound) —>
[transloconBound]

several entities.
An ambiguity
from the prose
description is
whether or not
the translocon
can bind to the

with transloconBound
put (done) —> [badDone,cleaveSigseq]

signal sequence end .
without SRP. cleaveSigseq # get () —> [hsc70Polypep,badDone]
Indeed, SRP is hsc70Polypep # get () —> [goodDone]

init = [badDone,srpSigseq,
transloconSigseq,cleaveSigseq]

not essential for
this pathway
to function cor-
rectly [5]. This illustrates that writing formal models can lead to asking important
questions about the functioning of a system and finding potential deficiencies in
existing knowledge to explore. Finally, note that though in our description that the
signal sequence cleavage and Hsc70 chaperone interaction do not occur until the
polypeptide reaches the ER lumen, there is no explicit mention of these conditions;
they instead will be enforced when we instantiate a growingPolypeptide in a
particular compartment. This is fairly close to biology in that we would expect
that a functional signal peptidase could cleave such a signal sequence in vitro,

end

meaning it is the compartmentalization that prevents the interaction, not the
chemical complementarity.

The SRP and SRP
receptor have some
straightforward
actions. The signal
sequence and translo-
con interaction does not
in fact require SRP but
in reality is required to
make the probability
of interaction feasi-
ble. While we do not
currently support any
stochastic modeling, it
should be possible to

inter-

CHANG AND SRIDHARAN

domain srpreceptor = dom ()
srpSrpreceptor # get () —> init
init = [srpSrpreceptor]

end

domain srp = dom ()
create (sigseqBound)
srpSigseq # put (sigseqBound) —>
[srpSrpreceptor]
srpSrpreceptor # put () —> [sigseqNearl]
sigsegNear # put () —> [sigseqBound]
sigseqBound # put () —> init
init = [srpSigseq]
end

incorporate annotations associated with any set of active binding sites. In our

model, the transition involving sigseqNear would signal the translocon that a
signal sequence is near, thereby increasing the probability of interaction (if we had
the ability to specify this).

The translocon is
a membrane protein
potentially with sites
on either the cytosol
or ER

lumen side.

Whatever interacts
with the translocon
on the sigseqBind

site in the cytosol is
transferred into the ER.
This ensures that the
knowledge of compart-

domain translocon = bridge dom ()
create (sigseqBound)
(* Transfer the other molecule to ER. *)
Cytosol transloconSigseq to ER
put (sigseqBound) —> [sigseqBound]

ER sigseqBound # get (done) —> [done]
with Cytosol done # get () —> init end

Cytosol sigseqNear
get) —> [transloconSigseq]
init = [transloconSigseq,sigseqNear]
end

mentalization is confined to the compartment declarations and bridge declarations.
As alluded to in the SRP representation, after the translocon gets the “signal
sequence near” indication (i.e. interaction on the sigsegNear site), the only
possible next reaction is to the bind the signal sequence with presumably higher

probability.

After interacting
with the polypeptide,
the signal peptidase and
Hsc70 simply returns to
the initial state ready
to modify/chaperone
the next polypeptide.
Note, we have modeled
that one hsc70 binding

domain signalpeptidase = dom ()
cleaveSigseq # put (O —> init
init = [cleaveSigseq]

end

domain hsc70 = dom ()
hsc70Polypeptide # put () —> init
init = [polypeptideBind]

end

to the nascent chain is sufficient to produce a “good” protein. We can view this as
the collective of Hsc70 chaperones required to yield the proper folding.

CHANG AND SRIDHARAN

Finally, we place an instantiation of mrna, ribosome, growingPolypeptide, srp,
and srpreceptor in the Cytosol compartment and a copy of signalpeptidase and
hsc70 in the ER compartment. Then, we can group these compartments with an
instantiation of the bridge domain translocon (see the extended version [2] for a
complete listing).

Targeting the ER Membrane. We modify the model in the previous section
to target a protein with a-helical transmembrane segments, such as the GLUT1
glucose transporter, into the ER membrane [7, page 706]. The difference in the
translocation of these proteins is that the polypeptide has a signal anchor (not
at the N-terminus) and then continues with alternations between special segments
called stop transfers and signal anchors; these segments are generally a-helices. The
SRP binds to the first signal anchor, but upon translocation, the N-terminal is left
in the cytosol. When the stop transfer becomes exposed, an interaction pushes the
pair of a-helices into the inner membrane space with the segment between them
residing in the ER lumen. Then, this process repeats for each pair of signal anchor
and stop transfer segments.

The growingPolypeptide is modified to have a stop transfer site transloc-
onStoptransfer. We also simplify and assume that if the signal sequence gets
bound, then a proper GLUT1 protein (glutl) will be produced; this eliminates
the goodDone rule. This also abstracts the multi-step signal-anchor/stop-transfer
process into one step. We have also modeled more explicitly the multi-step reaction,
but since we model no other interactions for the intermediate forms, there is not
much gain for that level of detail. The translocon is almost the same except that
on interaction on transloconSigseq, it no longer does a compartment transfer;
interactions on a new site for the stoptransfer cause a compartment transfer into
the InnerERMembraneSpace (which we also create). These minor modifications to
these two domains are the only ones that need to be made, a promising sign for the
composability of PML. The complete code is given in the extended version [2].

5 Conclusion

We have presented PML, a high-level language for modeling biological pathways.
By abstracting away low-level details, PML makes models easier to write and un-
derstand. The understandability of PML models is also aided by its consistent
biological metaphor of binding sites, its structuring, and its special syntax for com-
partments. PML seems to be a good start for developing a language suitable for
writing modular and readable models of complex pathways.

The m-calculus models we have seen use channels to represent binding sites on
molecules, shared membership in a compartment, and communication between dif-
ferent parts of the same molecule. This overloading of the semantics of channels
makes their models difficult to understand; a loose analogy in programming lan-
guages may be reading Java code versus reading assembly. When reading a model
written in PML, one can, at least, immediately make a rough sketch to see what
is going on. PML also increases composability and modularity. Our consistent
metaphor for language constructs makes it easier for different groups to decompose
their descriptions with the same structure, making them easier to plug together.

10

CHANG AND SRIDHARAN

As acknowledged in Regev and Shapiro [12], their use of private channels to
represent shared membership in a compartment has a number of drawbacks. In
recent work [11], Regev et al. propose a biologically-motivated variant of the am-
bient calculus [1] to handle better compartments. An interesting difference is that
while we use the compartment construct for membrane compartments but retain
the use of private sites for complexing, they choose to express both using ambients.
The introduction of the compartment construct is based largely on the desire to
explicitly separate these two notions. Also, their formalism seems to express better
compartment merging and splitting in addition to transport between compartments.
It may be possible to adapt and extend PML to use the bioambient calculus as the
underlying machine model.

Much work remains to be done to increase the usability of PML, such as how
to properly name domains and binding sites. Names should reflect the function
of a domain or binding site in its context, but it is difficult to create appropriate
names when one is only modeling the functionality of a single pathway. Another
difficult issue is how to properly model proximity of molecules within a compart-
ment. We currently handle these situations, either using a shared private site for
proximity as in Regev’s work or using a signal site to only enable a reaction after
previous steps have occurred. A more general solution to this issue would be of
great benefit in the modeling of many pathways. For simulations of our models to
be useful, they must contain quantitative information about molecular concentra-
tions, reaction rates, etc. We believe that PML readily admits all the quantitative
information given in Priami et al.’s extensions to the m-calculus [10], but this must
be further investigated. Also, graphical tools for both input and display could aid
in the usability and understandability of PML. Lastly, a strong type system could
improve the language in many ways, making it safer and more easily composable,
possibly building on existing type systems for the m-calculus.

Acknowledgments. We would like to thank Roger Brent and his group for valu-
able discussions regarding the benefit of formal descriptions of biological systems,
Aviv Regev for helping us better understand biological modeling in the 7-calculus,
and Gwong-Jen Chang, Robert Schneck, and the anonymous reviewers for their
comments on earlier drafts of this paper.

References

[1] Cardelli, L. and A. D. Gordon, Mobile ambients, Theoretical Computer Science 240 (2000), pp. 177—
213.

[2] Chang, B.-Y. E. and M. Sridharan, PML: Toward a high-level formal language for biological systems,
Technical Report UCB/CSD-03-1251, University of California, Berkeley (2003).

[3] Danos, V. and C. Laneve, Core formal molecular biology, in: P. Degano, editor, 12th European
Symposium on Programming (ESOP), LNCS 2618, Warsaw, Poland, 2003, pp. 302-318.

[4] Goss, P. J. E. and J. Peccoud, Quantitative modeling of stochastic systems in molecular biology by using
stochastic Petri nets, Proceedings of the National Academy of Science USA 95 (1998), pp. 6750—6755.

[5] Herskovits, A. A. and E. Bibi, Association of Escherichia coli ribosomes with the inner membrane
requires the signal recognition particle receptor but is independent of the signal recognition particle,
Proceedings of the National Academy of Sciences USA 97 (2000), pp. 4621-4626.

[6] Karp, P. D., Pathway databases: A case study in computational symbolic theories, Science 293 (2001),
pp. 2040-2044.

11

CHANG AND SRIDHARAN

[7] Lodish, H., A. Berk, S. L. Zipursky, P. Matsudaira, D. Baltimore and J. Darnell, “Molecular Cell
Biology,” W.H. Freeman, New York, New York, U.S.A., 1999, fourth edition .

[8] McAdams, H. H. and L. Shapiro, Circuit simulation of genetic networks, Science 269 (1995), pp. 650—
656.

[9] Milner, R., “Communicating and Mobile Systems: the m-calculus,” Cambridge University Press, 1999 .

[10] Priami, C., A. Regev, E. Shapiro and W. Silverman, Application of a stochastic name passing calculus

to representation and simulation of molecular processes, Information Processing Letters 80 (2001),
pp- 25-31.

[11] Regev, A., E. M. Panina, W. Silverman, L. Cardelli and E. Shapiro, Bioambients: An abstraction for
biological compartments (2003), to appear.

[12] Regev, A. and E. Shapiro, The pi-calculus as an abstraction for biomolecular systems (2003), submitted
for publication.

[13] Regev, A., W. Silverman and E. Shapiro, Representation and simulation of biochemical processes using

the pi-calculus process algebra, in: Pacific Symposium on Biocomputing 2001 (PSB2001), 6, Hawaii,
U.S.A., 2001, pp. 459-470.

[14] Sangiorgi, D. and D. Walker, “The w-calculus: A Theory of Mobile Processes,” Cambridge University
Press, Cambridge, United Kingdom, 2001.

A PML Syntax

In this section, we present the complete syntax of PML. Comments are any sequence
of characters between the comment delimiters (* and *) with proper nesting. We
have three classes of identifiers for rules, rule sets, sites, and blocks (i.e. domains,
groups, and compartments) with ruleid, rulesetid, siteid, and id ranging over the
respective classes. Identifiers can contain letters, numbers, underscore, and single
quotes, and they must start with a letter. A name for any set of rules can be created
with a ruleset declaration; as discussed in Sec. 2, the special init set specifies the
initial set of active binding sites (rules).

We use the following conventions for presenting the grammatical rules. The seq
suffix is used to range over comma-separated sequences. For example, ruleidseq
ranges over comma-separated sequences of ruleids. The (-) brackets are used to
indicate optional phrases. By convention, we use lowercase italics for a variable
ranging over some class written with initial caps; for example, domexp ranges over
DomExp.

Domains
domezp ::= (bridge)
dom(siteidseq) domdesc init = [ruleidseq] end
| id domain identifiers
domdecl = domain id = domezxp
domdesc = - empty
| domdesc1 domdesca sequence
| ruleset rulesetid = [ruleidseq) rule set declarations
| createdecl create sites
| ({ruleid}) (id) siteid (to id) # put (siteidseq) put rules
—> ruleset (<instanceseq>
| ({ruleid}) (id) siteid (to id) # get (siteidseq) get rules
—> ruleset (<instanceseq>) (with domezp end)
createdecl ::= create (siteidseq)
ruleset = init the initial set
| rulesetid declared sets
| [ruleidseq] basic sets

12

CHANG AND SRIDHARAN

Groups
grpexp == (bridge)
grp(siteidseq) grpdesc compose <instanceseq> end
| id group identifiers
grpdecl ::= group id = grpexp
grpdesc = - empty
| grpdesc, grpdesc, sequence
| createdecl create sites
| domdecl domain declarations
| grpdecl group declarations
| comdecl compartment declarations
instance = id(siteidseq)
Compartments
comezrp ::= com(siteidseq) grpdesc compose <instanceseq> end
| id compartment identifier
comdecl ::= compartment id = comexp

B Formal Translation from CorePML to the m-calculus

Recall that at the top-level, a pathway in CorePML is a compose of a set of instanti-
ations of domains and groups. More explicitly, we say that a model at the top-level
is an expression of the form

modeldesc compose <instancey, instances, . .., instance,>
where
modeldesc ::= - empty
| modeldescy modeldesc sequence
| domdecl domain declarations
| grpdecl group declarations

We then define the translation to the w-calculus inductively on the structure of a
CorePML model (modeldesc).

Intuitively, every domain and group represents some biological entity, and we
translate them into m-calculus processes. A compose declaration in the m-calculus is
then a parallel composition of each of the instantiations. A domain is the smallest
unit of mutually dependent binding sites. The rules indicate what dynamic behavior
occurs upon a binding interaction on that site, specifically what set of binding
sites are present in the next state. We then can represent the next reaction as a
competition between all the binding sites in the present site. This can be expressed
by choice between the representation of each of the rules. Because these rules can
be recursive, this translates to a use of replication in the w-calculus in a similar
manner to handling recursive definitions [9,14].

First, let Exp be the set of domain and group expressions (DomExp and GrpExp)
and ¢ : Id — Exp be a mapping from identifiers to domain and group expressions
with § ranging over A. Also, we will need to generate fresh names, we call a token
for translating reaction rules. We write [y/x|P as capture-avoiding substitution of
y for x in P.

We define the translation for group descriptions (grpdesc) [-]grpdesc
GrpDesc — A — A as possibly extending an environment that maps identifiers

13

CHANG AND SRIDHARAN

to domain or group expressions and use this same translation function for model
descriptions (modeldesc) as they are simply a subset of group descriptions.

def
[[‘]]grpdescfs :e 6

def
[[grpdescl grpdescﬂ]grpdesc 6 = [[grpde'SCQ]]grpdesc (ngpdescl]]grpdesc 5)

[domain id = domezp]grpdesc O d:ef 0[id — domezp]
def

[group id = grpexplgrpdesc ¢ = 6[id — grpezp]
The domain and group declarations extend § and sequencing composes the transla-
tions.

The translation of domain descriptions [['Hgomdesc -: DomDesc = A - P — P
translates the reaction rules into a m-calculus process that for each rule. We assume
that we have a mapping p : Ruleld — Token from rule identifiers to fresh tokens
and have made sure any lexical scoping constraints have been respected.

def
H'Hgomdesc P =P

IIdOmd&SCl domdesc2]]gomdesc P def

HdomdechHgomdesc (Hdomdescﬂ]gomdesc P)

Like group descriptions, sequencing just composes the translation.

[{ruleid} siteid # put (siteid1, siteida,...,..., siteidm)

—> [ruleidy, ruleida, . .., ruleidi])<instancei, instances, . . ., instancen >]]gomdesc P

def !(t().siteid(siteidl, siteida, . . ., siteidym).

(p(ruleid1){) + p(ruleidz2){) + - - + p(ruleidy)()
| [instancei]exp 0 | [instancea]exp 6 | - - | [instancen]exp 5))
| P
where t = p(ruleid)

For a put rule, we send on the channel corresponding to the site and enable the
next set of sites. Also, any instantiations are translated. As noted above, the rules
that describe binding reactions on sites can be recursive and can be translated by
using replication. Rather than distinguishing between recursive and non-recursive
rules, we translate each rule uniformly, treating rules, in essence, as unrestricted
(non-linear) function definitions and function calls.
[{ruleid} siteid # get (siteidq, siteida, ..., ..., siteidm)
—> [ruleidy, ruleida, . .., ruleidg]<instancei, instances, ..., instancen>

with domdesc end]}gomdesC P

d:ef !(t().siteid(siteidl, siteida, . . ., siteidym,).

(p(ruleid1)() + p(ruleida){) + - - - + p(ruleid)()
| [instancei]exp 0 | [instancea]exp 6 | - - - | [instancen]exp 6

| [domdescﬂgomdesc 0))
| P
where t = p(ruleid)

The translation for get is similar to put except that the knowledge of the other sites
yields possibly new sites in the with clause.

Instantiations are made with the compose construct that intuitively places a
molecule described by the grp or dom expression in the pathway. We equate sites

14

CHANG AND SRIDHARAN

with channels in the 7-calculus using the same names in both domains. To translate
an instantiation, the translation function [-Jexp - : Exp — A — P creates names
for the local names and substitutes the names given by the instantiation for the
parameters in the body of the translation group or domain expression.

lerp(siteidy, siteida, . . ., siteidy)

create (siteid!, siteid?y, ..., siteid.,)

grpdesc

compose <instancei, instancesa, ..., instancey>
end (siteid), siteid), ..., siteid],)]exp O

def [siteid], siteid), . .., siteid], / siteid1, siteida, . . ., siteidn]
(new siteid!, siteidy, ..., siteid],
[instancei]exp 8" | [instancea]exp &' | -« | [instanceg]exp 6')
where 6’ = [grpdesc]grpdesc 0

The body of the group expression translates to parallel composition on the instances
given by its compose declaration. The instances can be of any of the declarations
in 0 or the domains or groups declared in this group.

[dom(siteid, siteids, . . ., siteidn)
tc:lreatg (siteid!, siteidy, ..., siteid.’,)
omdesc
init = [ruleidy, ruleida, . . ., ruleidy]
endd(sfteid/l, siteidl, . . ., siteidl,)] exp O
< [siteid’, siteidy, . . ., siteid], /siteid1, siteida, . . ., siteidn]
(new siteid!, siteidyy, ..., siteid]),, p(ruleidi), ..., p(ruleidp)

[domdesc], . qese O | p(ruleid1)() + p(ruleid2){) + - - - + p(ruleidy)())

For domains, we must also create new declarations for all rule tokens, ensuring their
proper scoping (the above translation assumes there are p rules in the domain). The
init construct translates to a choice of sending on the tokens for the rules in the set.

[id(siteid’, siteidy, siteid,)]exp O def [6(id)(siteid], siteidy, siteid],)]exp &

This translation simply looks up the expression corresponding to the name in an
expression, and then performs the translation of the instantiation of the expression.

Finally, we can define the translation function [-] from models in CorePML to
the polyadic w-calculus.

[modeldesc compose <instancei,instances, . .., instancen>]

de

lef [instancei]exp 0’ | [instancez]exp 0’ | - - | [instancen]exp &

where 6’ = [modeldesc] grpdesc -

We translate the model description into the domain/group expression environment
and then compose the translations of the instantiations in parallel in that environ-
ment.

15

	Introduction
	PML Models
	Semantics of PML
	Example: Cotranslational Translocation
	Conclusion
	References
	PML Syntax
	Formal Translation from CorePML to the -calculus

