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Abstract

End-User Program Analysis

by

Bor-Yuh Evan Chang

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor George C. Necula, Chair

Program analysis tools are being adopted by industry to improve the reliability

and overall quality of software like never before because they can rule out entire classes of

errors. Yet, today’s tools are far from being as effective or as broadly applied as they could

be because for the most part, they are considered expert tools.

Because of fundamental limitations in what can be computed automatically, all

program analyzers must incorporate some amount of domain-specific knowledge. Typically,

such domain-specific knowledge is either provided by expert-user specification or built di-

rectly into the analyzer. The former approach often expects a high-level of program analysis

expertise, while the latter does not allow for any input from the program developer—the

person who best understands the code being analyzed. Instead, we advocate a more flexible

view where we look to users to cooperate with the analyzer but without expecting them to

be program analysis experts. That is, we make progress towards end-user program analysis
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where non-experts can interact with an analyzer to provide the domain-specific knowledge

it needs in order to give users the analysis results they want.

In particular, this dissertation presents a new technique, based on the end-user

approach, for precise program analysis in the presence of data structures. Program analyzers

that reason precisely about data structures have typically required sophisticated (and thus

often burdensome) logical invariant specifications from the user. Instead, we propose a novel

way to involve the user in guiding the analysis by extracting both the necessary invariants

and reasoning rules from executable assertions.

Our technique is based on data structure validation code that is often written

anyway for testing purposes. From the developer’s perspective, such validation code pro-

vides guidance to the analysis in a familiar style, and we show how our analysis results

can be rendered graphically in a form that is comparable to what might be drawn on a

whiteboard or printed in a textbook. From the analysis tool’s perspective, data structure

validation code provides the essential ingredients for a good abstraction that precisely rep-

resents the important facts while ignoring irrelevant details. The crucial innovations in our

system are automatic methods for understanding and generalizing the developer-provided

data structure validation code specifications in order to make them useful for static program

analysis.

Professor George C. Necula
Dissertation Committee Chair
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Chapter 1

Introduction

Our society continues to become increasingly dependent on software, yet software

systems are full of bugs. As we progress technologically, we desire better machines to ease

the demands on ourselves, but as this happens, the cost of errors becomes ever greater

(financially or even physically). The oft-cited 2002 National Institute of Standards and

Technology report estimates the cost of software errors to the U.S. economy to be $59.5

billion annually, which is about 0.6 percent of the gross domestic product [National Institute

of Standards and Technology 2002]. That amount is more than the total annual revenue of

Microsoft and more than ten times the annual budget of the National Science Foundation!

The case of the Therac-25, a controlled radiation therapy machine that massively overdosed

six people, is a particularly frightening example of minor software errors causing catastrophic

results [Leveson and Turner 1993]. As a result, the software industry is adopting program

analysis tools and techniques like never before (in addition to continued emphasis in testing).

For example, Microsoft distributes its Static Driver Verifier, a compile-time tool for checking
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that Windows device drivers adhere to certain usage rules [Ball et al. 2004]; Airbus applies

the Astrée static analyzer to its safety-critical flight control software [Delmas and Souyris

2007]; and companies, like Coverity, Fortify, and GrammaTech, are marketing static source

code analysis tools.

While testing remains an important technique for improving the reliability and

overall quality of software, program analysis tools are being increasingly adopted because

they can rule out entire classes of errors. Yet, today’s tools are far from being as effective

or as broadly integrated in software engineering processes as they could be because for the

most part, they are still considered expert tools. Except in special circumstances, such

tools are hampered by high false-alarm rates or unsoundness, that is, unless under expert

control, program analysis tools often produce many spurious warnings or otherwise, choose

to potentially miss actual errors.

Program analysis is the systematic examination of program code to automatically

derive properties of the program or verify the absence of errors. At the core of algorithms

for program analysis is a simulation of the program to derive conceptually all possible

states the program may enter. Since this set of states is not computable in general, a

common theme in program analysis design is the necessity for approximation. In other

words, a program analyzer by its choice of approximation is targeted to a particular class

of programs; analyzing programs that fall outside this class yields poor results, such as

spurious warnings, missed errors, or outright rejection of the program.

As a result, an important criterion by which program analyzers are evaluated is

their precision. Precision relates to how large or varied is the class of programs that can
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be effectively analyzed, that is, if a particular property holds for a specific program, can

the analyzer determine that it is the case? While we continuingly want better precision, we

must typically weigh added precision against added complexity. This added complexity may

be in terms of increased computational cost (e.g., to track more detailed information) or

perhaps in terms of decreased usability (e.g., by requiring careful guidance from the user).

I argue that the tension between precision and complexity of analysis has tradi-

tionally led to two conflicting forces in program analysis design. On one hand, we want

to be able to analyze all (or at least more and more) programs, which pushes us toward

powerful and generic verification frameworks that often require expert knowledge to use

effectively and may be difficult to scale to large programs. For example, in the limit, we

provide a suitable logic (perhaps with a mechanized proof checker) and ask the user to

manually write proofs of program correctness. The following statement summarizes this

mentality:

As there are fundamental limitations in what can be decided automatically, why

can’t software developers write more specifications for our analyzer? Then,

we could verify so much more.

On the other hand, we want our tools and techniques to be adopted into mainstream software

engineering processes, which means they must be easy to use and scale to large, “real-world”

programs. This desire drives us toward “fully-automatic” analysis tools that try to shield

the user from the intricate details of the analysis algorithm or logical formalism. With this

mindset, we, as program analysis builders, study and try to understand a class of programs,

and then, we design an analysis approximation tailored to that class. We hope this class is

“interesting” or “representative” and live with poor results for programs outside this class.
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The following statement sums up this reaction:

As software developers won’t or are unable to write sophisticated specifications

for our analyzer, we should design “fully-automatic” analyzers (though perhaps

coarse) that hopefully work most of the time.

While the “fully-automatic” or specialized approach has yielded recent successes, such as

the aforementioned tools being used in industry, what should we do when we again run

into the fundamental limitations? For example, it may be quite difficult to patch such an

analyzer to enlarge the class of analyzable programs (i.e., to be more precise) without giving

up the original usability properties of the analyzer.

1.1 Thesis Statement

My thesis is that with a slight shift in mentality toward the user of the analyzer,

we can make progress toward more precise program analysis without sacrificing usability.

Instead of strictly demanding either specification based on the needs and formalism of the

analysis tool or nothing at all, we advocate a more flexible view. In particular, we shift our

mindset to the following:

Analyses improve with more information about the program. Can we design

program analyzers around the user to obtain additional information?

As an example, software developers already write testing code to improve software quality.

Can we adapt an analyzer to use those as specifications? Can we involve the user in the

program analysis without expecting the user to be a program analysis expert, thereby

enabling end-user program analysis? To be unambiguous when referring to the various
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human participants, I utilize the term user to mean the user of program analysis (as opposed

to of software). Typically, the target user of program analysis corresponds to the software

developer, as they can use analysis tools to help them better understand and eliminate

errors from their code.

The focus of this dissertation is a new technique, based on the end-user approach,

for precise program analysis in the presence of heap-allocated data structures (known as

shape analysis). Program analyzers that reason precisely about data structures have typ-

ically required sophisticated (and thus often burdensome) logical invariant specifications

from the user. Instead, we propose a novel way to involve the user in guiding the analyzer

by extracting both the necessary invariants and reasoning rules from executable assertions

in the code. This work targets software developers, as it examines how to take information

about the data structure known to the developer and often expressed as testing code in

order to reason effectively about data structure use (discussed further in Section 2.3).

1.2 A Brief Survey of Program Analysis and Verification

The general area of program analysis and verification is among the oldest in com-

puter science. Early on, prominent figures, such as Floyd, Hoare, and Dijkstra, recognized

the need for techniques and methodologies to deal with the growing complexity of computer

programs (even in the 1960s and 1970s!). Over the years, this universal problem has been

tackled by many, and several important techniques have been developed that have each led

to distinct subareas with their own communities. As such, the aim of this section is not to

provide a complete history of program analysis and verification but rather to speak broadly
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and touch upon the generic-specialized tension that motivates this dissertation.

Deductive Verification

At the foundation of program analysis and verification are ways to describe pro-

gram behavior mathematically. Floyd [1967] and Hoare [1969] set the stage by pioneering

the use of logical formulas to describe program behavior. By viewing program states as logi-

cal formulas and interpreting programs statements as predicate transformers, they provided

a generic, mathematical framework for reasoning about programs (in what we call today

program logics or Hoare logics). Dijkstra [1976] took this a step further by promoting the

development of programs along with proofs of their correctness simultaneously. The draw of

this technique is its generality; however, a major difficulty that arises is the need to specify

loop invariants; a loop invariant characterizes the program state at a point inside the loop

regardless of how many times the loop executes. Loop invariants tend to be complex and

thus are notorious for being a difficult specification to provide.

Probably some of the most successful tools based on deductive verification per-

form what is called extended static checking (e.g., ESC/Java [Flanagan et al. 2002] and

Spec# [Barnett et al. 2004]) where the focus is not full verification but to check run-

time assertions (e.g., null-deference, array out-of-bounds, and developer-written assertions).

In such systems, user effort is mitigated by using automated theorem proving technology

(though loop invariants are still required for sound verification). On one hand, these tools

are generic in that they permit expressive specifications, but at the same, they are special-

ized in that the limitations of automated theorem proving technology confine what can be

checked effectively.
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Model Checking

Model checking [Clarke and Emerson 1981; Queille and Sifakis 1982] advocates a

fairly different approach where the focus was originally on verifying finite-state systems by

exhaustive exploration of the space of computation states according to a specification in

temporal logic. Within the past ten years, there has been a surge in tools applying model

checking to software through the use of abstraction (i.e., a way to summarize potentially

infinite sets of computation states) and specific techniques, such as, predicate abstraction

and counterexample-guided abstraction refinement (e.g., SLAM [Ball and Rajamani 2001]

and BLAST [Henzinger et al. 2002]). A particularly appealing property of this method is

that model checkers are generally fully-automatic and thus require little or no programmer

involvement. Roughly speaking, counterexample-guided abstraction refinement is a way to

“auto-tune” the analysis abstraction based on the property of interest. The aforementioned

success of Microsoft’s Static Driver Verifier is a direct evolution of the SLAM project. These

tools are specialized to a large degree, as predicate abstraction fixes a family of abstractions

over which the refinement algorithm explores. With end-user program analysis, we take

a slightly different perspective where we want to involve the user in coming up with the

appropriate abstraction for the program of interest.

Abstract Interpretation

If we allow the analysis builder to design a custom abstraction or representation

of the program state, then we leave it to the analysis designer to ensure that the analysis

captures the facts of interest and that loop invariants can be inferred. This premise is the
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basis of data-flow analysis [Kildall 1973] and abstract interpretation [Cousot and Cousot

1977]. Abstract interpretation provides a framework for the design of sound program anal-

yses based on using a custom abstraction of program states. Its theory frees the analysis

designer to use even unbounded abstractions provided a widening operator for ensuring

convergence is defined. The previously mentioned Astrée static analyzer is a success that

can be attributed to this approach. Through a close collaboration with industry experts

from Airbus, the designers have built a tool capable of analyzing real flight-control software

with few or no false alarms [Blanchet et al. 2003]. At the same time, like many abstract

interpretation-based program analyzers, Astrée is very specialized to the problem domain

(specifically, for control-command embedded code). When it comes to safety-critical code,

it may be appropriate and feasible to have a team of analysis designers and domain experts

work closely to build a custom analyzer, but perhaps not in less demanding situations.

The Three-Valued Logic Analysis (TVLA) framework [Sagiv et al. 2002] is an exception to

specialized abstract interpreters; it is a very generic and powerful analysis framework based

on abstract interpretation. With TVLA, the user can specify the properties of interest by

defining instrumentation predicates (in first-order logic with transitive closure), and the

framework provides a mechanism to ensure convergence (canonical abstraction). While its

allure is certainly its generality, defining the right instrumentation predicates are critically

important for precision and efficiency. The primary application of TVLA has been to shape

analysis, so I discuss it further in Section 2.2. With end-user program analysis, we largely

take the abstract interpretation view, but we find ways to involve the user in customizing

the abstraction (without expecting the user to be a program analysis expert).
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Type Systems

Lastly, there has been a formalism and analysis technique based on user-supplied

specifications that has seen fairly widespread adoption. Static type systems have long been

part of fairly commonly used languages, like ML, but have also made their way into main-

stream languages used in industry, such as Java and C#. Type systems prevent errors by

classifying values into types (e.g., integers, functions) and prescribe rules that prevent oper-

ations from being performed on inappropriate types (e.g., adding an integer to a function).

At a high-level, type inference [Milner 1978] is a program analysis where user-defined types

contribute some basic amount of user involvement in abstraction. While most uses of type

systems try to strike a balance between the expressiveness of the types and the ability to

check them without “too much” user annotation, at its limit (e.g., in the interactive theorem

proving environment Coq [Bertot and Castéran 2004]), it is a logical specification language

where checking requires annotations at least akin in complexity to loop invariants. With

end-user program analysis, we look to typical type systems as an example of user-friendly

program-specific abstraction, but we take a more liberal view on how to involve the user to

try to get, for instance, invariant inference.

1.3 Dissertation Outline

Chapter 2 provides an overview of shape analysis and our contributions (with little

analysis expertise expected). In that chapter, I discuss further why reasoning about the heap

and heap-allocated data structures is one of the main limitations in today’s development

tools and why shape analysis is a good case study for end-user program analysis. I also
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present an overview of our tool and techniques by following example analyses from the

user’s perspective. Through this process, I identify the main components of our analyzer

and motivate their design. The details of the design, implementation, and evaluation of

our shape analysis tool, Xisa, are then described in Chapter 3, Chapter 4, and Chapter 5.

Finally, in Chapter 6, I provide some concluding thoughts, summarize the contributions of

this dissertation, and propose some directions for future work.
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Chapter 2

Overview: Analyzing Code with

Unbounded Data Structures

Heap manipulation (e.g., via pointer updates) is fundamental in almost all soft-

ware developed today, especially those developed using main-stream, large-scale, imperative

programming languages, such as C, C++, Java, and C#. Tools that aim to verify properties

of interest, perform complex program transformations, such as code refactoring, or provide

useful information during development time often require detailed aliasing and memory

structure information. Yet, one of the main weaknesses of program analyzers today is their

inability to reason precisely about heap manipulation, particularly when objects of inter-

est are put into data structures. These issues are only exacerbated by a trend towards

more software being built with ever more dynamic languages, such as Perl, JavaScript, and

Python.

Shape analyses examine how to define and manipulate precise heap abstractions
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even in the presence of unbounded data structures (e.g., lists and trees). This property

makes them unique in the kind of detailed aliasing and memory structure information

they can provide and thus useful in improving program analyzers today that, for example,

try to eliminate memory safety errors (e.g., leaks, dangling pointers), resource usage bugs

(e.g., with locks, file handles, and database connections), or concurrency errors (e.g., data

races). They can even be used to perform complex program transformations, like compile-

time garbage collection (e.g., Arnold et al. [2006]). Unfortunately, because of precision

requirements, shape analyses have been generally prohibitively expensive to be broadly

used in practice.

In the remainder of this chapter, I give some background showing some of the

challenges with reasoning about unbounded data structures and highlighting some of the

characteristics of shape analysis (Section 2.1). I then survey prior work on shape analysis

(Section 2.2) as context for our end-user approach (Section 2.3) before providing an in-

troduction to our tool and techniques from the user’s perspective (Section 2.4). Finally, I

conclude the chapter with a summary of the contributions of this work (Section 2.5).

2.1 Background: Shape Analysis

This section provides some basic background in shape analysis. The aim is to

give an introduction to the problem addressed by shape analysis and capture some of its

distinguishing features to help make the presentation of our analysis in subsequent sections

clearer; it is not necessarily intended to be a complete treatment of the discussed concepts

and terminology. Further discussion can be found in the overview texts by Reps et al. [2007]
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and Nielson et al. [1999].

2.1.1 Defining Shape Analysis

As a concrete example for how shape analysis can be used, we consider a program

analysis that checks for the proper usage of a locking interface. In particular, we look

at checking that the program never tries to re-acquire a lock it has already acquired

(within the same thread), that is, for any call to acquire, we want to ensure the following

precondition:

assert(lock has not been acquired by this thread);

acquire(lock);

Many tools and techniques have been developed to check this kind of property (e.g., see Ball

and Rajamani [2001], Henzinger et al. [2002], Das et al. [2002], Fähndrich and DeLine [2002],

or Fink et al. [2008]). Microsoft’s Static Driver Verifier, one of the previously mentioned

industrial tools, tries to eliminate bugs of this form.

The analysis problem becomes more difficult when locks (i.e., the objects of inter-

est) are put into data structures, and it is in this situation that such higher-level analyses

could benefit from shape analysis. To illustrate the added complexity from data structures,

we consider a simple function that takes a singly-linked list of unacquired locks and calls

acquire on each lock in the list (see Figure 2.1). In Figure 2.1(b), I present the function

annotated with informal graphical representations of the memory state at a few program

points (shown boxed). On the left, I show an “ideal analysis state” that alludes to an

unbounded number of configurations (depending on the length of the list and the loop it-

eration). Assuming the function takes a list of unacquired locks, the acquire statement
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typedef struct LockNode { Lock lock; struct LockNode *next; } LockNode;

(a) A C type definition for a singly-linked list node containing a lock.

void acquire all(LockNode *l) {

LockNode *cur;

1
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�

�
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l l l
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cur = l;

2 while (cur != null) {
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or
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l,cur l,cur

curl

l,cur

curl

or or

or

�
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�
l,cur

assert(cur->lock has not been acquired by this thread); acquire(cur->lock);

4 cur = cur->next;

5 }

6 }

ideal analysis state abstraction without shape

(b) A function that acquires a list of locks in C.

Figure 2.1: An example to illustrate some challenges in analyzing unbounded data struc-
tures. The code in (b) is annotated with informal graphical representations of the memory
state at a few program points (shown boxed). The memory states on the left depict “ideal
analysis states” where no information is lost with respect to the data structure. In those
pictures, the boxes represent linked-list nodes and are labeled with whether the state of
the lock is unacquired (light/blue) or acquired (dark/red). The memory states on the right
show a typical abstraction for data structures that collapse all nodes into one abstract ob-
ject. An assert statement is included at program point 3 to emphasize the “no double
acquire” property that we are trying to check.
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at program point 3 does indeed respect the locking protocol (as can be seen in the “ideal

analysis states”). Unfortunately, since we cannot, in general, represent an unbounded set

of configurations, a program analysis must perform some kind of abstraction (notated with

the large arrow in Figure 2.1). A typical abstraction for data structures is where all nodes

of the data structure are represented by one abstract object (as shown on the right). At

program point 3, because the locks in the list may be unacquired or acquired, this abstrac-

tion can only say that the abstract object (representing all elements of the list) may be

unacquired or acquired. As we cannot distinguish the unacquired nodes from the acquired

ones, the analysis has lost the information that cur->lock is in fact an unacquired lock.

To be sound, such an analyzer must conservatively report that the acquire statement as

potentially buggy—raising a false-alarm. The issue is a matter of precision; this abstraction

is not precise enough to capture that cur->lock is always an unacquired lock. No program

analysis can be perfectly precise, but this example shows a situation that could benefit from

shape analysis. Here, we have an abstraction that does not take into account any shape

information; for example, the abstraction would be same if we instead had a tree of locks.

In Figure 2.2, we consider informally an abstraction that takes into account shape

information for analyzing the acquire all code. At program point 1, we assume that l

points to a memory region of linked-list nodes with unacquired locks, capturing basically

the same information as the abstraction in Figure 2.1. However, at program point 3, this

analysis with shape information splits that region into two parts: one between l and cur

where the locks have been acquired and one from cur where the locks are still unacquired.

In particular, we have that cur->lock is unacquired at that point giving us enough precision
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void acquire all(LockNode *l) {

LockNode *cur;

1
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assert(cur->lock has not been acquired by this thread); acquire(cur->lock);

4 cur = cur->next;

5 }

6 }

ideal analysis state abstraction with shape

Figure 2.2: A revision of the example in Figure 2.1 that uses an analysis abstraction with
shape information. The wide rectangles represent singly-linked list regions (i.e., segments)
of locks, which may be unacquired (dark fill/blue) or acquired (light fill/red).
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to determine that the acquire statement is indeed fine.

Typically speaking, shape analysis is concerned with providing precise information

about the arrangement of heap-allocated data structures (e.g., a variable points to an acyclic

singly-linked list, a cyclic doubly-linked list, or a binary tree). That is, the focus is on pointer

values rather than scalar values, and pointer properties (e.g., nullness, may-aliasing, must-

aliasing, sharing, and cyclicity) are constituent properties of or derived facts from shape

invariants. With this example, we have taken a more inclusive perspective mixing shape

properties (e.g., l points to a singly-linked list) and data properties (e.g., cur->lock is

unacquired). We see that the shape information serves as a foundation for checking the

higher-level locking property.

From this example, we observe some of the characteristics of shape analysis. Shape

analysis, by its nature, is flow-sensitive, that is, it respects the control-flow of the program

and the execution order of statements. In the examples, the flow-sensitivity is indicated by

showing distinct abstract memory states at different program points. One distinguishing

feature of present-day shape analysis is that the heap abstraction, that is, the partition-

ing of memory into regions, also depends on the program point (contrast Figure 2.1 and

Figure 2.2). In Figure 2.1, the abstraction of the list nodes into one region—one abstract

object—is the same at all program points even though the analysis is flow-sensitive. Fig-

ure 2.1 shows, in essence, an acquire checker built on a typical pointer analysis where

the heap abstraction is fixed. There has been work that tries to recover some amount of

precision from such fixed heap abstractions by integrating with the high-level property of

interest (e.g., Fink et al. [2008]). Instead, we will look directly at the shape analysis problem
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and explore how to make it more practical by taking the end-user approach.

To summarize, a shape analysis computes for a given program, at each program

point,

a bounded abstraction of the memory state with distinguishable descriptions of

the heap-allocated data structures.

Shape analyses vary widely in their heap abstraction and how they derive invariants (see

Section 2.2). Yet, there are some common underpinnings in how they obtain precise heap

descriptions on a per program point basis. In the next subsection, I sketch the key operations

common to many shape analysis algorithms (including ours) to set the stage for describing

how they are instantiated in our design.

2.1.2 Shape Analysis Operations

We consider shape analysis in the context of a standard forward abstract inter-

pretation [Cousot and Cousot 1977]. A local invariant (e.g., an abstract memory state)

is computed automatically for each program point by interpreting program statements ac-

cording to an abstract semantics (i.e., by simulating the program on abstract memory

descriptions). Provided an appropriate abstraction is set up, we get a high degree of au-

tomation, as there is no need to manually describe complicated intermediate states (e.g.,

loop invariants). Alluding to our approach (Section 2.3), the user is, in essence, involved in

customizing the shape abstraction so that it is appropriate for the program being analyzed.

To analyze a program, we need abstract transformers that take an abstract memory

state and alter it appropriately to reflect update statements. In shape analysis, the heap

abstraction gives a finite partitioning of memory into regions where each region is a summary
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Materialization: Splitting of summaries.

l cur l cur

(a)

Precise Update: Reflecting state change precisely.

l cur l cur

(b)

Summarization: Consolidating for termination.

l curl cur

(c)

Figure 2.3: Key operations in shape analysis. These diagrams refer loosely to the example
presented in Figure 2.2.

of a number of possible concrete memory cells. A challenge in designing a shape analysis

is to define a way to reflect update statements on summaries precisely. Figure 2.3 presents

schematically the key components in many shape analysis algorithms (including ours) that

makes this precise reasoning possible.
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Materialization

To reflect state change precisely, contemporary shape analyses first perform a split-

ting of summaries known as materialization, which exposes concrete cells locally around

where an update applies. In Figure 2.3(a), I show a materialization of a concrete node at

the cursor cur from the summary region. From the analysis point of view, this refinement

step is crucial for precision (e.g., in the analysis of traversals through pointer-based data

structures). Chase et al. [1990] had observed that keeping instances of concrete cells sep-

arate from summaries is critical for precisely analyzing data structure operations. Sagiv

et al. defined an early materialization operation to obtain concrete instances from sum-

maries [Sagiv et al. 1998], and then made a further innovation by viewing the operation as

“partial concretization” [Sagiv et al. 2002].

As shown, this step is much like what we might expect to see in whiteboard

drawings during a manual code review. We intuitively understand what singly-linked lists

look like and that the dark blue box is a singly-linked list of unacquired locks. Whereas,

for an automated shape analysis, the challenge is how does it carry out such a splitting

operation and how does the analysis know where to apply it.

Precise Update

Once concrete cells have been materialized, updating the memory state seems fairly

straightforward. In Figure 2.3(b), I depict a change of the lock state and the advancement

of cur (i.e., the result of interpreting the loop body of the example in Figure 2.2 from

program point 3 to point 5).
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Note that the materialization operation enables the shape analysis to perform

precise updates in that the update of the analysis state applies to exactly one concrete cell.

Enabling this property is what makes materialization crucial for precision. We observe that

without materialization, the best invariant we could hope for in this case is where we have

that l and cur point to a region with locks that could be either acquired or unacquired,

which is basically the invariant at program point 3 in Figure 2.1.

Summarization

With materialization, in order for a shape analysis to converge, it needs to have

a summarization operation that “re-summarizes” concrete cells—in an informal sense, an

inverse to materialization (as shown in Figure 2.3(c)). For instance, with just materialization

while analyzing the loop in our example program (Figure 2.2), we could always materialize

at cur and consider the case of a linked list with one more node on each iteration (i.e.,

computing an abstraction for each row of the “ideal analysis state” on the left). The

challenge in designing a summarization operation is how to prevent losing too much precision

while ensuring termination.

2.2 State of the Art in Shape Analysis

Shape analysis has long been an active area of research with numerous algorithms

proposed and systems developed. In this section, I provide an overview of the main tech-

niques to set up a comparison with our end-user approach in the next section (Section 2.3).

The focus in this section is on shape invariant inference techniques, though I mention some
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related work on heap reasoning in general at the end.

An early work on shape analysis for languages with destructive update was that

of Jones and Muchnick [1981]. Their analysis abstracted memory as sets of shape graphs

where a node corresponded to an access path from a program variable (i.e., a sequence of

field reads from a variable). To ensure finiteness of the shape graphs, they introduced the k-

limiting approximation where access paths with length greater than k are truncated. Cells

reachable only by longer accessed paths are collected into one summary node. Summary

nodes correspond to memory regions of basically arbitrary structure, though they did carry

two pieces of additional information: whether the region may contain sharing (i.e., has a cell

that may be pointed to by more than one other cell) and whether the region may contain a

cycle. Stated differently, this analysis along with the sequence of work that followed it based

on k-limiting were largely agnostic to the particular data structure. This trait meant they

lost most information on code that traversed and manipulated cells beyond the k-limit (e.g.,

they could not show that a list was obtained after a destructive list reversal operation). As

alluded to in the last section (Section 2.1), this kind of precision requires materialization,

which means the analysis needs to be data structure-specific to some degree.

TVLA [Sagiv et al. 2002] is a well-known, very powerful and generic framework

based on three-valued logic and is probably one of the most widely applied shape analyzers

for verifying deep properties of complex heap manipulations (e.g., Loginov et al. [2006] and

Lev-Ami et al. [2000]). The framework is parametric in that users provide specifications

(instrumentation predicates) that affect the kinds of structures tracked by the tool. Instru-

mentation predicates are defined in terms of predicates describing the nodes pointed to by
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program variables and the connectivity of the nodes given by the fields (the core predi-

cates) using first-order logic with transitive closure. For example, common and important

instrumentation predicates include reachability and sharing properties:

reachx,next(n) def= x(n) ∨ ∃n0. x(n0) ∧ next+(n0, n)

sharednext(n) def= ∃n1, n2. next(n1, n) ∧ next(n2, n) ∧ n1 6= n2

where x indicates a cell that is pointed to by a program variable x and next is a binary

relation that says the next field of the first cell points to the second cell1. Instrumen-

tation predicates allow the analysis to keep some data structure-specific properties about

summaries so that the information can be used when materializing. While flexible and

expressive, a large amount of follow-on and ongoing work on this topic addresses improv-

ing scalability. For instance, as instrumentation predicates may reference anywhere in the

global memory state, eliminating infeasible memory states (the coerce operation) can be

expensive, though recent techniques have made significant improvements [Bogudlov et al.

2007]. Yahav and Ramalingam [2004] partition the memory state into regions that are

either tracked more precisely or less precisely depending on their relevance to the prop-

erty in question. Manevich et al. [2004] describe a strategy to merge memory states whose

canonicalizations are “similar” (i.e., have isomorphic sets of individuals). Arnold [2006]

identifies an instance where a more aggressive summarization loses little precision (by al-

lowing summary nodes to represent zero-or-more concrete nodes instead of one-or-more).

Manevich et al. [2002] examine how to compactly represent this style of logical structures.

Additionally, motivated at least in part by the efficiency cost of TVLA’s generality, there

has been work on specialized analyzers based on shape graphs that integrate properties for
1While I have provided the defining formulas to provide some intuition, understanding their exact meaning

is not necessary at this point.
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particular kinds of data structures (e.g., Lev-Ami et al. [2006]). Separately, there also has

been some work on specialized shape analyzers (e.g., for singly-linked lists and trees) based

on encoding into predicate abstraction frameworks (e.g., Balaban et al. [2007])

In the past few years, there has been a growing interest in shape analyses based

on inductive definitions in separation logic. Most of the work in this area builds into

the abstraction particular inductive definitions that correspond to data structures of in-

terest (along with materialization and summarization rules). The first version of Space

Invader [Distefano et al. 2006] summarizes singly-linked list regions using an inductive

predicate for non-empty list segments:

ls(b, e) def= (b 7→ e ∨ ∃n. b 7→ n ∗ ls(n, e)) ∧ b 6= e

where b and e are the beginning and ending cells of the list segment, respectively2. Berdine

et al. [2007] have extended this framework to apply to doubly-linked lists polymorphically.

Specifically, they infer invariants for nested list data structures. While the outer list struc-

ture is built-in (as a higher-order inductive predicate), they infer automatically a description

for the shape of the “list node”. Magill et al. [2007] have also extended this approach to

lists with a length parameter, which allows them to check programs where safety depends

on the length of the list. Calcagno et al. [2006] demonstrate how to analyze a memory allo-

cator, showing that inductive definitions in separation logic can accommodate conversions

between a word-level view and an object-level view.

Lee et al. [2005] propose a shape analysis where memory regions are summarized
2While understanding the exact meaning of this predicate is also not necessary at this point, it says that

a list segment is composed of either one memory cell with address b and contents e (i.e., b points to e) or
one-or-more cells where the first has b points to n and separately the remaining ones form a list segment
from n to e (with b 6= e).
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using grammar-based descriptions (which are then formalized as inductive predicates in

separation logic). In contrast to the analyses described in the last paragraph, their analysis

derives these descriptions automatically from the construction of the data structure (for a

certain class of tree-like structures). Guo et al. [2007] describe a global shape analysis that

also synthesizes inductive shape invariants from construction patterns present in the code.

The class of shapes they consider is larger, and their data structure descriptions are directly

inductive predicates in separation logic.

The abstract interpretation-based analysis proposed by Gulwani and Tiwari [2007]

is based on an encoding of shape invariants into rather expressive ∃∀ quantified formulas.

The existential essentially specifies an endpoint for a memory region, while the universal is

used to summarize the cells between the beginning of the structure and the endpoint. The

technique does not make use of any explicit separation and thus requires may and must

alias information to be recomputed on the fly; however, it does make it easier to integrate

with standard numerical domains to reason about arrays.

In a rather different direction, Hackett and Rugina [2005] present a shape analysis

that first partitions the heap using region inference and then tracks updates on representa-

tive heap cells independently. While their abstraction cannot track certain global properties

like the aforementioned shape analyses, they make this trade-off to obtain a very scalable

shape analysis that can handle singly-linked lists. Cherem and Rugina [2007] have extended

this analysis to handle doubly-linked lists by including the tracking of neighbor cells at a

very reasonable cost. However, it is not clear how to extend the analysis to more global

properties amenable to the shape analyses mentioned previously.
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Other Heap Reasoning Techniques

There is a vast literature pertaining to reasoning about the heap and data struc-

tures within each of the main areas of program analysis and verification discussed in Sec-

tion 1.2. Here, I point out some of this work, focusing on aspects most related to our

approach.

Pointer analysis serves a similar purpose as shape analysis by providing aliasing

information to higher-level client analyses. While there is a large variance in the precision of

pointer analysis algorithms, the distinguishing feature between pointer analysis and shape

analysis is the model of the heap (as alluded in Section 2.1). Pointer analysis algorithms

typically use a fixed partitioning of memory based on the static allocation site. Hind [2001]

provides a survey of pointer analysis techniques. A kind of intermediate precision approach

(i.e., a lightweight shape analysis) has been described by Ghiya and Hendren [1996] where

path matrices are used to infer one level of shape information.

Reasoning about arrays is related to shape analysis over pointer-based data struc-

tures in that the array cells must be summarized. To derive relations between the contents

of array cells, there must also be a partitioning into summaries and concrete cells. Some in-

ference techniques that can derive relations about the contents of array cells include Gopan

et al. [2005], Gulwani et al. [2008], and Halbwachs and Péron [2008].

Many deductive verification techniques have also been applied to pointer-based

data structures. These techniques are typically based on verification-condition generation

and thus require loop invariants. The Pointer Assertion Logic Engine (PALE) [Møller

and Schwartzbach 2001] is such a system based on monadic second-order logic. Wies et al.
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[2006] have extended PALE with non-deterministic field constraints (and some loop invariant

inference), which enables some reasoning of, for example, skip list structures. Also, in this

category, McPeak and Necula [2005] have identified a class of local equality axioms in first-

order logic that can describe many common data structure invariants and have given a

complete decision procedure for this class. Chatterjee et al. [2007] provide a logic with a

reachability predicate but are able to discharge most proof obligations using a first-order

theorem prover through a novel axiomatization. There are also a few verification systems

based on inductive definitions in separation logic [Berdine et al. 2005; Nguyen et al. 2007].

There has also been work on language-based approaches where a specialized lan-

guage is developed in conjunction with a type system that permits the specification of richer

data structure invariants (than in typical type systems). Shape types [Fradet and Métayer

1997] allow for the specification of tree-like data structures with back and cross pointers

in a fairly compact manner. For checking, the programs must be written in a specialized

language Shape-C (which can then be translated to C). The aforementioned analysis of Lee

et al. [2005] essentially looks at inferring shape type descriptions. In functional languages,

there has been work in defining restricted forms of dependent type systems (e.g., refinement

types) that can capture some data structure invariants (e.g., Xi and Pfenning [1999], Dun-

field [2007]). One question is whether it is necessary to provide specifications of temporary

invariant violations that depend on the code to be checked.
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2.3 Approach: Invariant Checker-Based Shape Abstraction

As we saw in Section 2.1, shape analysis and program analysis in the presence of

heap-allocated data structures in general demand a high degree of precision. For instance,

we see this need for precision manifest in the program point-specific heap abstraction in

Figure 2.2. Broadly speaking, this need for precision in shape analysis has only accentuated

the divide between generic and specialized approaches to program analysis with different

kinds of successes. As an example, under expert control, the TVLA system has been used

to verify correctness of exceedingly complex algorithms (e.g., the Deutsch-Schorr-Waite

stackless tree traversal algorithm [Loginov et al. 2006]). At the same time, the Space

Invader tool has very recently been applied to check pointer safety of reasonably-sized,

list-manipulating Windows and Linux device drivers (≈1,000–10,000 lines of C code) [Yang

et al. 2008]. With such a sharp divide, we see an opportunity for end-user shape analysis. In

particular, the kind of data structures used (e.g., singly-linked list, doubly-linked list, binary

tree, skip list) and the kinds of properties of interest (e.g., shape, sortedness, balance) are

fundamentally program-specific. Consequently, shape analyses need and stand to benefit

from increased developer involvement.

Research Question. A shape analysis needs to build abstractions that are data structure-

specific. For an end-user shape analysis, we would like to obtain data structure descriptions

from the developer that specify the kind of shape and data properties of interest without

expecting the user to be a program analysis expert. The research question is what are

appropriate and useful end-user data structure specifications, and how can a static shape
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analysis be designed to take advantage of them.

Our Answer. Our approach is based on using run-time validation code as a specification

for static analysis. The key observation we make is the following:

Developers often provide the building blocks for such program-specific shape

abstractions in the form of data structure validation code.

Data structure validation code, or a data structure invariant checker, is a traversal through

memory that checks that the data structure has the expected shape and data properties. As

a simple example, we have the following singly-linked list checker (expressed in an untyped,

pseudo object-oriented notation):

Example 2.1 (A singly-linked list checker definition).

l.list() := if (l = null) then true

else l.next.list()

In this notation, I distinguish a traversal parameter (i.e., the root pointer l) that is the

cursor used to recursively traverse the data structure. This checker simply walks along

next fields until reaching null where it returns true and does little “checking” per se. For

an example of a more involved shape, Figure 2.4 presents a checker for a (two-level) skip

list [Pugh 1990]. The skip list checker can fail if, for instance, the skip field of a level 0

node is not null.

Such data structure validation code is, at times, already written and used by devel-

opers for testing or dynamic analysis. They have even been championed in undergraduate

programming methodology textbooks (e.g., repOk methods in Liskov and Guttag [2000]).

Our technique looks at taking advantage of such “specifications” in static analysis. We will
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typedef

struct SkipNode { int data; struct SkipNode *skip, *next; }

SkipNode;

(a) A C type definition for a two-level skip list node.

l.skip1() := if (l = null) then true

else l.skip.skip1() and l.next.skip0(l.skip)

l.skip0(end) := if (l = end) then true

else l.skip = null and l.next.skip0(end)

(b) A two-level skip list checker definition.

skip

next

skip

next
level 1

level 0

(c) An example instance of a two-level skip list (satisfies skip1).

Figure 2.4: Describing a two-level skip list. The skip1 and skip0 checkers in (b) together
walk over and specify the shape of two-level skip lists. In such a skip list, each node is either
level 1 or level 0. All nodes are linked together with the next field, while the level 1 nodes
are additionally linked with the skip field. The skip field of a level 0 node should be null.
Note that to keep the definitions compact, these checkers do not specify that the last node
has to be a level 1 node (as is sometimes required); this constraint could be specified with
an additional case in skip1.
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need restrictions on the form of the checkers, which then impact the kinds of data structures

that can be expressed (see Section 3.2). There will necessarily be a give and take between

what the developer wants to write that can easily be checked dynamically and what is fea-

sible in our static analysis. Nonetheless, from the developer’s perspective, checkers provide

guidance to our shape analysis in a familiar style, and because of the guidance, we show

how our analysis results can be rendered graphically in a form comparable to what might

be drawn on a whiteboard or printed in a textbook (see Section 2.4).

In some respects, inductive definitions, like those given by data structure invari-

ant checkers, are a natural fit for shape analysis, seemingly evidenced by the many shape

analyses being built around them (e.g., Distefano et al. [2006], Berdine et al. [2007], Magill

et al. [2007], and Guo et al. [2007]). As described in Section 2.1.2, a key component of shape

analysis is materialization. With inductive definitions, a natural materialization operation

is to consider unfolding the definition; in terms of validation code, we can imagine unfold-

ing one recursive step of the checker execution. In brief, a nice property of using invariant

checkers “as specification” is that they are not only a familiar way for the developer to

describe the data structure invariants but also express developer intent on how the data

structure should be used.

Our approach essentially strikes a balance between the generic and the special-

ized views. TVLA [Sagiv et al. 2002] derives its generality and expressiveness in large

part because it is parameterized by fairly low-level, analyzer-oriented specifications (i.e.,

the instrumentation predicates) that affect the kind of structures and properties tracked by

the tool. An advantage of instrumentation predicates is that they capture data structure
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properties component-wise. As such, they describe data structure invariants somewhat indi-

rectly, which may make it easier to represent “intermediate states” where the data structure

invariant may be temporarily broken or to capture different views of the same structure. At

the same time, defining the appropriate instrumentation predicates are crucially important

to the precision and efficiency of the analysis, and doing so requires a pretty good under-

standing of the system. So much so that there has been follow-on work looking at improving

the usability of TVLA with respect to instrumentation predicates. Reps et al. [2003] provide

a technique to automatically update instrumentation predicates upon applying an abstract

transformer (rather than user-specified update formulas as in the original system). There

has even been work to come up with the appropriate instrumentation predicates automat-

ically (via learning techniques [Loginov et al. 2005] or backwards analysis [Ramalingam

et al. 2002]). In contrast, our approach is extensible in high-level, developer-oriented spec-

ifications (i.e., the invariant checkers). These descriptions are likely to be less generic in

representing memory states and thus poses a different set of challenges, but the directness

of these specifications focuses the analysis to developer notions (and thus, minimizing case

analysis).

On the other hand, specialized shape analyzers often build in compact, high-level

data structure abstractions of interest (e.g., lists). This choice allows the analysis algorithm

to be optimized around these built-in structures, which yield quite efficient analyzers. At the

same time, pressure to extend such analyzers to accommodate more and more varied kinds

of structures may make the abstractions less program-specific and thus potentially negate

the original efficiency advantage from specialization. Instead, our approach uses compact,
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high-level data structure abstractions obtained from the developer. The key distinction

between our analysis algorithm and those presented by, for example, Distefano et al. [2006]

and Magill et al. [2007] is that inductive definitions of particular data structures are not

built-in. Yet, with our approach, because the invariant checkers from the user are program-

specific, we still can get good efficiency. In contrast to Lee et al. [2005] and Guo et al. [2007],

our approach is to focus the shape analysis based on developer intent (rather than guess

the kind of shapes of interest). Additionally, we consider checkers that include intertwined

data constraints, which seem very difficult to infer generically.

Our approach presents different challenges with respect to defining the key shape

analysis operations (which I discuss further and address in Chapter 3 and Chapter 4). First,

we aim to build an abstraction directly out of the user-supplied invariant checkers. Yet, as

alluded to earlier, while invariant checkers capture precisely the steady state of the structure

as intended by the developer, we need a way to describe “intermediate states” where the

data structure invariant may be temporarily broken in order to perform static analysis.

Second, there is not necessarily enough information in developer-provided testing code for

it to be an effective specification for static analysis. In particular, the checker definition

essentially provides one materialization axiom, and this one axiom may not be enough

for code using data structures with back pointers (e.g., doubly-linked lists and trees with

parent pointers). Third, we need a summarization operation for arbitrary data structure

checkers. For comparison, Space Invader uses hand-crafted rewriting rules tailored for the

data structure kind of interest (i.e., the abstraction rules) [Distefano et al. 2006]. TVLA

has a fixed method for ensuring boundedness (i.e., canonical abstraction) that work well
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with instrumentation predicates (which in turn makes materialization more involved) [Sagiv

et al. 2002].

2.4 An Example Analysis

In this section, we consider our end-user shape analyzer from the user’s perspective

as an introduction to our technique. Figure 2.5 presents an example analysis that goes over

a skip list “rebalancing” operation (i.e., an operation that reassigns each node to be either

level 1 or level 0) to verify that it preserves the skip list structure. This example uses the

skip list checkers defined in Figure 2.4, which the user provides. For emphasis, I show an

assert at the top that ensures l is a skip list (i.e., l.skip1() holds) and an assert at the

bottom that checks l is again a skip list on return3. We have made explicit these pre- and

postconditions here, but we can imagine a system that connects the checker to the type and

verifies that the structure invariants are preserved at function or module boundaries.

Upon running the analyzer, the result is program code annotated with abstract

memory states presented in a graphical notation, which I show at a number of program

points. For the program points inside the loop, there are two memory states shown: one

for the first iteration (left) and one for the fixed point (right). To name heap values (e.g.,

a memory address), the analysis introduces symbolic values (i.e., fresh existential variables

from the analysis perspective). To distinguish them from program variables, I use lowercase

Greek letters (α, β, γ, . . .). A graph node denotes a heap value and, when necessary, is

labeled by a symbolic value. I write a program variable (e.g., l) below a node to indicate
3The checker calls (shown underlined) indicate conceptually dynamic checks of the data structure invari-

ant; though, it is not actually valid C code, and we do not yet have a compilation of our checker definitions
into executable code.
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void rebalance(SkipNode *l) {

SkipNode *p; // previous level 1 node

SkipNode *c; // cursor

1 assert(l != null && l.skip1());

2

�
�

�
�l

skip1

p = l; l->skip = null; c = l->next;

3 while (c != null) {

4

�
�

�
�ε

null

l, p c
next

skip

skip0(ε) skip1

�
�

�
�α β γ δ ε

null

l p c
skip1

next

skip

skip0(-) skip0(ε) skip1

if (c should be a level 1 node) {

5 p->skip = c; // set the skip pointer of the previous level 1 node

6 p = p->skip;

7 c->skip = null; c = c->next;

8

�
�

�
�ε

null

l p c
next

skip

next

skip

skip0(ε) skip1

�
�

�
�ε

null

l p c
skip1

next

skip

skip0(-) next

skip

skip0(ε) skip1

}

else {

9 c->skip = null; c = c->next;

10

�
�

�
�ε

null null

l, p c
next

skip

next

skip

skip0(ε) skip1

�
�

�
�ε

null null

l p c
skip1

next

skip

skip0(-) next

skip

skip0(ε) skip1

}

11 }

12 assert(l != null && l.skip1());

13 }

first iteration at fixed point

Figure 2.5: An example analysis of a skip list rebalancing. The user provides the skip list
data structure invariant checker definitions shown in Figure 2.4.
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that the value of that variable is that node. Edges describe disjoint memory regions4.

A thin edge gives a points-to relationship, that is, a memory cell whose address is the

source node with a field offset and whose value is the destination node (e.g., at program

point 4 in the left graph, the edge labeled by next says that l->next points to c). A thick

edge summarizes a memory region, that is, some number of points-to edges with certain

properties. Our abstraction is built directly out of user-supplied checker definitions in that

these summaries are defined in terms of them. Intuitively, a developer-defined checker can

be used for summarization by viewing the memory addresses it would dereference during a

successful execution as describing a class of memory regions arranged according to particular

constraints. There are two kinds of checker edges (i.e., thick edges): complete checker edges,

which have only a source node, and partial checker edges, which have both a source and

a target node. Complete checker edges indicate memory regions that satisfy particular

checkers (e.g., at program point 2, the complete checker edge labeled skip1 says the memory

region from l satisfies the skip list checker). To describe memory states at intermediate

program points, partial checker edges capture the notion of a checker that holds on just a

segment of a data structure (see Section 3.3 for details). For example, at program point 4

in the fixed-point graph, the partial checker edge from l to p summarizes a memory region

that is a skip1 along that segment. While these graphs are explicit enough for an analysis

to use, they still seem quite close to informal sketches a developer might draw to check the

code by hand. The primary difference in contrast to the pictures in Figure 2.2 is that the

graphs make explicit the endpoints of the memory regions.
4This view differs slightly from most “shape graphs” found in the literature. In most shape graphs, nodes

rather than edges represent memory cells or regions. Whereas, we use nodes to delineate the boundaries of
memory regions and to distinguish between the address and the contents of memory cells.
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To reflect memory updates in the graph, the analyzer simply modifies the ap-

propriate points-to edges. For example, consider the transition from program point 4 to

point 8 and the updates on line 5 and line 6. Sometimes, checker edges are unfolded to

materialize the points-to edges for an update. For instance, observe that we do not have

points-to edges for c->skip or c->next in the graph at program point 4 in order to reflect

the updates on line 7. However, we have that from c, there is a zeroth-level skip list (i.e.,

an instance of skip0 holds). It can be unfolded to materialize the skip and next fields (that

is, by conceptually unfolding one step of its execution). The updates can then be reflected

after unfolding.

As an end-user program analysis and as exemplified here, we want the work per-

formed by our shape analysis to be close to the informal, on-paper verification that might be

done by the developer. The abstractions used to summarize memory regions are developer-

guided through the checker specifications. While it may be reasonable to build in generic

summarization strategies for common structures, like lists (cf., Distefano et al. [2006] and

Magill et al. [2007]), it seems less likely that other, less common structures should be built-

in, like the skip lists in this example.

2.5 Algorithm Preview and Contributions

From the example in Figure 2.5, we make some observations that guide the design

of our analysis and highlight some of the challenges. First, in our diagrams, we have implic-

itly assumed a disjointness property between the regions described by edges, which allows

us to perform precise updates on points-to edges (as a developer would likely do in an infor-
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mal verification). This assumption is made explicit by utilizing separation logic [Reynolds

2002] to formalize these diagrams (see Section 3.3), and which imposes an implicit linearity

restriction on the checkers. Specifically, a checker must be a linear traversal over the data

structure; in terms of dynamic checking, a compilation of a checker must check that each

address is dereferenced at most once during the traversal (see Nguyen et al. [2008] for one

method). Second, as with many data structure operations, the rebalance routine requires

a traversal using a cursor (e.g., c). To check properties of such operations, we are often

required to track information in detail locally around the cursor, but we may be able to

summarize the rest rather coarsely. This summarization cannot only be for the suffix (yet

to be visited by the cursor) but must also be for the prefix (already visited by the cursor)

(see Section 3.3.1).

Some challenges are less apparent from the user’s perspective but arise from taking

the end-user approach and utilizing user-supplied data structure invariant checkers as spec-

ifications in static analysis. I sum up the challenges here, but I revisit them in more detail

in Chapter 3 and Chapter 4. First, while we take advantage of the fact that user-supplied

invariant checkers describe to the analysis one common way to use the data structure, it

does not necessarily give sufficient information when the data structure invariants are richer

(e.g., have back pointers, include data properties across elements). Second, similar to other

shape analyses, a central challenge is to summarize the graphs sufficiently in order to find

a fixed point while retaining enough precision. Our analysis summarizes by folding back

into checker edges, but with arbitrary data structure specifications, it becomes particularly

difficult. The key observation we make is that previous iterates are generally more abstract
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The Xisa Shape Analyzer

abstract interpretation

materialization and

precise update

summarization

type

inference

on checker

definitions

l.skip1() :=

if (l = null) then true

else l.skip.skip1() and

l.next.skip0(l.skip)

l.skip0(e) :=

if (l = e) then true

else l <> null and

l.skip = null and

l.next.skip0(e)

checker definitions

Figure 2.6: The basic architecture of Xisa.

and can be used to guide the folding process.

As depicted in Figure 2.6, our shape analysis tool, Xisa, takes as input, defini-

tions of data structure invariant checkers and in the end, performs an abstract interpre-

tation [Cousot and Cousot 1977] using the key shape analysis operations: materialization,

precise update, and summarization (as described in Section 2.1). A novel aspect of our

architecture is that in between, we first do a separate analysis on the checker definitions

before analyzing the program text. It is in this phase that we derive additional information

about the data structure that makes our analyzer more robust with respect to how checkers

are defined. Speaking informally, it is this phase that takes testing code and makes it more

amenable to being a specification for static analysis.

In short, the contributions of this work are as follows:

• We observe that data structure invariant checking code can help guide a shape analysis

and provides a familiar mechanism for the developer to supply information to the
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analyzer. Intuitively, checkers can be viewed as developer-supplied summaries of heap

regions bundled with a usage pattern for such regions (Section 3.2).

• We develop an end-user shape analysis whose shape abstraction is built from the

user-supplied invariant checkers. Our abstract domain is not only parameterized by

user-supplied invariant checkers, but also by a numerical domain for data constraints

(Section 3.3).

• We introduce a notion of partial checker runs as part of the abstraction in order

to generalize user-supplied summaries when the data structure invariant holds only

partially (Section 3.3.1).

• We make our analysis more robust with respect to user specification by deriving addi-

tional information through a separate type analysis on the checker definitions in order

to guide the abstract interpretation (Section 3.4). This additional information is par-

ticularly critical for “invertible structures,” such as doubly-linked lists and trees with

parent pointers. A novel aspect of our work is that “backward unfolding” operations

for such structures are derived automatically from the standard forward unfolding

(Section 4.1.1).

• We notice that the iteration history of the analysis can be used to guide the weakening

of shape invariants (which could potentially apply to other shape analyses). We

develop an automatic summarization strategy using a binary widening operator for

our abstraction based on this observation. Also, we show that widening requires

careful coordination between shape and data (Section 4.2).
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Chapter 3

End-User Abstraction with

Invariant Checkers

Chapter 2 motivates end-user shape analysis from the user’s perspective. This

chapter and the two subsequent chapters describe the design and implementation of our

end-user shape analyzer in order to meet those expectations. In this chapter, we focus on

our end-user shape abstraction using data structure invariant checkers, while Chapter 4

details our shape analysis algorithm using that memory abstraction. Finally, in Chapter 5,

I present a discussion of our experience applying our analyzer.

As alluded to in Chapter 2, I identify two significant challenges from the analyzer

design perspective:

1. how to be robust with respect to the way the user defines the invariant checkers; and

2. how to summarize memory states using invariant checkers (i.e., the user-supplied

summarization mechanism) sufficiently to find a fixed point while retaining enough
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precision to capture the properties of interest.

As mentioned there, these difficulties are only exacerbated by richer, relational data struc-

ture invariants, such as structures with back pointers (e.g., doubly-linked lists) and those

that have data constraints across elements (e.g., sortedness) (as compared to the simpler,

non-relational data structure invariants used in Chapter 2). Thus, before discussing the de-

sign and implementation of our end-user shape analyzer, we look more closely at relational

invariants to better understand the challenges they pose on our analysis design (Section 3.1).

Then, in Section 3.2, we discuss further the kinds of invariant checkers used by our analysis.

Section 3.3 formalizes our memory abstraction and provides a connection between the exe-

cutable interpretation of invariant checkers and how they are utilized to summarize memory

regions in our analysis abstraction. Finally, the type analysis on checker definitions that is

a key piece in making the analysis robust in the presence of user specification is defined in

Section 3.4.

3.1 Challenge: Relational Invariants

Most shape analyses are very effective when the analysis can be done non-relation-

ally, that is, the property of interest can be decomposed so that the checking of one part is

(mostly) independent of the checking of others. A significant challenge for almost all shape

analyses is to step beyond non-relational abstractions1. For our analysis, we will see that

relational invariant checkers emphasize the need for deriving additional information about

the specified data structures to guide the abstract interpretation.
1Our papers that describe parts of this work are split mostly along this divide between non-

relational [Chang et al. 2007] and relational [Chang and Rival 2008] end-user shape analysis.
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One of the simplest examples of a relational checker is the following definition for

a doubly-linked list:

Example 3.1 (A doubly-linked list checker definition).

l.dll(lp) := if (l = null) then true

else l.prev = lp and l.next.dll(l)

In the above, the dll checker says a doubly-linked list is either empty or has next and prev

fields where prev must contain lp and next must be a doubly-linked list whose prev is the

current root pointer l. At a high-level, a non-relational checker describes each segment of the

data structure independently, which includes the aforementioned checkers for singly-linked

lists (Example 2.1) and skip lists (Figure 2.4(b)) but not the dll checker. Syntactically,

in a non-relational checker, the additional parameters of the checker (i.e., the state of the

checker) are constant across all recursive calls. This condition clearly holds for a stateless

checker like the one for singly-linked lists. In contrast, the dll checker uses an additional

parameter lp to specify that the prev field of the next element points to the current element.

The main difficulty with relational checkers is that simply unfolding instances into

their definitions does not reveal these relations. Thus, code that utilizes such relations is

not analyzable without other techniques. With the dll checker, an unfolding reveals that

next points to another dll, but not that prev must also point to a segment of dll, nor

that next and prev are inverses (i.e., following next and then prev gets back to the same

node). As such, analyzing code that traverses a doubly-linked list using the next field with

the dll checker is easier than analyzing code that traverses using the prev field. Part of the

problem is that there are a number of ways to traverse a doubly-linked list (i.e., a number

of inductive schemes). For example, an alternative checker could start at the tail of the list
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following prev fields, but then the above difficulty is simply reversed for the fields.

The relational issue becomes even more salient when we consider inductive invari-

ants with more involved data constraints than pointer equality. For example, consider the

following checkers:

Example 3.2 (A binary search tree checker definition).

t.bst(tlo, tup) :=

if (t = null) then true

else tlo < t.d < tup

and t.l.bst(tlo, t.d) and t.r.bst(t.d, tup)

Example 3.3 (A list of a given length checker definition).

l.listn(llen) :=

if (l = null) then llen = 0

else l.next.listn(llen - 1)

Each of these relational checkers uses parameters to capture very different kinds of relations

and thus pose different challenges. The bst checker enforces a global ordering property on

the data fields (d) with the range narrowing in recursive calls (the shape constrains the data),

while listn uses llen to specify the recursion depth (the data constrains the shape). Finally,

the dll checker describes a kind of invertible structural invariant with a data structure that

points to previous roots.

To see how relational invariant checkers pose challenges in analyzer design, we

consider an example analysis of red-black tree insertion. I first describe informally the

invariants of the red-black tree we consider here.

Inverse Invariant (cf., doubly-linked lists):
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• The p field is the inverse of the l and r fields (i.e., for each node n, if n->l 6= null,

then n->l->p = n and analogously for the r field).

Order Invariant (cf., binary search trees):

• For each node n, the values in the left subtree (i.e., the value of the d fields in the

nodes reachable from n->l) are less than n->d, and the values of the right subtree

are greater than n->d.

Balance Invariant (cf., lists of a given length):

• A node is either red or black (given by the clr field); null is considered black.

• The root is black.

• Both children of a red node are black.

• Every simple path (i.e., following l and r fields) from a node to a leaf contains the

same number of black nodes.

Observe that each of these invariants describes a relation between nodes, and in the case of

the order and balance invariants, they describe a global relation on all the nodes of the tree.

To write code that checks this invariant, an invariant checker needs to carry some state (in

order to turn the global relations specified above into local checks). Figure 3.1 presents a

checker definition for red-black trees. We can see that the kinds of relations used by the

rbtree checker have parallels to each of the relational checkers presented above. The tp

parameter is analogous to the constraint on prev field in the dll checker; tlo and tup is as

in the bst checker; and tbh is similar to the length parameter in the listn checker. As such,

the red-black tree insertion routine shown in Figure 3.2 is a fairly representative example of

the kinds of challenges in designing our end-user shape analyzer based on invariant checkers.

These challenges appear in both the unfolding to materialize needed points-to edges and
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the folding to retain sufficient precision in the data constraints.

In Figure 3.2, I show the abstract memory state of the analysis at a number of

program points. To keep the diagrams compact, I draw points-to edges only for the pointer

fields, and when necessary, I notate the values of data fields above the node (e.g., at program

point 7). For data constraints, our memory abstraction is parameterized by a base abstract

domain whose coordinates (i.e., variables) are the symbolic values. In the examples, I

note the data constraints that are necessary to get the desired results and assume the base

domain can capture them. Also, I have elided the additional parameters on the instances

of rbtree. Instead, I adopt the convention of referring to the additional parameters by

subscripting the node name on which the checker applies. For example, the checker edge

on line 1 conveys α.rbtree(αp, αlo, αup, αredok, αbh) where any constraints on the additional

parameters are given in the data domain.

Let us look at where the relational aspect of the rbtree checker poses obstacles

to overcome in the analysis example. First, consider the memory state at program point 21

in the first iteration. Note that the value of pa is γ, which has no outgoing edges from it

(neither points-to nor checker). However, on the next iteration, we analyze statements that

access the fields of pa and thus need to materialize them. From our intuitive understanding

of the rbtree checker, we know that γ lies on the segment between α and β (when it is

non-empty), so if we were to unfold the segment backward from β, we could materialize

the fields of γ. To justify the unfolding of partial checker edges, we have particular logical

representation of such segments (see Section 3.3.2). The novel aspect of our proposal is that

we determine when to apply this backward unfolding automatically using a separate type
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typedef

struct RBNode {

int d; color clr; // data, color

struct RBNode *l, *r, *p; // left child, right child, parent

}

RBNode;

(a) A C type definition for a red-black tree node.

t.rbtree(tp, tlo, tup, tredok, tbh) :=

if (t = null) then tbh = 0

else t.p = tp and tlo < t.d < tup and (t.clr <> red or tredok) and

t.l.rbtree(t, tlo, t.d, t.clr <> red, ite(t.clr = red, tbh, tbh - 1)) and

t.r.rbtree(t, t.d, tup, t.clr <> red, ite(t.clr = red, tbh, tbh - 1))

(b) A red-black tree checker definition.

Figure 3.1: Describing a red-black tree. In (b), the additional parameters to the rbtree
checker are used to impose the following constraints:

tp is where the p field should point;
tlo is a lower bound on the d field;
tup is an upper bound on the d field;
tredok gives whether the clr field is allowed to be red; and
tbh is the number of black nodes on all paths to leaves (i.e., the black height).

An ite is an if-then-else expression.
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void insert(RBNode **t, RBNode *n) {
RBNode *pa, **sonp, *son;

1
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null
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null
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pa = null; sonp = t;

2 while (*sonp != null) {
3 pa = *sonp;

4 if (n->d < pa->d) sonp = &(pa->l);

5 else if (n->d > pa->d) sonp = &(pa->r);

6 else return;

7

�

�
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�

αnull

*t,pa

*sonp

@d 7→ αd

l

r
rbtree
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p

null
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αlo < αd < ηd < αup
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δ
α β

ε

γ
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*sonp

@d 7→ βd
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r
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rbtreep

null
η

null
null

n

@d 7→ ηd

l

rp

αlo ≤ βlo < βd < ηd < βup ≤ αup

}
8 n->p = pa; n->clr = RED;

9
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δ
α β
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γ
*t pa

*sonp

rbtree rbtree

l

r
rbtree

p

null
η

nulln
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*sonp = n; son = n;

10 while (pa != null) {
11 if (pa does not locally satisfy the red-black invariants) {
12 . . . perform rotations to reestablish invariants . . .

19 }
20 son = pa; pa = pa->p;

21
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rbtree
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}
22 son->clr = BLACK; *t = son;

23 }
first iteration at fixed point

Figure 3.2: Red-black tree insertion in C.
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inference on checker definitions (see Section 3.4). We also reduce the soundness justification

of backward unfolding to that of forward unfolding (see Section 4.1.1). In other words,

while the user supplies the forward unfolding axiom (as an inductive checker definition),

the backward unfolding is derived automatically and not axiomatized (cf., Berdine et al.

[2007]).

Second, consider the memory states at program point 7, which is a location where

the combination of shape and relational data constraints makes analysis difficult. We get

the data constraints in the first iteration simply by unfolding rbtree and from the guard on

the conditional. The challenge is on widening to generate the fixed-point invariant. In this

example, we need the underlined constraint to know that the insertion preserves the ordering

invariant, but it is not necessarily easy to obtain. At a high-level, the core of the difficulty

is that while the top of the tree can be fairly easily summarized into the segment from α to

β, the data invariant we desire requires synthesizing relations between the prefix segment

(α to β) and the suffix (from β). To address this difficulty, we make some observations that

allow us to apply of some standard analysis techniques in this context. One, we observe that

because the coordinates of the data domain are given by heap nodes, the data domain is

rather sensitive to the large changes that result from widening in the shape domain. Thus,

we delay widening elements of the data domain until the shape portion has converged

(keeping symbolic joins instead). Two, we notice that we can separate this synthesis task

into finding appropriate arguments for the checker parameters and inferring the appropriate

relation on those arguments. Specifically, we can make the finding of checker arguments

shape-guided by using additional data fields that correspond to the checker parameters.
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After describing our abstraction (this chapter) and our analysis algorithm (Chap-

ter 4), we return to the red-black tree insertion example in Section 5.1 to discuss how our

algorithm can be used to verify such operations.

3.2 Data Structure Invariant Checkers

Thus far, we have built up some intuition on how data structure invariant checkers

describe particular shapes and data constraints. In this section, I detail the kinds of checkers

we consider by defining a language of checker definitions suitable for input to our analysis.

3.2.1 Shapes Expressible as Checkers

Intuitively, our view is that checkers convey shapes implicitly by the sequence of

dereferences (i.e., field reads) they would make during the course of a successful dynamic

execution. These dereferences are used to generate points-to edges for the analysis during

materialization. Because we restrict edges to describe disjoint regions, these dereferences

also need to be mutually distinct. In particular, one of the more constraining restrictions

on checkers is that they must visit the data structure linearly—dereferencing an object-field

at most once during the course of the traversal. It is easy to work around this restriction

locally within a recursive call by first binding the value of a dereference into a new local

variable (cf., the skip1 checker of Figure 2.4(b) or the bst checker of Example 3.2).

Additionally, we consider checkers that are side-effect free and written in a recur-

sive style. The user could potentially write in an iterative style as long as the traversal can

be translated into a recursive one. As the notation suggests, we also distinguish a traversal
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Checker Definition Concrete Instance

singly-linked lists

l.list() :=

if (l = null) then true
else l.next.list()

next

binary trees

t.tree() :=

if (t = null) then true
else t.left.tree() and

t.right.tree()

right

left

two-level skip lists

l.skip1() :=

if (l = null) then true
else l.skip.skip1() and

l.next.skip0(l.skip)

l.skip0(lend) :=

if (l = lend) then true
else l.skip = null and

l.next.skip0(lend)

next

skip

cyclic lists

l.clist() :=

if (l = null) then true
else l.next.ls(l)

l.ls(lend) :=

if (l = lend) then true
else l.next.ls(lend)

next

Table 3.1: Representative examples of shapes expressible with data structure invariant
checkers (non-relational shapes). The graphs in the right column show data structure
instances described by the checkers in the left column. For compactness, edges that point
to null are not drawn, and field names are labeled only once.
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Checker Definition Concrete Instance

doubly-linked lists

l.dll(lp) :=

if (l = null) then true
else l.prev = lp and

l.next.dll(l)

next

prev

binary trees with parent pointers

t.dltree(tp) :=

if (t = null) then true
else l.parent = tp and

t.left.dltree(t) and
t.right.dltree(t)

left

right

parent

Table 3.2: Representative examples of shapes expressible with data structure invariant
checkers (relational shapes).

parameter used to walk the data structure. A distinguished traversal parameter is not a

strict requirement for our analysis (see Section 3.4), but as it is the common case, it makes

the checker edges in the graph notation suggestive of a traversal and is assistive in the

widening algorithm.

Despite these restrictions, we can still capture a rather wide range of shapes and

covering most of those typically considered in shape analysis. In Table 3.1 and Table 3.2, I

show some representative examples of shapes that can be expressed with checkers (collecting

some of the previous examples). The examples are split into two parts, dividing the non-

relational checkers (Table 3.1) from the relational ones (Table 3.2). They are roughly ordered

from least to most complex. I focus only on shapes here, but note that data constraints

add additional (but mostly orthogonal) dimensions of complexity (e.g., bst of Example 3.2

where the shape constrains the data or listn of Example 3.3 where the data constrains the
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shape).

Arbitrary directed-acyclic graphs (DAGs) are, however, not expressible in this

language, though special cases, like skip lists, are. From Table 3.1 and Table 3.2, we can

see that the additional parameters provide a way to express “regular sharing patterns”,

but to traverse a DAG linearly, a checker would need to either keep a set of nodes it has

already visited or have a way to mark visited nodes, which is outside the class of checkers

we consider.

3.2.2 A Language of Checker Definitions

Figure 3.3(a) presents a language of validation expressions that we have seen in

example checker definitions (as in Table 3.1 and Table 3.2). For presentation, I write

checkers with one traversal parameter and one additional parameter π.c(ρ) (where π is

the traversal parameter and ρ is the additional parameter), though everything applies to

checkers with zero-or-more additional parameters. Also, to make it easier to describe certain

aspects, I introduce a hierarchy in the expressions. Conceptually, validation expressions ve

describe possible memory states, validation shapes vs express a single memory state, and

validation terms vt give Boolean constraints. Validation terms vt and validation values u

can be extended with whatever relations and constants of interest. Finally, an access path

ap is simply a sequence of field reads.

Because field reads are at the core of our notion of shape, it is easier to work with

checkers defined in a normal form where a let-binding is introduced for each read and each

use of that value is replaced by reference to the newly introduced name. In particular,

this normalization turns multiple reads through the same access path into the binding of a
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checker definitions vchkdef ::= π.c(ρ) := ve

validation expressions ve ::= vs | if vt then ve0 else ve1

validation shapes vs ::= vt | vt0.c(vt1) | vs0 and vs1

validation terms vt ::= u | ap | vt0 = vt1 | · · ·

values u ::= true | false | null | · · ·

access paths ap ::= α | ap.f

symbolic values α ∈ Val]

field names f, g

checker names c

(a) A language of validation expressions.

checker definitions chkdef ::= π.c(ρ) := e

validation expressions e ::= s | if t then e0 else e1 | let β = α.f in e

validation shapes s ::= t | α.c(δ) | s0 and s1 | let α = t in s

validation terms t ::= u | α | t0 = t1 | · · ·

(b) A language of validation expressions with normalized memory reads.

Figure 3.3: Abstract syntax of the checker definition language.
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single read followed by uses of that binding. Figure 3.3(b) shows a modified version of the

checker definition language introducing a let construct for field reads and discarding the use

of access paths. Simply for convenience, we also restrict calls to apply to symbolic values

by introducing other let bindings. We can syntactically translate between the languages as

discussed below.

Normalization

Figure 3.4(a) shows a normalization of ve by introducing let-bindings for each field

read. I write L for a sequence of let-bindings

β0 = α0.f0, β1 = α1.f1, . . . , βn = αn.fn

and maintain the invariant that each βi and each αi.fi are distinct. Also, I write let L in e

to mean the expression given by a sequence of lets followed by e. The rules in the top line

describe the introduction of the let-bindings for each distinct field read, while the next group

of rules simply propagates the bindings to the expression level. We consider the let-bindings

to always introduce new names (i.e., as a side-condition, variables in the inputs ve, vs, vt ,

and ap are never captured by L). At the expression level, we introduce let expressions for

the newly introduced bindings (i.e., L′). Note that we consider the field reads of each branch

of an if-then-else separately (i.e., introduce separate let expressions in each branch).

I show below examples of normalized checker definitions for two-level skip lists and

doubly-linked lists.

Example 3.4 (A normalized two-level skip list checker). Here, we have a normalized def-
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ve ; L � e ve with bindings L compiles to e.
vs ; L � L′ in s vs with bindings L compiles to s with L′.
vt ; L � L′ in t vt with bindings L compiles to t with L′.
ap ; L � L′ in α ap with bindings L compiles to α with L′.

(α not captured by L)

α ; L � L in α

ap ; L � L′ in α (β = α.f in L′)

ap.f ; L � L′ in β

ap ; L � L′ in α (β fresh)

ap.f ; L � L′, β = α.f in β

u ; L � L in u

vt0 ; L � L′ in t0 vt1 ; L′ � L′′ in vt1

vt0 = vt1 ; L � L′′ in t0 = t1

vt0 ; L � L′ in t0 vt1 ; L′ � L′′ in t1
vt0.c(vt1) ; L � L′′ in let α = t0 in let δ = t1 in α.c(δ)

vs0 ; L � L′ in s0 vs1 ; L′ � L′′ in vs1

vs0 and vs1 ; L � L′′ in s0 and s1

vs ; L � L,L′ in t

vs ; L � let L′ in t

vt ; L � L,L′ in t ve0 ; L,L′ � e0 ve1 ; L,L′ � e1

if vt then ve0 else ve1 ; L � let L′ in if t then e0 else e1

�(ve) def= e if ve ; · � e

�(π.c(ρ) := ve) def= π.c(ρ) := �(ve)

(a) Compilation into normalized expressions.

�(e) def= ve e decompiles to ve.

�(let β = α.f in e) def= [α.f/β]�(e)

�(let α = t in s) def= [t/α]�(s)

�(u) def= u �(α.c(δ)) def= α.c(δ)

�(α) def= α �(s0 and s1) def= �(s0) and �(s1)

�(t0 = t1) def= �(t0) = �(t1) �(if t then e0 else e1) def= if �(t) then �(e0) else �(e1)

(b) Decompilation of normalized expressions.

Figure 3.4: Translation between validation expressions.
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inition of the two-level skip list checker from Figure 2.4(b).

l.skip1() := if (l = null) then true

else

let s = l.skip in

let n = l.next in

s.skip1() and n.skip0(s)

l.skip0(end) := if (l = end) then true

else

let s = l.skip in

let n = l.next in

s = null and n.skip0(end)

Example 3.5 (A normalized doubly-linked list checker definition). Below is a normalized

definition of the doubly-linked list checker from Example 3.1.

l.dll(lp) := if (l = null) then true

else

let p = l.prev in

let n = l.next in

p = lp and n.dll(l)

To recover the original version, Figure 3.4(b) shows a simple inverse translation

defined by induction over the structure of expressions, which simply eliminates lets by

performing substitutions. I write [α.f/β]ve for substituting α.f for β in ve (and similarly

for [vt/α]vs). We can state that these translations are indeed inverses. I write [L]ve for

iteratively substituting with the bindings of L in ve.

Theorem 3.1 (Recovering normalized expressions).

1. If ve ; L � e, then [L]�(e) = ve.
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2. If vs ; L � L′ in s, then L′ ⊇ L and [L′]�(s) = vs.

3. If vt ; L � L′ in t, then L′ ⊇ L and [L′]�(t) = vt.

4. If ap ; L � L′ in α, then L′ ⊇ L and [L′]�(α) = ap.

Proof. By induction on the given derivations (appealing to the subsequent fact in the proof

of each one).

Evaluation Semantics

The goal of the normalization is to define an evaluation semantics of the validation

expressions that characterizes how checkers convey shape. To do so, I write u ∈ Val for the

set of values. Furthermore, I write u + f for the base address u plus the offset of field f .

A concrete store σ : Val ⇀fin Val maps addresses into values where we make no distinction

between addresses and values of the store. I write [·] for the empty concrete store and

[u0 7→ u1] for the store of one cell mapping u0 to u1. A compound store σ0 ∗ σ1 is a store

with disjoint substores σ0 and σ1 where σ0 and σ1 must have disjoint domains. To assign

an interpretation to symbolic values, we consider a valuation ν that is a mapping from

symbolic values into concrete values.

Intuitively, we view checkers as “consuming” the memory cells that it dereferences

during its traversal to ensure that it visits the data structure linearly. The cells that it

consumes are then the cells that make up the data structure. The evaluation judgment

ν ` 〈σ, e〉 ⇓ 〈σ′, u〉 ,

reflects this view by producing both a residual store σ′ and a value u. It says, “Under

valuation ν and in store σ, expression e leaves a residual store σ′ and evaluates to value
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ν ` 〈σ, e〉 ⇓ 〈σ′, u〉 Under valuation ν and in store σ, expres-
sion e leaves a residual store σ′ and eval-
uates to value u.

ν ` t ⇓ u Under valuation ν, term t evaluates to
value u.

ν, β � u ` 〈σ, e〉 ⇓ 〈σ′, u〉
ν ` 〈[ν(α) + f 7→ u] ∗ σ, let β = α.f in e〉 ⇓ 〈σ′, u〉

e-read

ν ` t ⇓ true ν ` 〈σ, e0〉 ⇓ 〈σ′, u〉
ν ` 〈σ, if t then e0 else e1〉 ⇓ 〈σ′, u〉

e-if-t
ν ` t ⇓ false ν ` 〈σ, e1〉 ⇓ 〈σ′, u〉
ν ` 〈σ, if t then e0 else e1〉 ⇓ 〈σ′, u〉

e-if-f

ν ` 〈σ, [α, δ/π, ρ]e〉 ⇓ 〈σ′, u〉 (π.c(ρ) := e)

ν ` 〈σ, α.c(δ)〉 ⇓ 〈σ′, u〉
e-call

ν ` 〈σ, s0〉 ⇓ 〈σ′, u0〉 ν ` 〈σ′, s1〉 ⇓ 〈σ′′, u1〉
ν ` 〈σ, s0 and s1〉 ⇓ 〈σ′′, u0 ∧ u1〉

e-and

ν ` t ⇓ u0 ν, α � u0 ` 〈σ, s〉 ⇓ 〈σ′, u〉
ν ` 〈σ, let α = t in s〉 ⇓ 〈σ′, u〉

e-let-term
ν ` t ⇓ u

ν ` 〈σ, t〉 ⇓ 〈σ, u〉
e-term

ν ` u ⇓ u
e-val

ν ` α ⇓ ν(α)
e-var

ν ` t0 ⇓ u0 ν ` t1 ⇓ u1

ν ` t0 = t1 ⇓ u0 = u1
e-eq

Figure 3.5: Evaluation of validation expressions.
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u.” Figure 3.5 defines the evaluation judgment. The key rule is e-read, which is shown at

the top. A read requires that the field exists in the store, and then upon reading, the cell

is dropped from store. Its contents are saved by extending the valuation so that it can be

used in evaluating the body of the let expression. With this view, a store is described by

a checker evaluation if it is entirely consumed by a checker evaluation that yields the true

value (i.e., σ′ = [·] and u = true) (see Section 3.3.3).

The remaining rules are mostly as expected. An if-then-else expression is eval-

uated by first evaluating the guard and choosing the appropriate branch (rules e-if-t and

e-if-f). The normalization from Figure 3.4(a) ensures that only the fields used by a partic-

ular branch are consumed (but a field read in the guard applies to both branches). The

e-call rule says that a checker call is evaluated by unrolling to its body. Finally, observe

that because of the normalization, terms t are independent of the store.

3.3 Memory Abstraction

The core component of our analysis state is an abstract memory state M (as shown

in Figure 3.6(a)). The memory state is based largely on separation logic [Reynolds 2002],

so we use notation that is borrowed from there. No prior background in separation logic

will be expected in this chapter; any needed information will be provided as necessary.

The first three items are as in separation logic: emp is the empty memory, α@f 7→ β

is a points-to relation describing a single memory cell, and M0 ∗ M1 is the separating

conjunction specifying a memory that can be divided into two disjoint regions (i.e., with

disjoint domains). A field offset expression α@f corresponds to the base address α plus the
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memories M ::= emp empty

| α@f 7→ β memory cell

| M0 ∗M1 disjoint regions

| α.c(δ) checker region

| α.c(δ) ∗= α′.c′(δ′) checker segment

data constraints P ∈ P]

environments E ::= · | E, x 7� α

analysis states A ::= ⊥ | 〈E,M,P 〉 | A1 ∨A2

symbolic values α ∈ Val]

program variables x ∈ Var

field names f, g

checker names c

(a) The abstract memory state as formulas in separation logic.

α β
f

α
c(δ)

α α′

c(δ) c′(δ′)

α@f 7→ β memory cell

α.c(δ) checker region

α.c(δ) ∗= α′.c′(δ′) checker segment

(b) The correspondence between graph edges and logical formulas.

Figure 3.6: The analysis state.
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offset of field f (i.e., &(a.f) in C). In this core language, we limit address computation to

field offsets (rather than arbitrary pointer arithmetic) and assume that all pointers occur

as fields in a struct. Also for simplicity in presentation, we consider only symbolic values

on the right side of points-to (β) (i.e., for the contents of memory cells) and assume any

additional constraints on those values are captured elsewhere (e.g., is null). Together these

components can symbolically describe a single, finite memory. The next two items are used

to summarize memory regions. An application of a user-supplied checker α.c(δ) describes a

memory region where c succeeds when applied to α and δ. The last item provides a generic

mechanism for specifying segments of user-supplied checkers, which I describe below in

Section 3.3.1. In Figure 3.6(b), I show the correspondence between formulas and graphs.

The thick edges (for checker regions and checker segments) can be intuitively thought of as

representing possible subgraphs of thin points-to edges arranged in particular shapes and

with certain constraints.

3.3.1 Checker-Based Summaries

In this subsection, we look in more detail how our abstraction is built out of user-

supplied checker definitions. Recall that a dynamic run of a checker, such as the checker

examples shown in Table 3.1 and Table 3.2, visits a region of memory starting from some

root pointer, and furthermore, a successful, terminating run of a checker indicates how the

user intends to access that region of memory. In the context of our analysis, a checker gives a

corresponding inductively-defined predicate in separation logic and a successful, terminating

run of the checker bears witness to a derivation of that predicate (see Section 3.3.3).
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Inductive Checker Definitions

Formally, the definition of a checker c, with traversal parameter π and additional

parameter ρ is a finite disjunction of checker rules. A checker rule R consists of a conjunction

of a memory portion M and a pure portion F (given as a first-order formula). Further,

M is separated into two parts: an unfolded region Mu given by a series of points-to edges

and a folded region M f given by a series of checker applications. Schematically, checker

definitions are written as follows:

checker definitions π.c(ρ) := 〈Mu
0 ∗M f

0, F0〉 ∨ · · · ∨ 〈Mu
n ∗M f

n, Fn〉

Free variables in the rules are considered as existential variables bound at the definition.

Note that because we view checkers as code, the kinds of inductive predicates are further

restricted. In particular, Mu correspond to finite access paths from the parameters (from

π primarily) and thus existentials are only for the values of fields along those access paths.

Each checker call in M f is applied to arguments among the parameters (the traversal or the

additional ones) or the existentials introduced in Mu. These kinds of inductive definitions

are apt for analysis, as unfolding such a definition corresponds to materializing points-to

edges from π. Section 3.3.3 gives a translation from the validation expressions of Figure 3.3

(in Section 3.2.2) to definitions of this form.

Inductive Segments and Partial Checker Runs

Inductive predicates from checkers give us rather precise summaries of memory

regions, but unfortunately, they are typically not general enough to capture the invariants

of interest at all program points. For example, consider the fixed-point invariant at program
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point 7 in the red-black tree example given in Figure 3.2 (i.e., the loop invariant of the first

loop). Here, we must track some information in detail around a cursor (e.g., pa and *sonp),

while we need to summarize both the already explored prefix before the cursor and the

yet to be explored suffix after the cursor. Such a situation is typical when analyzing a

traversal algorithm. The suffix can be summarized by checker applications δ.rbtree(...) and

ε.rbtree(...) (i.e., the rbtree edges from δ and ε), but unfortunately, the prefix segment

between α and β (i.e., the region between the root pointer *t and the cursor pointer pa)

cannot.

Rather than require more general checker specifications sufficient to capture these

intermediate invariants, we introduce a generic mechanism for summarizing prefix segments.

We make the observation that such a segment region is captured by a partial checker run

(i.e., conceptually, a non-failing execution of a checker up to a certain point in its traversal).

Or, in terms of inductively-defined predicates, a segment region is a kind of partial derivation

with a hole in a subtree.

A key aspect in defining segments is that in order to support materialization of

segments, they must also have an inductive structure. This additional structure then enables

the definition of forward and backward unfolding schemes on segments. Informally,

α.c(δ) ∗= α′.c′(δ′)

is a memory region where it satisfies α.c(δ) up to some number of unfoldings and conjoining

any disjoint memory that satisfies α′.c′(δ′) makes the combined region satisfy α.c(δ).

There have been others who have also observed the need to introduce a way to

describe endpoints in order to summarize data structure fragments individually (e.g., the
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existentials in Gulwani and Tiwari [2007] and the truncation points of Guo et al. [2007]).

An important feature of our definition is that it not only enables summarization but also

materialization through forward and backward unfolding. In Section 3.3.2, we discuss this

definition in further detail, and in Section 4.1, we look at and justify the unfolding operations

on segments.

Analysis State

To track data constraints (i.e., non-shape constraints), we maintain a pure state P ,

which we assume is an element of an abstract domain P]. Note that the base data domain P]

is a parameter of the analysis. To connect the abstract memory with the program, we also

keep an environment E that maps program variables to symbolic values that denote their

addresses. Finally, the overall analysis state A is a finite disjunction of 〈E,M,P 〉 tuples2.

The number of disjuncts in the analysis state at any program point is usually quite small,

as the checker-based summaries include a notion of merging disjunctive cases. Intuitively,

user-supplied checker definitions provide an indication of the cases that can be merged for

the properties of interest. The fact that our summaries can describe empty memory regions

also helps keep the number of disjuncts down (similar to the TVLA optimization of Arnold

[2006]).

3.3.2 Semantics of the Memory Abstraction

In this subsection, I give the semantics of our memory abstraction. I focus mostly

on segments, as other aspects of the graph follow mostly from separation logic [Reynolds
2In implementation, we only need to keep one environment E per static scope, as we map variables to

symbolic values that denote their addresses.
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〈[·], ν〉 |= emp (always, for all ν)

〈[ν(α) + f 7→ ν(β)], ν〉 |= α@f 7→ β (always, for all ν)

〈σ0 ∗ σ1, ν〉 |= M0 ∗M1 iff 〈σ0, ν〉 |= M0 and 〈σ1, ν〉 |= M1

〈σ, ν〉 |= α.c(δ) iff there exists an i s.t. 〈σ, ν〉 |= α.ci(δ)

〈σ, ν〉 |= α.ci+1(δ)

iff there exists a checker rule 〈Mu ∗ M f , F 〉 in the definition of π.c(ρ) where

M f = β0.c0(γ0) ∗ · · · ∗ βm.cm(γm) and such that

ν satisfies [α, δ, ~ε/π, ρ,~κ]F and

〈σ, ν〉 |= [α, δ, ~ε/π, ρ,~κ]Mu ∗ β0.c
i
0(γ0) ∗ · · · ∗ βm.cim(γm)

where ~κ are the free variables of the rule and ~ε are fresh

〈σ, ν〉 |= α.c(δ) ∗= α′.c′(δ′) iff there exists an i s.t. 〈σ, ν〉 |= α.c(δ) ∗=i α′.c′(δ′) (3.1a)

〈[·], ν〉 |= α.c(δ) ∗=0 α′.c(δ′) iff ν(α) = ν(α′) and ν(δ) = ν(δ′) (3.1b)

〈σ, ν〉 |= α.c(δ) ∗=i+1 α′.c′(δ′) (3.1c)

iff there exists a checker rule 〈Mu ∗ (M f ∗ β.c′′(γ)), F 〉 in the definition of

π.c(ρ) such that

ν satisfies [α, δ, ~ε/π, ρ,~κ]F and

〈σ, ν〉 |= [α, δ, ~ε/π, ρ,~κ]Mu ∗M f ∗ (β.c′′(γ) ∗=i α′.c′(δ′))

where ~κ are the free variables of the rule and ~ε are fresh

Figure 3.7: The semantics of the memory abstraction.
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2002]. Recall that a concrete store σ maps addresses to values and a valuation ν maps

symbolic values into concrete values. The valuation ν is used to capture relations among

memory cells. In Figure 3.7, I define 〈σ, ν〉 |= M to mean a concrete store σ and a valuation

ν satisfy an abstract memory M . I write [α/π]M for substituting α for π in M .

Checker Regions

The semantics of a checker application is defined by induction over the “height of

the underlying calling tree”. I write α.ci(δ) for a checker application of height at most i.

Intuitively, a checker application of height 1 should make no recursive calls (i.e., it should

correspond to a case where M f is emp). Observe that the valuation ν is what connects

regions and thus allows checkers to be relational.

Segment Regions

In a similar way, the semantics of a segment α.c(δ) ∗= α′.c′(δ′) is defined by

induction over the number of checker rule applications needed to build a derivation of

α.c(δ) from a derivation of α′.c′(δ′). For this purpose, we add an index i on segments to

indicate its length (when it is known). Thus, the standard segment is one of zero-or-more

steps (3.1a). The definition of ∗=i then proceeds by induction on i. Intuitively, we want

a 0-step segment to be an “empty partial derivation” of α.c(δ), which means it should be

case that the checkers and arguments match and correspond to an empty store (3.1b). In

Section 4.1.1, we will see that these restrictions are critical for the backward unfolding (as

used in the red-black tree example of Figure 3.2). The definition of the inductive case is

very similar to the corresponding case for checker applications. For an (i+1)-step segment,
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we unfold the head checker c once materializing points-to edges and a series of recursive

checker calls where one of these checker calls should be replaced with a segment of rank

i (3.1c).

Concretization

Finally, I tie these definitions together by giving the concretization of our abstract

domain, which we assume is a reduced product [Cousot and Cousot 1979] of the shape

domain (of graphs) and the base data domain. The concretization of an abstract memory

stateM is simply the set of store-valuation pairs that satisfyM . As the concrete counterpart

of the environment E, I write θ : Var→ Val for a concrete environment that maps variables

to concrete values. Here, I overload the concretization operator γ to apply to each of the

component parts.

Definition 3.2 (Concretization).

γ(M ) = { (σ, ν) | 〈σ, ν〉 |= M }

γ( 〈M,P 〉 ) = { (σ, ν) | (σ, ν) ∈ γ(M) ∧ ν ∈ γP](P ) }

γ( 〈E,M,P 〉 ) = { (θ, σ) | ∃ν, θ = ν ◦ E ∧ (σ, ν) ∈ γ(〈M,P 〉) }

I write γP] for the concretization function in the base domain, which yields a set of satisfying

valuations (independent of a store).

3.3.3 Invariant Checking Code as Inductive Predicates

With the meaning of the memory abstraction defined, we can make a more precise

connection between the validation expressions of the checker definition language (Figure 3.3)

and the abstract memory states they describe (Figure 3.6). Figure 3.8 defines a syntactic
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e � 〈M0, F0〉 ∨ · · · ∨ 〈Mn, Fn〉 e compiles to 〈M0, F0〉 ∨ · · · ∨ 〈Mn, Fn〉.
s � 〈M,F 〉 s compiles to 〈M,F 〉.
t � F t compiles to F .

e � 〈M0, F0〉 ∨ · · · ∨ 〈Mn, Fn〉
let β = α.f in e � 〈α@f 7→ β ∗M0, F0〉 ∨ · · · ∨ 〈α@f 7→ β ∗Mn, Fn〉

t � F e0 �
∨

i∈0..n
〈Mi, Fi〉 e1 �

∨
j∈0..m

〈Mj , Fj〉

if t then e0 else e1 �

( ∨
i∈0..n

〈Mi, F ∧ Fi〉
)
∨
( ∨
j∈0..m

〈Mj ,¬F ∧ Fj〉
)

α.c(δ) � 〈α.c(δ), true〉
s0 � 〈M0, F0〉 s1 � 〈M1, F1〉

s0 and s1 � 〈M0 ∗M1, F0 ∧ F1〉

t � F0 s � 〈M,F1〉
let α = t in s � 〈M, (α = F0) ∧ F1〉

t � F

t � 〈emp, F 〉

u � u α � α

t0 � F0 t1 � F1

t0 = t1 � F0 = F1

�(e) def= 〈M0, F0〉 ∨ · · · ∨ 〈Mn, Fn〉 if e � 〈M0, F0〉 ∨ · · · ∨ 〈Mn, Fn〉

�(s) def= 〈M,F 〉 if s � 〈M,F 〉

�(t) def= F if t � F

�(π.c(ρ) := e) def= π.c(ρ) := �(e)

Figure 3.8: Translation from validation expressions to formulas.
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translation from the normalized checker definition language (Figure 3.3(b)) to the formula

form used in this section. We see that the translation �(e) is defined on all expressions. The

normalization process has made this translation particularly direct. As alluded to earlier,

we can see that the unfolded region (i.e., the series of points-to edges) correspond to finite

access paths from the parameters. Additionally, the existentials are only for the values

along those access paths, as they come from the let-bindings.

Example 3.6 (A two-level skip list checker formula). Here, we have the formula version of

the two-level skip list checker from Figure 2.4(b) and Example 3.4.

π.skip1() := 〈emp, π = null〉

∨ 〈π@skip 7→ β ∗ π@next 7→ γ ∗ β.skip1() ∗ γ.skip0(β), π 6= null〉

π.skip0(ρ) := 〈emp, π = ρ〉

∨ 〈π@skip 7→ β ∗ π@next 7→ γ ∗ γ.skip0(ρ), π 6= null ∧ β = null〉

Example 3.7 (A doubly-linked list checker formula). Below is the formula version of the

doubly-linked list checker from Example 3.1 and Example 3.5.

π.dll(ρ) := 〈emp, π = null〉

∨ 〈π@prev 7→ β ∗ π@next 7→ γ ∗ γ.dll(π), π 6= null ∧ β = ρ〉

As noted before, we view a checker as summarizing the memory regions where

an evaluation of it on that region would succeed. That is, a checker abstracts the set of

concrete stores where its evaluation on the store consumes all cells and yields the true value.

To capture this intuition, we want to show the following:

If ν ` 〈σ, e〉 ⇓ 〈[·], true〉, then 〈σ, ν ′〉 |= �(e) (for some ν ′ ⊇ ν).

In other words, if the validation expression e succeeds and consumes the store, then the

store is satisfied by the formula translation (with a possible extension in the valuation).
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To prove this statement, we need to discuss the relation between the input store and the

residual store. Intuitively, if evaluation of an expression succeeds beginning with a store σ

and leaves a residual σ′, then the evaluation describes the part of σ where σ′ is removed

(i.e., describes σ′′ where σ = σ′′ ∗ σ′).

As in Figure 3.7, I leave the understanding of ν satisfying a first-order formula F

informal. To relate validation expressions with abstract memory states, we assume that the

evaluation and translation of terms t correspond with satisfaction. That is, for whatever

terms we consider, evaluation and translation should be defined so that the following hold:

1. If ν ` t ⇓ true, then ν satisfies �(t).

2. If ν ` t ⇓ false, then ν satisfies ¬(�(t)).

3. If ν ` t ⇓ u, then ν, α � u satisfies α = �(t).

Also, Figure 3.7 does not directly define |= for 〈M,F 〉 and 〈M0, F0〉 ∨ · · · ∨ 〈Mn, Fn〉. They

can be defined as follows:

〈σ, ν〉 |= 〈M,F 〉 iff 〈σ, ν〉 |= M and ν satisfies F

〈σ, ν〉 |= 〈M0, F0〉 ∨ · · · ∨ 〈Mn, Fn〉 iff there is a 〈Mi, Fi〉 (i ∈ 0..n) such that

〈σ, ν〉 |= 〈Mi, Fi〉

Now, we can state the correspondence between the evaluation of validation expressions with

the states they describe.

Theorem 3.3 (Successful evaluations correspond to abstract memory states).

If ν ` 〈σ, e〉 ⇓ 〈σ′, true〉, then σ = σ′′ ∗ σ′ and 〈σ′′, ν ′〉 |= �(e) (for some ν ′ ⊇ ν and

some σ′′).

In particular, if ν ` 〈σ, e〉 ⇓ 〈[·], true〉, then 〈σ, ν ′〉 |= �(e) (for some ν ′ ⊇ ν).

Proof. By induction on the given derivation. See Theorem A.1.
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3.3.4 Properties of Inductive Segments

From the intuitive description of segments in Section 3.3.1, it might be tempting

to consider segments as a case of separating implication:

α.c(δ) ∗− α′.c′(δ′) ,

which describes a region where conjoining any disjoint region that satisfies α′.c′(δ′) (i.e., the

remainder) makes that region satisfy α.c(δ) (i.e., the complete structure) using the standard

meaning of ∗− from separation logic3. While sufficient and useful for summarizing, this

definition of segments is not tight enough to allow for unfolding. In particular, α.c(δ) ∗−

α′.c′(δ′) does not guarantee that α′.c′(δ′) is reachable from α.c(δ) through checker unfoldings

(i.e., α′.c′(δ′) is some “recursive call”). The simplest example is to consider two checkers

chk and chk′ with different names but the same structure definition (e.g., two separate

definitions for a singly-linked list over the same next field): α.chk() ∗− α′.chk′() describes

some concrete stores, whereas α.chk() ∗= α′.chk′() describes no stores. Even if we rule out

this case syntactically, there are similar situations that can be constructed with checkers

that use the same fields or with the additional parameters.

While inductive segments ∗= are specialized to inductive checkers, it still has some

of the properties of the separating implication ∗− (when applied to checkers). We want to

be able to unfold segments, but we also need to maintain the properties useful and necessary

for analysis. The restrictions in the definition of the 0-step segment ∗=0 (3.1b) are critical

here. In particular, we can prove that ∗= is a restriction of ∗−.

Lemma 3.4 (Stronger than separating implication).
3More formally, 〈σ ∗ σ′, ν〉 |= M ∗−M ′ iff for all σ′ (disjoint from σ), if 〈σ′, ν〉 |= M ′, then 〈σ, ν〉 |= M .
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If (σ, ν) ∈ γ(α.c(δ) ∗= α′.c′(δ′) ), then (σ, ν) ∈ γ(α.c(δ) ∗− α′.c′(δ′) ).

Proof. By induction on the length of the segment.

Corollary 3.5 (Elimination of segments). As a consequence, we get an elimination rule.

If (σ, ν) ∈ γ(α.c(δ) ∗= α′.c′(δ′) ∗ α′.c′(δ′) ), then (σ, ν) ∈ γ(α.c(δ) ).

Proof. Direct by Lemma 3.4.

For analysis, it is also necessary to have the following basic but important prop-

erties.

Lemma 3.6 (Combining segments).

If (σ, ν) ∈ γ(α.c(δ) ∗= α′.c′(δ′) ∗ α′.c′(δ′) ∗= α′′.c′′(δ′′) ),

then (σ, ν) ∈ γ(α.c(δ) ∗= α′′.c′′(δ′′) ).

Proof. By induction on the length of the first segment.

In terms of the shape graph, these facts in Corollary 3.5 and Lemma 3.6 allow the

analysis to discard intermediate nodes when they are no longer needed, such as α′ and α′′

in the following graph:

α α′ α′′

root
c(δ) c′(δ′) c′(δ′) c′′(δ′′) c′′(δ′′)

It allows us to discover when a region again satisfies a complete run of a checker (i.e., the

entire structure again adheres to the data structure invariant). In the above, dropping the

intermediate nodes allows us to derive that the region from α (pointed to by root) satisfies

the invariants of checker c.

This last fact allows us to introduce segments anywhere when needed.
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Lemma 3.7 (Introduction of empty segments).

For all ν, ([·], ν) ∈ γ(α.c(δ) ∗= α.c(δ) ).

Proof. Direct by definition (case (3.1b)).

Note that our notion of segments is designed to capture precisely a partial run (i.e.,

a partial derivation) and not only structure segments where an empty structural segment

need not necessarily have equal additional parameters (i.e., δ’s). This distinction shows up

in the above properties.

3.4 Typing Checker Parameters

As alluded to in Section 2.5, before we perform a shape analysis on the program

code using the user-supplied checker definitions, we first perform a separate type analysis

on the checker definitions themselves. This type analysis gathers information that we then

use to guide the abstract interpretation over the program code. In particular, we saw that

at program point 21 in Figure 3.2, in order to materialize the fields of γ (i.e., the node

pointed to by pa), we need to unfold the segment between α and β “backward” from β.

However, note that this reasoning was based only on our intuitive understanding of the

rbtree checker. Nevertheless, we notice that with some additional type information on the

checker parameters, the analysis can then make this unfolding decision automatically.

In this section, we prescribe a type system to checker parameters that classifies

them into various kinds of pointers and non-pointers. This type information will then

instruct the shape analysis where to perform unfolding (see Section 4.1.2). Intuitively, we

consider a checker parameter to have pointer type if one of its fields is ever dereferenced
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along some path in a checker run (on a satisfying store). Thus far in the paper, we have in

essence implicitly assigned a pointer type to the traversal parameter (i.e., π in a definition

π.c(ρ)).

To direct unfolding decisions, we introduce further refinements of the pointer type

to indicate, for example, which fields f are dereferenced. We thus write a pointer type as a

record of fields that may be dereferenced {f0〈`0〉, . . . , fn〈`n〉}. We consider the non-pointer

type to be simply the empty record of fields {}. The level ` provides a relative measure of

where in the sequence of checker calls a field is dereferenced (i.e., where the points-to edge

is materialized). To describe this notion, consider a three-element singly-linked list and

the sequence of checker calls that describes it (using the list checker from Example 2.1),

shown below diagrammatically:

α0 α1 α2 null
next next next α0.list() · · ·α1.list() · · ·α2.list() · · · null.list()

The right represents the computation tree of α0.list() (i.e., the derivation of the inductive

predicate). For a pointer argument of a call, such as α0, we want to track an approximation

of where along the run are the fields of α0 dereferenced (i.e., materialized). For example, if

we number the levels of the computation tree as indicated with the subscripts, then we can

say that the next field of α0 is dereferenced in level 0. Intuitively, a level ` is thus an integer

approximating in how many checker calls is the field dereferenced or unk if unknown (e.g.,

at different levels depending on some condition).

Example 3.8 (A singly-linked list checker definition with types). The following assigns pa-
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rameters types to a normalized version of the list checker from Example 2.1.

(l : {next<0>}).list() :=

if (l = null) then true

else

let n : {next<1>} = l.next in

n.list()

As shown above, we consider a relative notion of levels where there “current” level is 0;

negative integers indicate backward from the current call, while positive integers indicate

forward.

Example 3.9 (A doubly-linked list checker definition with types). In the following, we con-

sider parameters types for the dll checker from Example 3.5.

(l : {prev<0>,next<0>}).dll(lp : {prev<-1>,next<-1>}) :=

if (l = null) then true

else

let p : {} = l.prev in

let n : {prev<1>,next<1>} = l.next in

p = lp and n.dll(l)

In Figure 3.9, I present a type-checking algorithm for the pointer types described

above, which will then lead to an inference algorithm. I write Γ for a type environment

mapping symbolic values α to types τ . Both the types and levels form (semi-)lattices where

the ordering is given by the <: and <:: relations, respectively. For types, records are ordered

by subset containment of fields modulo ordering in the levels, while the level lattice is

the flat lattice on integers with unk as the top element. Intuitively, the absence of a field

indicates it is not dereferenced anywhere. The core judgment is Γ ` e ok, which checks

that reads in a validation expression are good with respect to the parameter types Γ. For
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types τ ::= {f0〈`0〉, . . . , fn〈`n〉}

levels ` ::= k | unk

Γ ` e ok Under Γ, field reads in e are ok.

{f〈0〉} <: Γ(α) Γ, β : τ ` e ok

Γ ` let β : τ = α.f in e ok
t-read

Γ(α)− 1 = τ0 Γ(δ)− 1 = τ1 ((π : τ0).c(ρ : τ1) := e)

Γ ` α.c(δ) ok
t-call

Γ, α : τ ` s ok

Γ ` let α : τ = t in s ok
t-let-term

Γ ` e0 ok Γ ` e1 ok

Γ ` if t then e0 else e1 ok
t-if

Γ ` s0 ok Γ ` s1 ok

Γ ` s0 and s1 ok
t-and

Γ ` t ok
t-term

` chkdef ok Field reads in chkdef are ok.

π : τ0, ρ : τ1 ` e ok

` (π : τ0).c(ρ : τ1) := e ok
t-chkdef

τ0 <: τ1

`0 <:: `1

`i <:: `′i (0 ≤ i ≤ n ≤ m)

{f0〈`0〉, ..., fn〈`n〉} <: {f0〈`′0〉, ..., fm〈`′m〉} ` <:: unk ` <:: `

Figure 3.9: Type-checking checker parameters.
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a field read, we check that the field is in the set of dereferenced fields (rule t-read). For a

checker application, we check that the set of dereferenced fields for the actuals and formals

are the same, but we need to shift the frame of reference of the levels (rule t-call). I write

τ − k for the function on types that decrements each of the field levels by k (and where unk

maps to unk). Finally, at the top-level, we type-check each checker definition separately

and for each definition, we check that the body is good.

Inference. The type-checking algorithm is fairly straightforward, but it also yields a

natural extension to inferring parameter types by a least fixed-point computation. The

inference proceeds by initializing all type declarations to {} (the bottom element). At each

place where we check conformance in Figure 3.9, we instead compute the join in the type

lattice and update the appropriate declarations. Then, we iterate until we reach a fixed

point. Since the type lattice has finite height (as the number of fields is fixed for any set of

checker definitions), the process terminates. The type assignments shown in the examples

are the ones computed by this inference algorithm.

3.4.1 Guidance for Unfolding

This procedure provides fairly generic support for unfolding (forward and back-

ward). The graph unfolding described in Section 4.1.1 combined with this type analysis

allows support for back pointers that go back a finite number of steps (e.g., a list with

pointers that go back two nodes, a binary tree with parent pointers), but more importantly,

it makes the unfolding process less sensitive to how the checkers are written. For example,

the alternative doubly-linked list checker of Example 3.10 works equally well.



79

Example 3.10 (An alternative doubly-linked list checker definition with types). The follow-

ing checkers define a doubly-linked list where the unfolding materializes the next field of

the current node and then the prev field of the next node (if it is non-null) instead of the

next and prev fields of the current node as in dll (Example 3.9).

(l : {prev<0>,next<1>}).npdll() :=

if (l = null) then true

else

let p : {} = l.prev in

p = null and l.nenpdll()

(l : {prev<-1>,next<0>}).nenpdll() :=

let n : {prev<0>,next<1>} = l.next in

if (n = null) then true

else

let np : {} = n.prev in

np = l and n.nenpdll()

The types are slightly different, which in turn guides the graph unfolding algorithm appro-

priately. In particular, the prev field of l of nenpdll (non-empty next-prev doubly-linked

list) is at level -1 corresponding to our intuitive understanding of this checker that the prev

field of l should have been materialized in the previous call. Also, observe that in t-call,

we make no distinction between the traversal parameters and the additional parameters.

Thus, with this type information, one could consider checkers with, for example, multiple

forward parameters (at least in terms of unfolding).

Note that unlike traditional uses, this type system is not meant to ensure safe

evaluation. Rather, it is designed to compute a simple approximation of the possible stores

described by a validation expression e that provides guidance for unfolding. It does not,
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for example, ensure that an evaluation will succeed.

We discuss more precisely the approximation that is computed by this type analysis

later in this section, but as it is an approximation, we first consider an example of its

limitations. As stated above, this type analysis provides guidance to unfolding for back

pointers that go back a fixed number of steps, but it provides little useful information

for back pointers that can go arbitrarily far back. For instance, consider an n-ary tree

represented as nodes with pointers to its first child, its immediate sibling, and its parent.

Example 3.11 (A child-sibling tree checker definition with types).

(t : {parent<unk>,child<unk>,sibling<unk>})

.cstree(tp : {parent<unk>,child<unk>,sibling<unk>}) :=

if (t = null) then true

else

let p : {} = l.parent in

let c : {parent<unk>,child<unk>,sibling<unk>} = l.child in

let s : {parent<unk>,child<unk>,sibling<unk>} = l.sibling in

p = tp and c.cstree(t) and s.cstree(tp)

Note that the issue comes from the parent pointer. Without the parent pointer, the shape

is simply a binary tree. Furthermore, if it instead pointed back to the previous sibling

(and the parent in case of the first sibling), then the shape is just like a binary tree with

parent pointers. However, in this case, the type inference yields the information that pointer

parameters t and tp have parent, child, and sibling fields but at unknown levels. Our

analysis can still use this checker to analyze code that walks down the tree (i.e., forward in

the checker traversal) to perform an operation, but it does not have the guidance to analyze

code that starts from an arbitrary node in the tree and walks up the tree along parent
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pointers. A possibility to support such structures may be to strengthen the type analysis

by refining the lattice of levels and utilize that additional information in unfolding.

3.4.2 Approximation of Checker Evaluations

The goal with this type analysis is to compute for each checker parameter an

approximation of its fields and where along a successful evaluation of a validation expression

are those fields read. Where the fields are read correspond to where the analysis should look

to materialize them. Intuitively, in a successful evaluation, a field is read and consumed

at particular time (i.e., level) in the execution and through a specific pointer variable (as

alluded to in Section 3.2.2 and Section 3.3.3). A type assignment to a parameter π : τ

should be viewed as saying π may read from the fields in τ at the specified levels (relative

to the current level). That is, the type τ can always be extended with additional possible

fields. There is also an approximation due to aliasing, as there could be arbitrary aliasing

in the store or amongst the parameters. In particular, the inference algorithm says that a

pointer π has a field f only if it witnesses a read of f through π.

To capture the notion of levels, we can instrument the evaluation semantics from

Figure 3.5 to essentially time-stamp when a field is read. I write σ̄ for a time-stamped store

where each cell

[u0 7→ u1]stamp

is marked with a time stamp that can be either any to indicate an “unconsumed” cell or

α·k for a cell read through α at level k. In Figure 3.10, I show the instrumented evaluation

semantics where each step is marked with the current level. The rules of interest are ie-read
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time stamps stamp ::= any | α·k

ν ` 〈σ̄, e〉k ⇓ 〈σ̄′, u〉 Under valuation ν and in time-stamped
store σ̄ at k, expression e leaves a residual
store σ̄′ and evaluates to value u.

ν, β � u ` 〈[ν(α) + f 7→ u]α·k ∗ σ̄, e〉k ⇓ 〈σ̄′, u〉
ν ` 〈[ν(α) + f 7→ u]any ∗ σ̄, let β = α.f in e〉k ⇓ 〈σ̄′, u〉

ie-read

ν ` t ⇓ true ν ` 〈σ̄, e0〉k ⇓ 〈σ̄′, u〉
ν ` 〈σ̄, if t then e0 else e1〉k ⇓ 〈σ̄′, u〉

ie-if-t
ν ` t ⇓ false ν ` 〈σ̄, e1〉k ⇓ 〈σ̄′, u〉
ν ` 〈σ̄, if t then e0 else e1〉k ⇓ 〈σ̄′, u〉

ie-if-f

ν ` 〈σ̄, [α, δ/π, ρ]e〉k+1 ⇓ 〈σ̄′, u〉 (π.c(ρ) := e)

ν ` 〈σ̄, α.c(δ)〉k ⇓ 〈σ̄′, u〉
ie-call

ν ` 〈σ̄, s0〉k ⇓ 〈σ̄′, u0〉 ν ` 〈σ̄′, s1〉k ⇓ 〈σ̄′′, u1〉
ν ` 〈σ̄, s0 and s1〉k ⇓ 〈σ̄′′, u0 ∧ u1〉

ie-and

ν ` t ⇓ u0 ν, α � u0 ` 〈σ̄, s〉k ⇓ 〈σ̄′, u〉
ν ` 〈σ̄, let α = t in s〉k ⇓ 〈σ̄′, u〉

ie-let-term
ν ` t ⇓ u

ν ` 〈σ̄, t〉k ⇓ 〈σ̄, u〉
ie-term

Figure 3.10: Instrumented evaluation of validation expressions with time-stamped reads.

` 〈σ̄, ν〉 : Γ State 〈σ̄, ν〉 is approximated by Γ.

dom(ν) = dom(Γ)

` 〈[·], ν〉 : Γ
st-emp

{f〈k〉} <: Γ(α) ` 〈σ̄, ν〉 : Γ

` 〈[ν(α) + f 7→ u]α·k ∗ σ̄, ν〉 : Γ
st-stamped

` 〈σ̄, ν〉 : Γ

` 〈[u0 7→ u1]any ∗ σ̄, ν〉 : Γ
st-any

Figure 3.11: The relationship between time-stamped stores and the type environments that
approximate them.
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and ie-call. For a field read, the input store must have a cell for that field that has not yet

been stamped, which is then time-stamped for further evaluation and thus cannot be read

again. On a checker call, we simply increment the current level. The remaining rules are as

before in Figure 3.5 except the current level is carried around; I show them here only for

completeness. Intuitively, evaluation starts with a store σ̄ of cells and ends with a store σ̄′

that consists of the same cells but are now stamped with the level when and the pointer

through which they were read.

The correspondence between evaluation and instrumented evaluation is rather

straightforward. To state it, we simply define conversions between stores and time-stamped

stores that either remove time-stamped cells or mark all cells as any, respectively:

| [·] | = [·] | [·] |any = [·]

| [u0 7→ u1]any ∗ σ̄ | = [u0 7→ u1] ∗ | σ̄ | | [u0 7→ u1] ∗ σ |any = [u0 7→ u1]any ∗ |σ |any

| [u0 7→ u1]α·k ∗ σ̄ | = | σ̄ |

We can now state that instrumented evaluation is sound and complete with respect to

evaluation.

Theorem 3.8 (Correspondence between evaluation and instrumented evaluation).

1. If ν ` 〈σ̄, e〉k ⇓ 〈σ̄′, u〉, then ν ` 〈| σ̄ |, e〉 ⇓ 〈| σ̄′ |, u〉.

2. If ν ` 〈σ, e〉 ⇓ 〈σ′, u〉, then ν ` 〈σ̄r ∗ |σ |any, e〉k ⇓ 〈σ̄′r ∗ |σ′ |any, u〉

(for all σ̄r, k and for some σ̄′r).

Proof. By induction on the given derivations (separately).

From instrumented evaluation to evaluation (fact 1) simply requires stripping off the in-

strumentation. The other direction (fact 2) states that we can add back additional disjoint

cells that may record history information.
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With an evaluation instrumented with a history of field reads, we can describe

more precisely the approximation computed by the type analysis. Figure 3.11 states the

relationship between time-stamped stores σ̄ and type environments Γ (by a relation defined

by induction on the store). The type environment Γ may indicate more fields than are

present in the concrete store (from st-emp), but a cell that has been read and stamped

should have a corresponding entry in Γ (from st-stamped). Any cell that has not been

read requires no constraint in Γ (from st-any). Aliasing is approximated in a rather coarse

manner, as there are no constraints on aliases to time-stamped reads. Specifically, rule

st-stamped looks only at α and not any aliases of α (i.e., a β where ν(α) = ν(β)). Though a

technical point, it is thus important that the binding of actuals to formals in the evaluation

of a checker call (ie-call in Figure 3.10) is defined by substitution. Finally, we can state that

a type environment Γ computed on a validation expression e is an approximation of stores

described by e relative to the current level in evaluation.

Theorem 3.9 (Typing computes an approximation of time-stamped stores). Assume

that each checker definition has been type-checked.

If ν ` 〈σ̄, e〉k ⇓ 〈σ̄′, u〉 , Γ ` e ok , and ` 〈σ̄, ν〉 : Γ + k ,

then ` 〈σ̄′, ν ′〉 : Γ′ + k (for some ν ′ ⊇ ν and Γ′ ⊇ Γ).

In the above, Γ + k is the function that increments all the levels in Γ by k (i.e., lifting the

function on types).

Proof. By induction on the first two derivations and case analysis on last one. See Theo-

rem A.3.
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Chapter 4

Analysis Algorithm

Our analysis works as a typical abstract interpretation on programs. In particular,

the analyzer computes an abstract state

A = 〈E0,M0, P0〉 ∨ · · · ∨ 〈En,Mn, Pn〉

for each control point. To do that, we need abstract transformers for commands, such as

assignment and condition testing. The key domain operation is the unfolding of checker

edges (forward and backward) in order to materialize points-to edges. A novel aspect of

our algorithm is that we reduce the problem of unfolding segments backward to unfolding

them forward (Section 4.1). To infer loop invariants and obtain a terminating analysis, we

define comparison and join operations on abstract states that summarize graphs by folding

them into checker edges. The primary source of complexity in folding is the interaction

between the shape graph and the base data domain. A nice property of our algorithm is

that at a high-level, we separate the computation of the comparison and join operations

into phases: first, a traversal over the shape graph gathering constraints, and then, a
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propagation of these constraints to the base data domain before applying the corresponding

base domain operation (Section 4.2). Like others, we materialize as needed to reflect updates

and dereferences, but instead of summarizing eagerly, we delay folding in order to use history

information to guide the process.

4.1 Abstract Transition with Unfolding

Recall that the complete checker edges and partial checker edges summarize mem-

ory regions. In order to reflect memory updates in a precise manner, we often need to

partially concretize these summaries, which we do by unfolding. To describe unfolding in

detail, we consider a schematic example of doubly-linked list traversals that illustrate the

various forms of unfolding (shown in Figure 4.1). Initially, we have that l points to the

head of a doubly-linked list (satisfying the dll checker from Example 3.1). From program

point 3 to point 4, we perform a forward unfolding of a complete checker edge to material-

ize the edge corresponding to c0->next (the one from α in the first iteration and the one

from ψ in the fixed-point iteration). Observe that the analysis determines that it should,

for example, unfold forward at α in the first iteration because while there is no outgoing

points-to edge for the next field (corresponding to c0->next), node α does have an outgoing

checker edge (i.e., α is the traversal argument to a checker). Because checkers are induc-

tive definitions where points-to edges emanate from the traversal parameter, unfolding the

inductive predicate at its traversal argument (e.g., α in α.dll(null)) is likely to materialize

the desired points-to edge.

From program point 7 to point 8, to materialize the edge c1->next, we must unfold
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1

�
�

�
�α

l
dll(null)

c0 = l;

2 while (c0 != null && c0 should be advanced forward) {

3

�
�

�
�α

l, c0
dll(null)

�
�

�
�α ψ

l c0
dll(null) dll(χ) dll(χ)

c0 = c0->next;

4

�
�

�
�α β

null

l c0

next

prev

dll(α)

�
�

�
�α ψ ω

χ

l c0
dll(null) dll(χ) next

prev

dll(ψ)

}

5 c1= l;

6 while (c1 != c0 && c1 should be advanced forward) {

7

�
�

�
�α ω

l, c1 c0
dll(null) dll(ψ) dll(ψ)

�
�

�
�α ζ ω

l c1 c0
dll(null) dll(ε) dll(ε) dll(χ) dll(χ)

c1 = c1->next;

8

�
�

�
�α β ω

null

l c1 c0

next

prev

dll(α) dll(ψ) dll(ψ)

�
�

�
�α ε ζ ω

δ

l c1 c0
dll(null) dll(δ) next

prev

dll(ε) dll(ψ) dll(ψ)

}

9 c2 = c1 != null ? c1->prev : null;

10 while (c2 != null && c2 should be advanced backward) {

11

�
�

�
�α ζ η

ε

l

c2

dll(null) dll(ε) next

prev

dll(ζ)

c2 = c2->prev;

12

�
�

�
�α

δ

ζ ηε

l

c2

dll(null) dll(δ) next

prev

next

prev

dll(η)

}

first iteration at fixed point

Figure 4.1: Various forms of unfolding for doubly-linked lists (checker dll from Example 3.1).
The first loop shows forward unfolding of a complete checker edge, the second loop presents
forward unfolding of a partial checker edge, and the third loop demonstrates backward
unfolding of a partial checker edge.
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forward at the head of a dll segment (the one from α to ω in the first iteration and the one

from ζ to ω in the fixed-point iteration). Like in the previous case, the analysis determines

it should unfold forward because it arrives at an outgoing checker edge, but in this case, it is

a partial checker edge and thus how to unfold it does not come directly from a user-supplied

inductive definition.

Finally, from program point 11 to point 12, we can only make progress by unfolding

backward at the tail of a segment (the one from α to ζ) to materialize the edge for c2->prev.

There are two distinct aspects to both forward and backward unfolding (though they are

more evident in the backward case):

1. implementing the unfolding operations on the abstract domain, while justifying their

soundness (described in Section 4.1.1) and

2. determining when to apply which unfolding operation. (discussed in Section 4.1.2).

Unlike forward unfolding, determining when and where to apply backward unfolding is not

so obvious.

4.1.1 Unfolding Operations

We apply an unfolding in order to expose a heap cell (i.e., a points-to edge) before

performing an operation on it. Checker definitions include not only shape information

(i.e., how are the points-to edges arranged) but also data information in the form of pure

constraints on the exposed heap cells. Thus, unfolding not only modifies the shape graph

M but must also add additional constraints to the pure state P . In general, unfolding

takes an element of the product domain 〈M,P 〉 and yields a disjunction of abstractions
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〈M ′0, P ′0〉 ∨ · · · ∨ 〈M ′n, P ′n〉. Though, it is often the case that all but one of the disjuncts are

ruled out by the data domain (i.e., we derive a contradiction in the pure constraints).

To mark the phases of unfolding, we distinguish an unfolding operation that works

only on shape graphs from the overall unfolding operation. This distinction is also useful

in describing other domain operations that rely on unfolding. I write uα for the forward

unfolding at node α that takes a shape graph M and returns a set of graph and formula

pairs where the first-order formulas give the pure constraints on the unfolded graphs. The

overall unfolding operation unfoldα then takes an element of the product domain 〈M,P 〉

and returns a disjunction of such elements.

Unfolding Inductive Checkers

Let us consider the unfolding of a complete checker edge α.c(δ), in the abstract

element 〈M ∗ α.c(δ), P 〉. I describe unfolding of complete checker edges in detail, as it

serves as a basis for the unfolding of segments.

Definition 4.1 (Unfolding of inductive checkers). The unfolding of a checker proceeds by

unfolding each checker rule separately:

unfoldα(〈M ∗ α.c(δ), P 〉) def=
∨
R∈c
unfoldα(〈M ∗ α.R(δ), P 〉)

uα(M ∗ α.c(δ)) def=
⋃
R∈c
uα(M ∗ α.R(δ))

where I write R ∈ c for a checker rule R of checker definition c and overload checker

application to also apply to rules.

Definition 4.2 (Unfolding of checker rules). To unfold a checker rule, we first materialize
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the fields of the rule and then add the data constraint.

unfoldα(〈M ∗ α.R(δ), P 〉) def= 〈M ′,guardP](P, F ′)〉

where { (M ′, F ′) } = uα(M ∗ α.R(δ))

uα(M ∗ α.R(δ)) def=
{

(M ∗ [α, δ, ~ε/π, ρ,~κ](Mu ∗M f), [α, δ, ~ε/π, ρ,~κ]F )
}

We assume the base domain provides a guardP](P, F ) function that is a sound approxima-

tion of constraining P with F . In the shape graph, we simply unfold the checker rule and

perform substitutions (where ~ε are fresh; and rule R has formals π and ρ, has free variables

~κ, and has the form 〈Mu ∗M f , F 〉).

This scheme can be performed in an automatic way and generates a finite number

of disjuncts, which are well-formed elements of the domain.

Example 4.1 (Unfolding a skip list). I exhibit an unfolding of the skip1 checker from Fig-

ure 2.4. The addition of the pure constraints is shown explicitly.
�

�

�

�

α
skip1

P

unfold
−−−−→

�

�

�

�

emp

P ∧ α = null

∨

�

�

�

�

α β γ
next

skip

skip0(γ) skip1

P ∧ α 6= null

Example 4.2 (Unfolding a binary search tree). I show the unfolding of a region satisfying

the bst checker from Example 3.2.
�

�

�

�

α
bst(αlo, αup)

P

unfold
−−−−→

�

�

�

�

emp

P ∧ α = null

∨

�

�

�

�

β

α

γ

@d 7→ αd

l

r

bst(αlo, αd)

bst(αd, αup)

P ∧ α 6= null ∧ αlo < αd < αup

Forward Unfolding of Inductive Segments

Because the semantics of a partial checker edge

α.c(δ) ∗= α′.c′(δ′)
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is defined by induction over the sequence of derivation steps (from α to α′), we can define

an unfolding scheme analogous to the one for complete checker edges. We call this opera-

tion forward unfolding since it proceeds by unfolding checker definitions at the top of the

derivation tree in the “standard” way (i.e., corresponding to the materialization of edges at

the head α). This unfolding operation is exactly what is needed to materialize the edge for

c1->next at program point 7 in Figure 4.1.

We extend the definition of forward unfolding (unfoldα) for segments. Like for

complete checker edges, unfoldα on partial checker edges generates a finite disjunction of

〈M,P 〉 pairs. However, for partial checker edges, we must consider an additional case for

the empty segment (i.e., the 0-step segment); only if the segment is non-empty (i.e., is of

1-or-more steps) do we get materializations corresponding to the checker rules of c.

Definition 4.3 (Forward unfolding of segments).

unfoldα(〈M ∗ α.c(δ) ∗= α′.c′(δ′), P 〉)
def= unfold0

α(〈M ∗ α.c(δ) ∗= α′.c′(δ′), P 〉) ∨( ∨
R∈c
unfoldα(〈M ∗ α.R(δ) ∗= α′.c′(δ′), P 〉)

)

unfold0
α(〈M ∗ α.c(δ) ∗= α′.c′(δ′), P 〉)

def=


〈M,guardP](P, α = α′ ∧ δ = δ′)〉 if c = c′

⊥ if c 6= c′

uα(M ∗ α.c(δ) ∗= α′.c′(δ′))

def= u0
α(M ∗ α.c(δ) ∗= α′.c′(δ′)) ∪

( ⋃
R∈c
uα(M ∗ α.R(δ) ∗= α′.c′(δ′))

)

u0
α(M ∗ α.c(δ) ∗= α′.c′(δ′))

def=


{ (M,α = α′ ∧ δ = δ′) } if c = c′

{} if c 6= c′
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Observe that for the empty segment (unfold0
α), we assert the additional equalities (α = α′

and δ = δ′) in the base domain. Only with these equalities can we determine in the

analysis that the segment at program point 7 of the example in Figure 4.1 is non-empty.

To maintain a fully reduced representation in the shape graph, we can merge the nodes of

an empty segment (i.e., α with α′ and δ with δ′).

The definition for unfoldα on checker rules for segments are like for complete

checker edges. They follow directly from the semantics given in Figure 3.7.

Definition 4.4 (Forward unfolding of checker rules for segments).

unfoldα(〈M ∗ α.R(δ) ∗= α′.c′(δ′), P 〉)
def=

∨
(M ′,F ′)∈uα(M∗α.R(δ)∗=α′.c′(δ′))

〈M ′,guardP](P, F
′)〉

uα(M ∗ α.R(δ) ∗= α′.c′(δ′))
def=

{
(M ∗ [α, δ, ~ε/π, ρ,~κ](Mu ∗M f ∗ β.c′′(γ) ∗= α′.c′(δ′)), [α, δ, ~ε/π, ρ,~κ]F )

∣∣
R = 〈Mu ∗ (M f ∗ β.c′′(γ)), F 〉 with formals π and ρ; and ~ε are fresh

}
Note that in the shape unfolding (uα), there is a case for each recursive checker call β.c′′(γ)

(i.e., the segment could end in any of the branches).

Example 4.3 (Forward unfolding a binary search tree segment). I show the unfolding of

a segment region satisfying the bst checker from Example 3.2.
�

�

�

�

α α′

bst(αlo, αup) bst(α′

lo
, α′

up)

P

unfold
−−−−→

�

�

�

�

emp

P ∧ α = α′ ∧ αlo = α′

lo ∧ αup = α′

up

∨

�

�

�

�

β α′

α
γ

@d 7→ αd

l

r

bst(αlo, αd) bst(α′

lo
, α′

up)

bst(αd, αup)

P ∧ α 6= null ∧ αlo < αd < αup

∨

�

�

�

�

β

α

γ α′

@d 7→ αd

l

r

bst(αlo, αd)

bst(αd, αup) bst(α′

lo
, α′

up)

P ∧ α 6= null ∧ αlo < αd < αup
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Note that using separating implication (∗−) for partial checker edges would make

them very difficult to unfold, as it would require involved restrictions to be made on checkers.

Instead, our notion of segments as we define here (∗=) seems to be closer to our intuitive

understanding of partial derivations of checkers and thus leads to a natural forward unfolding

operation.

Backward Unfolding of Inductive Segments

The unfolding function defined above allows the analysis to materialize memory

regions from the traversal argument of a checker edge. However, these unfolding operations

do not apply to algorithms walking backward through invertible data structures, such as

doubly-linked lists, as the sequence of edge dereferences does not follow the recursive checker

calls that the forward unfolding would uncover. For example, this situation arises at pro-

gram point 11 in Figure 4.1. From our intuitive understanding of dll, we know that if the

segment between α and ζ is non-empty, then ε—the value of c2—lies along that segment

“just before ζ” (i.e., ε’s next field points to ζ). Thus, if we are able to unfold backward along

the segment from ζ, we could materialize the edge for c2->prev.

The key observation we make to define the backward unfolding operation is that

we can split segments into subsegments. For example, we can split a ∗=i+1 segments into

a pair of subsegments: ∗=i and ∗=1. This segment splitting property is captured by the

following lemma:

Lemma 4.5 (Splitting inductive segments). Let

(σ, ν) ∈ γ(α.c(δ) ∗=i+1 α′.c′(δ′) ) .
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Then, there exists a checker c′′ and nodes α′′, δ′′ such that

(σ, ν) ∈ γ(α.c(δ) ∗=i α′′.c′′(δ′′) ∗ α′′.c′′(δ′′) ∗=1 α′.c′(δ′) ) .

Proof. By induction on i. Note that α′′, δ′′ are fresh and that only checkers that may be

called transitively from c need to be considered for c′′.

Observe that Lemma 4.5 makes it possible to decompose a segment into a finite

set of disjuncts with shorter segments. We can then define a backward unfolding operation

by first splitting an (i+1)-step segment into an i-step segment and a 1-step segment and

then apply forward unfolding to the 1-step segment (while separately considering the 0-step

segment case).

More precisely, we define a backward unfolding function unfold�1
α′ , which should

be applied at a node α′ in an abstract state of the form 〈M ∗ α.c(δ) ∗= α′.c′(δ′), P 〉 and

conceptually unfolds the checker application just before α′ in the sequence of calls from α

to α′.

Definition 4.6 (Backward unfolding of segments).

unfold�1
α′ (〈M ∗ α.c(δ) ∗= α′.c′(δ′), P 〉)

def= unfold0
α(〈M ∗ α.c(δ) ∗= α′.c′(δ′), P 〉) ∨(∨
c′′

unfoldα′′(〈M ∗ α.c(δ) ∗= α′′.c′′(δ′′) ∗ α′′.c′′(δ′′) ∗=1 α′.c′(δ′), P 〉)

)

where c′′ is over each possible checker and α′′, δ′′ are fresh (as in Lemma 4.5).

The first disjunct corresponds to the empty segment, while the remaining disjuncts come

from splitting the non-empty segment and applying the forward unfolding on the ∗=1 edge.
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α ζ

ε

l

c2

dll(null) dll(ε)

prev

y split using Lemma 4.5 (δ, ε′ fresh)

α ζ

ε

ε′

l

c2

dll(null) dll(δ) dll(δ) dll(ε)

1
prev

y unfold forward at ε′

α ζ

ε

ε′ ζ′

δ

l

c2

dll(null) dll(δ) dll(ε′) dll(ε)

0
prev

next

prev

y unfold 0-step segment (i.e., merge ζ = ζ ′ and ε = ε′)

α

δ

ζε

l c2
dll(null) dll(δ)

prev

next

prev

Figure 4.2: Backward unfolding of a doubly-linked list segment. This example shows in
detail the backward unfolding in Figure 4.1 of the dll segment from program point 11 to
point 12. The backward unfolding operation is broken down into individual steps that
demonstrate how it is defined in terms of forward unfolding.

Note that Lemma 4.5 can be generalized to splitting segments of length i + k,

which allows us to unfold backward k steps in one operation (for any constant k). I write

unfold�k
α′ for the k-step backward unfolding function at α′.

Example. In Figure 4.2, I show the individual steps in the backward unfolding of a

doubly-linked list segment that is needed in the example shown in Figure 4.1. At the top,

I show the subgraph of interest from program point 11. The empty segment case is ruled

out because we have that ε 6= null from the loop condition; since the parameter at α is

null, an empty segment would imply that ε = null (as ε is the parameter at ζ). Figure 4.2
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shows the steps for the non-empty segment case. It is in the last step that we discover that

ζ = ζ ′ and ε = ε′, which allows us to find out that ε@next 7→ ζ (i.e., is the points-to edge

for c2->next).

Properties of Unfolding

The definitions in this subsection specify the forward and backward unfolding

operations on complete checker edges and segment edges. These operations are sound in

that they result in a weaker disjunction.

Theorem 4.7 (Soundness of unfolding).

1. If unfoldα(〈M ∗ α.c(δ), P 〉) =
∨
i

〈M ′i , P ′i 〉,

then γ(〈M ∗ α.c(δ), P 〉) ⊆
⋃
i

γ(〈M ′i , P ′i 〉).

2. If unfoldα(〈M ∗ α.c(δ) ∗= α′.c′(δ′), P 〉) =
∨
i

〈M ′i , P ′i 〉,

then γ(〈M ∗ α.c(δ) ∗= α′.c′(δ′), P 〉) ⊆
⋃
i

γ(〈M ′i , P ′i 〉).

3. If unfold�1
α′ (〈M ∗ α.c(δ) ∗= α′.c′(δ′), P 〉) =

∨
i

〈M ′i , P ′i 〉,

then γ(〈M ∗ α.c(δ) ∗= α′.c′(δ′), P 〉) ⊆
⋃
i

γ(〈M ′i , P ′i 〉).

In other words,

if unfolding transforms 〈M,P 〉 into
∨
i

〈M ′i , P ′i 〉, then γ(〈M,P 〉) ⊆
⋃
i

γ(〈M ′i , P ′i 〉).

There are similar statements for the shape unfolding uα.

Proof. Unfolding of checker calls (fact 1) is proven by induction on the height of the checker

“call tree”. Similarly, forward unfolding of segments (fact 2) is proven by induction on the

length of the segment. For backward unfolding of segments (fact 3), we apply splitting of

segments (Lemma 4.5) and the soundness of forward segment unfolding.
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Furthermore, the shape unfolding uα is exact in that each rule is considered and

all pure constraints are kept.

Lemma 4.8 (Completeness of shape unfolding).

1. If (M ′, F ′) ∈ uα(M ∗ α.c(δ)), (σ, ν) ∈ γ(M ′), and ν satisfies F ′,

then (σ, ν) ∈ γ(M ∗ α.c(δ)).

2. If (M ′, F ′) ∈ uα(M ∗ α.c(δ) ∗= α′.c′(δ′)), (σ, ν) ∈ γ(M ′), and ν satisfies F ′,

then (σ, ν) ∈ γ(M ∗ α.c(δ) ∗= α′.c′(δ′)).

Proof. By the definitions of γ (Definition 3.2), and |= (Figure 3.7).

4.1.2 Expression Evaluation and Controlling Unfolding

The basic transfer functions for atomic commands (e.g., mutation, allocation, and

deallocation) are all fairly straightforward, as updates affect graphs locally. As first men-

tioned in Section 2.4, once points-to edges have been materialized, pointer updates amount

to the swinging of an edge. Determining which edge to swing and to where is a simple walk

of the graph from variables following the sequence of field dereferences of the command.

This update is sound because each edge is a disjoint region of memory (i.e., the separation

constraint). Rules specifying the update on graphs for atomic commands are given in Fig-

ure 4.3(b). For new and free, I write α@~f 7→ ~β as a shorthand for a series of points-to

relations for each field (i.e., α@f0 7→ β0 ∗ α@f1 7→ β1 ∗ · · · ∗ α@fn 7→ βn). The last rule

is the so-called frame rule from separation logic that captures the idea that updates affect

graphs locally. That is, because of the disjointness of regions, the only cells that need to

be considered are those mentioned in cmd . I write lowercase m to connote a fragment of

the global memory state. Updating the overall analysis state is described in Figure 4.3(c).
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program commands cmd ::= skip | exp0.f = exp1 | exp.g = new(~f) | free(exp) | · · ·

program expressions exp ::= x | α | exp.f | -exp | · · ·

(a) An imperative programming language.

{M } cmd {M ′ } Precondition M updated by cmd yields
postcondition M ′.

{ emp } skip { emp } {α@f 7→ β } α.f = γ {α@f 7→ γ }

(γ, ~δ fresh)

{α@g 7→ β } α.g = new(~f) {α@g 7→ γ ∗ γ@~f 7→ ~δ } {α@~f 7→ ~β } free(α) { emp }

{m } cmd {m′ } (pointers modified by cmd not in M)

{M ∗ m } cmd {M ∗ m′ }

(b) Updating the abstract memory state.

{A } cmd {A′ } Precondition A updated by cmd yields
postcondition A′.

evalE(〈M,P 〉, exp) = { ..., (〈Mi, P
′
i 〉, αi), ...}

{Mi } [αi/exp]cmd {M ′i } (for all i and each exp in cmd)

{ 〈E,M,P 〉 } cmd {
∨
i〈E,M ′i , P ′i 〉 }

{A0 } cmd {A′0 } {A1 } cmd {A′1 }
{A0 ∨A1 } cmd {A′0 ∨A′1 }

(c) Updating the analysis state.

Figure 4.3: Transforming the analysis state.
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evalE(〈M,P 〉, exp) = { ..., (〈Mi, Pi〉, αi), ...} 〈M,P 〉 unfolds to
∨
i〈Mi, Pi〉 so that

exp evaluates to αi in Mi.

evalE(〈M,P 〉, x) = { (〈M,P 〉, E(x)) }

evalE(〈M,P 〉, exp) = { ..., (〈Mi, Pi〉, αi), ...}
unfoldαi@f (〈Mi, Pi〉) =

∨
j〈Mj ∗ αi@f 7→ βj , Pj〉 (for all i, j)

evalE(〈M,P 〉, exp.f) = { ..., (〈Mj ∗ αi@f 7→ βj , Pj〉, βj), ...}

evalE(〈M,P 〉, exp) = { ..., (〈Mi, Pi〉, α), ...} (β fresh)

evalE(〈M,P 〉, -exp) = { ..., (〈Mi,guardP](Pi, β = −α)〉, β), ...}

Figure 4.4: Symbolically evaluating program expressions in abstract memory states.

The eval function captures the notion of walking a graph according to an expression exp

to obtain a symbolic value α. To obtain a symbolic value, it may need to apply unfolding

(i.e., materialize the needed points-to edges). The first rule simply states that to reflect a

command cmd in the analysis state, first the graph is unfolded so that we have a node for

each expression exp in cmd , and then each graph is updated1. Observe that performing

this symbolic evaluation may update the pure state P (e.g., because of unfolding). Also,

note that since eval uses the unfolding operations, the local soundness of this rule relies on

the soundness of unfolding (Theorem 4.7). Finally, overall, for a disjunctive analysis state,

it simply transforms each disjunct individually.

Propagating Data Constraints

The eval function is inductively defined in Figure 4.4. First, variables evaluate

to their addresses as given by the environment E. In the second rule, we use an unfolding
1For presentation purposes, the statement of this rule is slightly informal, as the intent is that eval is

done simultaneously for each expression in cmd (specifically, for the mutation command).
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operation to materialize a field. I write unfoldα@f to mean apply whatever unfolding

operation to try to materialize the cell with address α@f . For data operations (e.g., arith-

metic expressions) on heap values, we symbolically evaluate the expressions by obtaining

symbolic values for each memory access. We then create a new symbolic value to stand for

this expression in the graph and assert this equality relation in the data domain P]. The

last rule shows one such case. Note that this constraint propagation step is how the shape

domain extends the base data domain to reason about heap values. The base data domain

should also have a variable elimination operation so that the shape domain can inform it

when certain nodes are no longer relevant (e.g., because regions get summarized).

Example 4.4 (Propagating data constraints). The following mutation command shows an

example transition that propagates data constraints during evaluation of the program ex-

pression. �
�

�
�

α β

x

data

P

x->data = -(x->data);�
�

�
�

α γ

x

data

guardP](P, γ = −β)

Deciding Where to Unfold

As described above, evaluating expression requires following points-to edges in the

shape graph. In case the relevant points-to edges are folded into complete or partial checker

edges (i.e., summarized), we need to unfold the appropriate checker edge to materialize the

desired points-to edge (i.e., the unfoldα@f function from above). To choose the appropriate

edge and unfolding operation, we take advantage of the type inference on checker parameters
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defined in Section 3.4.

We are faced with deciding where to perform unfolding when the evaluation of an

expression requires dereferencing a field f of a node α, but there is no such points-to edge

from α. If there is a complete checker edge α.c(δ) or a partial checker edge α.c(δ) ∗= α′.c′(δ′)

starting from α (i.e., α is the traversal argument for some checker edge), then we can unfold

this summary edge using the forward unfolding function unfoldα. If the points-to edge

for α@f is materialized, then the evaluation of the expression can be resumed in the new

unfolded graph(s). This materialization step is the basic one based on the knowledge that

points-to edges emanate from the traversal parameter in inductive checker definitions and

is what applies at program point 3 and program point 7 in Figure 4.1. Note that as an

optimization, we need only consider outgoing checker edges where the type of the traversal

parameter of the checker includes f〈`〉 (for a level ` that is non-negative or unk).

Otherwise, if there is no outgoing checker edge from α, we look for a potential

backward unfolding. We look elsewhere for a partial checker edge β.c(δ) ∗= β′.c′(α) where

α is a parameter at the tail. If additionally, the corresponding parameter of checker c′ has

a type that includes f〈n〉 where n < 0, then we apply the backward unfold function at β′

(unfold�|n|
β′ ). The magnitude of the integer level tells us how many steps backward (i.e.,

how to split the segment from β to β′). In the doubly-linked list example (Figure 4.1)

at program point 11, we are trying to materialize ε@prev when ε has no outgoing edges.

However, we have the edge α.dll(null) ∗= ζ.dll(ε) in the graph. Since the type of the

additional parameter to dll contains prev〈-1〉 (see the type of lp in Example 3.9), we

know to unfold backward 1-step from ζ. Observe that the checker parameter typing does
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not affect soundness; it is utilized only as guide to decide where to unfold.

Unfolding and Reduction

Often, all but one of the disjuncts are ruled out during unfolding by contradictory

data constraints. For example, a conditional guard that gives α 6= null rules out the empty

case when, for example, unfolding a doubly-linked list checker edge α.dll(null) (the checker

from Example 3.1, Example 3.5, and Example 3.7). In our discussion, we assume that all

relevant information is shared between the shape domain and the data domain (i.e., we

maintain a fully reduced representation). In implementation, we must decide what kind of

constraints derived by one domain should be propagated to the other so that we can quickly

rule out contradictory states. In the shape domain, the disjointness of memory regions gives

implicitly a disequality between pointers. In particular,

if α@f 7→ β ∗ γ@f 7→ δ, then α 6= γ.

Conversely, if the data domain derives an equality constraint between pointers, then con-

veying that information to the shape domain allows it to merge nodes and detect such

contradictions.

4.2 History-Guided Folding with Data Constraints

To obtain loop invariants in the shape domain, we need a way to identify subgraphs

that should be folded into complete or partial checker edges. What kinds of subgraphs can

be summarized without losing too much precision is highly dependent on the structures

in question and the code being analyzed. To see this, consider the fixed-point graph at



103

program point 4 in this skip list example from Figure 2.5. One could imagine folding the

points-to edges corresponding to p->n and p->s into one summary region from p to c (i.e.,

eliminating the node labeled γ), but it is necessary to retain the information that p and c are

“separated” by at least one next field. Keeping node γ expresses this fact. Rather than using

a canonicalization operation that looks only at one graph to identify the subgraphs that

should be summarized, our weakening strategy is based on the observation that previous

iterates at loop join points can be utilized to guide the folding process. Furthermore,

because checker edges incorporate both shape and data properties, this summarization

requires careful coordination between the shape domain and the data domain (in order to

avoid losing precision unnecessarily), particularly in the presence of relational checkers.

In this subsection, I define the comparison and widening operations, which both

first perform a simultaneous traversal over the input shape graphs gathering constraints

before then applying the corresponding operation in the base domain. I describe the com-

parison algorithm first, as it has similar but slightly simpler structure as compared to the

widening and is also the key subroutine used by the widening.

4.2.1 Comparison of Analysis States

The comparison operator checks inclusion between two abstract elements in a

conservative way. More precisely, it takes as input two abstract elements

A` = 〈E`,M`, P`〉 and Ar = 〈Er,Mr, Pr〉

and returns true if it can establish that

γ(A`) ⊆ γ(Ar)
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and false otherwise (which does not necessarily mean that the inclusion does not hold at

the concrete level). Static analyses rely on the comparison operator in order to ensure the

termination of fixed-point computation. We also utilize it to collapse extraneous disjuncts

in the analysis state and most importantly, as a subroutine in the widening operation.

Recall that the nodes in the shape graph correspond to existentially-quantified

symbolic values, so at the basis of the comparison is a notion of node equivalence, which

states that valuations should map nodes in A` and Ar to the same value for the inclusion

to hold. For instance, if x is a variable, then the address of x should be the same on both

sides, or the inclusion cannot hold. In fact, these equality relations constrain the valuations.

Thus, when it succeeds, the comparison algorithm should return a valuation transformer Ψ

that is a function mapping nodes of Ar into nodes of A`. The condition that Ψ is a function

ensures that any aliasing expressed in Ar is also reflected in A`, so if at any point, this

condition on Ψ is violated, then the comparison returns false.

At a high-level, the algorithm proceeds in three stages:

• First, the initialization of the algorithm creates an initial valuation transformer Ψinit

defined by the environments E` and Er. Each variable should be mapped to the same

address, so it is defined as follows:

∀x ∈ Var,Ψinit(Er(x)) = E`(x) .

The valuation transformer plays an essential role in the algorithm itself since it gives

the points from where we should compare the graphs. It is initialized using the

environment, as the natural starting points are the nodes that correspond to the

program variables.
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• Second, a comparison in the shape domain is performed, which proceeds by checking

inclusion locally. When new node relations are established as required for the inclu-

sion to hold, the valuation transformer should be extended in order to include these

constraints. Finally, it returns the following:

1. the final valuation transformer Ψ;

2. a first-order formula F , which collects pure constraints, which may arise during

the computation that must ultimately be proven (i.e., are temporarily assumed).

• Last, a comparison in the data domain is performed that shows the inclusion of P`

in Pr. We must also ask the data domain to prove and discharge the first-order side-

conditions F computed in the previous step hold under the assumption of P`. All this

is done modulo application of the valuation transformer Ψ.

Comparison in the Shape Domain

The basic idea of the graph comparison algorithm is to determine semantic inclu-

sion by iteratively reducing to stronger statements until the inclusion is obvious. It does so

using a set of rules that apply to the graphs locally. While applying this set of rules, the

algorithm carries along and enriches the pair (Ψ, F ) introduced above.

The rules are presented in Figure 4.5. For conciseness, I omit the explicit book-

keeping of the node relations in the valuation transformer Ψ, that is, the rules assume the

“final” Ψ is given so that a derivation states the soundness of the whole computation. In

practice, the state of Ψ also determines when a rule applies. I show this aspect indirectly by

underlining the constraints on Ψ that are added once the rule is used, while the mappings
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M` vF`Ψ Mr M` is approximated by Mr under Ψ and
with residual conditions F .

emp vt
Ψ emp

c-emp
Ψ(αr) = α` M` vFΨ Mr Ψ(βr) = β`

M` ∗ α`@f 7→ β` vFΨ Mr ∗ αr@f 7→ βr
c-pt

Ψ(αr) = α` M` vFΨ Mr Ψ(δr) = δ`

M` ∗ α`.c(δ`) vFΨ Mr ∗ αr.c(δr)
c-chk

Ψ(αr) = α` M` vFΨ Mr ∗ α′r.c′(δ′r)
Ψ(δr) = δ` Ψ(α′r) = α′` Ψ(δ′r) = δ′` (α′r, δ

′
r fresh)

M` ∗ α`.c(δ`) ∗= α′`.c
′(δ′`) vFΨ Mr ∗ αr.c(δr)

c-segchk

Ψ(αr) = α` M` vFΨ Mr ∗ α′r.c′(δ′r) ∗= α′′r .c
′′(δ′′r )

Ψ(δr) = δ` Ψ(α′r) = α′` Ψ(δ′r) = δ′` (α′r, δ
′
r fresh)

M` ∗ α`.c(δ`) ∗= α′`.c
′(δ′`) vFΨ Mr ∗ αr.c(δr) ∗= α′′r .c

′′(δ′′r )
c-segseg

M` vFΨ M ′r (M ′r, F
′) ∈ uαr(Mr ∗ αr.c(δr))

M` vF∧F
′

Ψ Mr ∗ αr.c(δr)
c-uchk

M` vFΨ M ′r (M ′r, F
′) ∈ uαr(Mr ∗ αr.c(δr) ∗= α′r.c

′(δ′r))

M` vF∧F
′

Ψ Mr ∗ αr.c(δr) ∗= α′r.c
′(δ′r)

c-useg

Figure 4.5: The comparison operation in the shape domain.
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that are not underlined must be in Ψ for the rule to apply. For instance, rule c-pt applies

when α` and αr match (i.e., when Ψ(αr) = α`) and when there is a field edge with label

f from each node in both graphs. Then, the edges can be removed from both abstract

elements (since α`@f 7→ β` is obviously weaker than αr@f 7→ βr). A correspondence be-

tween β` and βr can be added into Ψ, for these two nodes should correspond to the same

value. When adding such a correspondence is not possible, because it would make Ψ not a

function, the algorithm should return false (i.e., the inclusion cannot be established because

this situation would mean that one value in Mr should be equal to two possibly distinct

values in M`).

In the following, I briefly summarize the behavior of the other rules, whereas I

show example derivations to give a more intuitive understanding of how the rules apply in

Example 4.5 and Example 4.6. Rule c-emp allows returning true when the proof is finished.

Similar to c-pt, rule c-chk matches two checker edges from related nodes. When there is

a partial checker edge in M` and a checker edge in Mr, we split out the “prefix segment”

in the right to match the left (rule c-segchk for a complete checker edge in Mr and rule

c-segseg for a partial checker edge). Rules c-uchk and c-useg unfold complete or partial

checker edges in Mr when no other rule applies. Intuitively, when the comparison succeeds,

Ψ gives us a relationship between the valuation of nodes on the left and on the right. In

other words, a valuation ν` for A` can be composed with Ψ to give a valuation for Ar. I

write this composition as ν` <Ψ, which is used to state soundness.

Theorem 4.9 (Soundness of comparison in the shape domain). The comparison operation

on shape graphs is sound.
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If M` vFΨ Mr, (σ, ν) ∈ γ(M`), and ν <Ψ satisfies F , then (σ, ν <Ψ) ∈ γ(Mr).

Proof. By induction on the derivation of M` vFΨ Mr. See Theorem A.5.

The comparison algorithm in the shape domain is incomplete (i.e., the comparison

may fail to prove the inclusion when it does hold at the concrete level). For example, we

never consider unfolding in M`. These rules have been primarily designed to be effective in

the way the comparison is used in the join and widening algorithms where we need to see

if M` is an unfolded version of Mr.

Comparison in the Combined Domain

If the comparison in the shape domain succeeds, then the comparison holds in

the combined domain if we can discharge the side-conditions F and show the inclusion in

the data domain. The key is that the comparison in the shape domain has computed Ψ,

the correspondence between values in the left and values in the right, which captures the

relationship between the shape and data domains.

To define the overall comparison, we assume that the data domain has a function

proveP] that takes as input an abstract element P ∈ P] and a first-order formula F and

tries to prove that any valuation ν in γP](P ) satisfies F , as well as a conservative comparison

function vP] . Furthermore, we assume the data domain can apply < at the abstract level,

that is, P <Ψ applies the valuation transformer Ψ to rename symbolic values and capture

any relations. Conceptually, this operation can be implemented by asserting equalities for

each mapping in Ψ then projecting out the symbolic values in the range of Ψ (as in Chang

and Leino [2005]). Note that Ψ may track relations, so that P < Ψ may collect additional
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constraints, which were not in P (if P] can track them). Together, these operations should

satisfy the following conditions:

1. If proveP](P <Ψ, F ), then ν <Ψ satisfies F .

2. If P` <Ψ vP] Pr, then γP](P` <Ψ) ⊆ γP](Pr).

With that, the comparison function for the product domain is defined as follows:

Definition 4.10 (Comparison in the combined shape and data domain).

〈M`, P`〉 vΨ 〈Mr, Pr〉

iff there exists an F such that

M` vFΨ Mr , proveP](P` <Ψ, F ) , and P` <Ψ vP] Pr .

Moreover, 〈E`,M`, P`〉 v 〈Er,Mr, Pr〉 if and only if the above comparison evaluates suc-

cessfully when started with Ψ = Ψinit.

Theorem 4.11 (Soundness of comparison in the combined shape and data domain).

The comparison operation is sound.

If 〈M`, P`〉 vΨ 〈Mr, Pr〉 and (σ, ν) ∈ γ( 〈M`, P`〉 ), then (σ, ν <Ψ) ∈ γ( 〈Mr, Pr〉 ).

As a consequence, if 〈E`,M`, P`〉 v 〈Er,Mr, Pr〉, then γ( 〈E`,M`, P`〉 ) ⊆ γ( 〈Er,Mr, Pr〉 ).

Proof. Direct by the soundness of comparison in the shape domain (Theorem 4.9) and the

soundness conditions on proveP] and vP] in the data domain.

Examples

I now present a few examples of deciding inclusion. In Example 4.5, the focus

is on the comparison algorithm in the shape domain (as defined in Figure 4.5). Then,

Example 4.6 discusses in further detail the interaction with the base data domain.
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1 β0 β1next

skip

v γ0 γ1

skip1 skip1

γ0 � β0

γ1 � β1

c-useg

2 β0 β1next

skip

v γ0 γ2 γ′

1
γ1

next

skip

skip0(γ′

1
) skip1 skip1

c-pt (2x)

3 emp v γ2 γ′

1
γ1

skip0(γ′

1
) skip1 skip1

γ2 � β1

γ′

1
� β1

c-uchk

4 emp v γ′

1
γ1

skip1 skip1

c-useg (0-step)

5 emp v emp

Figure 4.6: A derivation deciding the inclusion of a one-node skip list fragment in a skip
list segment of checker skip1 from Figure 2.4(b). The comparison operation works by iter-
atively reducing to stronger statements (defined in Figure 4.5). This example is described
in Example 4.5.
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Example 4.5 (A comparison operation on skip lists). I highlight aspects of the compari-

son algorithm by following an example derivation shown in Figure 4.6 (from goal to axiom).

The top line shows the initial goal with a particular initialization for the valuation transfor-

mation Ψ. Each subsequent line shows a step in the derivation that is obtained by applying

the named rule (shown flush right). The highlighting of nodes and edges indicates where

the rules apply. To the right of the graphs, I show the valuation transformer Ψ as it is

extended through the course of the computation. We are able to prove that the left graph

is included in the right graph because we reach emp vt
Ψ emp.

First, consider the application of the c-pt rule (line 2 to 3). When both M` and

Mr have the same kind of edge from matched nodes, the approximation relation obviously

holds for those edges, so those edges can be consumed. Any target nodes are then added

to Ψ so that the traversal can continue from those nodes. In this case, the skip and next

points-to edges match from the node mapping γ0 � β0. With this matching, the mappings

γ2 � β1, γ
′
1 � β1 are added. The c-chk rule is the analogous matching rule for complete

checker edges (not shown in this example).

Now, consider the first application of c-useg (line 1 to 2) where we have a segment

from γ0 on the right, but we do not have an edge from β0 on the left that can be immediately

matched with it. In this case, we unfold the segment. In general, unfolding results in a

disjunction of graphs, so the overall approximation check succeeds if the approximation

check succeeds for any one of the unfolded graphs. In the application of c-uchk (line 3

to 4), the unfolding of γ2.skip0(γ′1) is to emp because we have that γ2 = γ′1. This equality

arises because they are both unified with β1. (specifically, the c-pt steps added γ2 � β1 and
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γ′1 � β1 to Ψ). Finally, the last step unfolds the segment γ′1 as a 0-step segment.

The remaining rules not discussed in the above example (c-segchk and c-segseg)

concern partial checker edges (i.e., segments). Observe that we apply edge matching only

to points-to edges (c-pt) and complete checker edges (c-chk). For better precision, partial

checker edges are treated differently. As segments summarize any number of steps, two

segments that start at corresponding nodes need not be used to summarize the same number

of steps. For example, consider a valuation transformer of αr � α`, a segment from α` to

α′′` on the left and then an unfolded region from α′′` to α′` (i.e., the “appending” of an

unfolded region to a segment), and a segment from αr to α′r on the right. Intuitively, this

inclusion should hold (provided the unfolded region is described by the segment checker).

A “direct segment matching rule” would incorrectly match the two input segments, leaving

the unfolded region and causing the comparison to fail; however, application of c-segseg

followed by c-useg allows a derivation to be constructed to prove this inclusion. Rules

c-segchk and c-segseg can be viewed as iterative unfolding of the segment on the right to

“consume” the region on the right (recall, the comparison operation is designed to see if M`

is an unfolded version of Mr). The “direct segment matching rule” can be derived by first

applying c-segseg followed by c-useg (0-step case).

Example 4.6 (Verifying a loop invariant of a search tree traversal). In this example, we

check, for a region, the inclusion of an iteration in a loop invariant for finding the value d

in a binary search tree (essentially, the first stage prior to the insertion in the red-black tree

example, as shown in Figure 3.2, lines 2–8). I present the derivation in Figure 4.7.

The first line shows the initial goal: on the left-side of the comparison, we have
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1

β1

β0

β2

βd
0 , βlo

0 , β
up
0

t

cl

r

bst(βd
0 , β

up
0 )

β0 6= null ∧

βlo
0 < d < βd

0 < β
up
0

v γ0 γ1

t c
bst(γlo

0 , γ
up
0 ) bst(γlo

1 , γ
up
1 )

γlo
0 ≤ γlo

1 < d < γ
up
1 ≤ γ

up
0

γ0 � β0

γ1 � β1

c-useg

2

β1

β0

β2

βd
0 , βlo

0 , β
up
0

l

r

bst(βd
0 , β

up
0 )

v
γ′

1
γ1

γ0

γ2

γd
0 , γlo

0 , γ
up
0

l

r

bst(γlo
0 , γd

0 ) bst(γlo
1 , γ

up
1 )

bst(γd
0 , γ

up
0 )

F : γ0 6= null ∧ γlo
0 < γd

0 < γ
up
0

c-pt (5x) and c-chk (1x)

3 emp v
γ′

1
γ1

bst(γlo
0 , γd

0 ) bst(γlo
1 , γ

up
1 )

γ′

1 � β1

γ2 � β2

γd
0 � βd

0

γlo
0 � βlo

0

γ
up
0 � β

up
0

c-useg (0-step)

4 emp v emp
γlo
1 � βlo

0

γ
up
1 � βd

0

Figure 4.7: A derivation deciding the inclusion of a search tree fragment with at least one
node in a search tree segment of checker bst from Example 3.2. The example shows the
core of verifying a loop invariant of a search tree traversal and is described in Example 4.6.



114

the state where the cursor c has advanced to the left subtree of the root t. We want to

show that this subgraph is included in the segment from t to c. At the top, we show the

pure constraints for each side: on the left, we have that d < βd
0 , which is why c advanced

to the left subtree. We want to show that d is in the range of the subtree from γ1. To keep

the diagram compact, I write the values of the data fields as a tuple (e.g., βd
0 , β

lo
0 , β

up
0 ).

The first step (line 1 to 2) applies c-useg that unfolds the segment on the right

producing the following proof obligation F (shown boxed in the picture above):

γ0 6= null ∧ γlo
0 < γd

0 < γup
0 .

The next step (line 2 to 3) matches points-to and complete checker edges, which extends

Ψ. Finally, the last step unfolds the segment at γ′1 as a 0-step segment, which produces key

additional constraints on Ψ that come from the semantics of the 0-step segment.

To complete the proof, we need to discharge the above proof obligation and show

inclusion at the data level. Applying the valuation transformer to the element of the data

domain on the left side (i.e., P` <Ψ), we get the following:

γ0 6= null ∧ γlo
0 = γlo

1 < d < γd
0 = γup

1 < γup
0

which implies the proof obligation and the inequality constraints on the right side (i.e., the

loop invariant for the data).

4.2.2 Join and Widening of Analysis States

The join and widening operators combine shape and data constraints to build an

upper bound (i.e., an over-approximation) of two abstract elements

A` = 〈E`,M`, P`〉 and Ar = 〈Er,Mr, Pr〉 .
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Furthermore, the widening operation should ensure the termination of sequences of abstract

iterates. In particular, termination should be achieved at both the shape and data levels.

We first consider the join of abstract elements, that is, the computation of a sound

approximation of both A` and Ar. Like for the comparison operator, we need to track the

correspondence between symbolic values in the inputs and those in the output. Intuitively,

a node α in the result should over-approximate the values corresponding to a pair of nodes

(α`, αr), where α` is in A` and αr in Ar, so we maintain a pair of valuation transformers

(Ψ`,Ψr) that describe these relations. These valuation transformers should be consistent

with the environments and need to be used when joining the abstractions of data P` and

Pr. For convenience, I write Ψ(α) for (Ψ`(α),Ψr(α)).

At a high-level, we can partition the join into stages in a similar manner as the

comparison operation (by utilizing the valuation transformers Ψ`,Ψr):

• First, during initialization, for each variable x in the environment, a node αx is created

so as to represent the address of x. The valuation transformers Ψ`,Ψr are initialized

so that

∀x ∈ Var, Ψinit(αx) = (E`(x), Er(x)) ,

and the resulting environment E is defined by ∀x ∈ Var, E(x) = αx.

• Second, a join in the shape domain builds a new shape abstraction M and returns it

together with valuation transformers Ψ`,Ψr and residual first-order constraints F`, Fr

that should be proven at the data level. Like in the comparison, it also enriches Ψ`

and Ψr whenever a new node is created in order to preserve the consistency of the

node pairing.
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• Last, a join in the data domain is applied to P` <Ψ` and Pr <Ψr. We must also ask

the data domain to discharge the first-order constraints F`, Fr (so as to check that the

abstractions performed in the shape join are valid with respect to data constraints).

Note that while the join requires a cooperation between the shape domain and data domain

(as checker edges include data constraints), we are able to get a clean separation in phases

because of the first-order constraints F`, Fr and the valuation transformers Ψ`,Ψr. In

essence, the shape phase identifies regions that should be folded with respect to shape

assuming the data constraints are satisfied. Then, the data phase guarantees that the

constraints are indeed satisfied.

Join in the Shape Domain

The join process in the shape domain is similar to the comparison in that we do a

simultaneous traversal over the input graphs guided by the valuation transformers Ψ`,Ψr.

The basic idea is to perform rewritings based on the following derived rule of inference in

separation logic:
m` ⇒ m mr ⇒ m

(M` ∗ m`) ∨ (Mr ∗ mr)⇒ (M` ∨Mr) ∗ m

In terms of an algorithm, the join iteratively attempts to replace fragments in each of the

input shape graphs (m` and mr) with a new fragment (m) through a set of rewriting rules.

A rule “consumes” fragments m` of M` and mr of Mr and produces a fragment m for the

result, which should be a sound approximation of m` and mr modulo the application of Ψ`

and Ψr, respectively.
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〈m`,mr〉 F`,Fr
Ψ m Under Ψ, m` and mr are approximated

by m with residual conditions F`, Fr.

Ψ(α) = (α`, αr) Ψ(β) = (β`, βr)

〈α`@f 7→ β`, αr@f 7→ βr〉 t,t
Ψ α@f 7→ β

j-pt
Ψ(α) = (α`, αr) Ψ(δ) = (δ`, δr)

〈α`.c(δ`), αr.c(δr)〉 t,t
Ψ α.c(δ)

j-chk

Ψ(α) = (α`, αr) mr vFΨr α.c(δ) Ψ`(δ) = δ`

〈α`.c(δ`),mr〉 t,F
Ψ α.c(δ)

j-wchk

Ψ(α) = (α`, αr) Ψ(α′) = (α′`, α
′
r) mr vFΨr α.c(δ) ∗= α′.c′(δ′)

Ψ`(δ) = δ` Ψ`(δ′) = δ′`

〈α`.c(δ`) ∗= α′`.c
′(δ′`),mr〉 t,F

Ψ α.c(δ) ∗= α′.c′(δ′)
j-wseg

Ψ(α) = (α`, αr) Ψ(α′) = (α`, α′r) mr vFΨr α.c(δ) ∗= α′.c(δ′)
Ψ`(δ) = δ` Ψ`(δ′) = δ`

〈emp,mr〉 t,F
Ψ α.c(δ) ∗= α′.c(δ′)

j-waliases

Figure 4.8: Fragment rewriting rules for the join operation in the shape domain.

In Figure 4.8, I present the fragment rewriting rules. I write

〈m`,mr〉 F`,Fr
Ψ m

for such a rewriting rule where Ψ is the valuation transformer and F`, Fr are the residual

first-order constraint from the rewriting. Like for the comparison, I do not explicitly show

the extending of Ψ but rather assume the “final” Ψ is given. Also, the rules for the join are

intended to be symmetric; for conciseness, I elide the left-sided version of the non-symmetric

right-sided rules.

As alluded to above, the basic idea is to partition the memories up into fragments of

data structures and then consider joining fragments individually. The valuation transformer

Ψ gives the partition for each input memory and how they map to regions in the output. For

fragments that are changing across iterations, we weaken them by trying to fold them into
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complete or partial checker edges. The central challenge is how to divide the memories up

into fragments (essentially, deciding which regions should be weakened and which should

not). Different partitions yield different upper bounds: ones with more precision in one

region but less in another or vice versa. Thus, determining what partition yields the “best”

upper bound a priori is very difficult. The novel aspect of our proposal is that we delay

deciding as long as possible by incrementally matching fragments during the rewriting. This

delayed partitioning is enabled by moving to binary join and widening operators. A way to

view unary canonicalization operations (e.g., as in Sagiv et al. [2002] and Distefano et al.

[2006]) is that they fix a method to decide on a partition before weakening.

I first summarize the fragment rewriting rules and give an intuition for their design.

To see how the rules are applied, I present a number of examples later in this section

(Example 4.7, Example 4.8, and Example 4.9). The first two rules (j-pt and j-chk) are

matching rules that apply where the fragments on both sides correspond. The remaining

rules are weakening rules where at least one side must be weakened in order to obtain an

upper bound. Rules j-wchk and j-wseg apply when one side is already a checker edge (either

complete or partial, respectively) thereby providing an indication on what to weaken to on

the other side. Finally, rule j-waliases is particularly important, as it introduces a segment

as a weakening for both sides. The weakening on the left (from emp) is justified by one of

basic properties of inductive segments (Lemma 3.7). Observe that the weakening rules only

apply once the partitioning has been determined. In this way, we use the matching rules to

define a partitioning and guide where to weaken.

Lemma 4.12 (Soundness of fragment rewriting). The fragment rewriting rules preserve in-
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clusion in the concretizations.

If 〈m`,mr〉 F`,Fr
Ψ m, then

1. if (σ`, ν`) ∈ γ(m`) and ν` <Ψ` satisfies F`,

then (σ`, ν` <Ψ`) ∈ γ(m).

2. if (σr, νr) ∈ γ(mr) and νr <Ψr satisfies Fr,

then (σr, νr <Ψr) ∈ γ(m).

Proof. By case analysis on the derivation of 〈m`,mr〉 F`,Fr
Ψ m. See Lemma A.6.

Overall, the join in the shape domain is defined by iteratively rewriting fragments

until we have consumed the inputs. The top-level rewriting rule is given in Definition 4.13.

Intuitively, M is initially emp, and then we try to rewrite until M ′1 and M ′2 are emp in which

case M ′ is the upper bound.

Definition 4.13 (Join in the shape domain).

(M` t Mr) �F`,Fr M  Ψ (M ′` t M ′r) �F ′
` ,F

′
r
M ′

〈m`,mr〉 
F ′
` ,F

′
r

Ψ m

(M` ∗ m` t Mr ∗ mr) �F`,Fr M  Ψ (M` t Mr) �F`∧F ′
` ,Fr∧F ′

r
M ∗ m (4.1a)

The join in the shape domain is then defined as follows:

M` tF`,FrΨ Mr = M (4.1b)

if (M` t Mr) �t,t emp  ∗Ψ (emp t emp) �F`,Fr M

M` tF`,FrΨ Mr = M ∗ > (4.1c)

if (M` t Mr) �t,t emp  ∗Ψ (M ′` t M ′r) �F`,Fr M (otherwise)



120

where  ∗ is the transitive closure of  . Algorithmically, we rewrite using the above rule

(4.1a) as much as possible. If the inputs can be completely consumed, then we return the

result (4.1b). Otherwise, if the rewriting gets stuck, then we summarize the remainder with

> (i.e., a summary region that describes all stores and cannot be unfolded) (4.1c). This

weakening step results in an enormous loss in precision that we would like avoid but can be

done if necessary.

Theorem 4.14 (Soundness of join in the shape domain). The join operation in the shape

domain is sound.

If (M` t Mr) �F`,Fr M  Ψ (M ′` t M ′r) �F ′
` ,F

′
r
M ′, then

1. if (σ`, ν`) ∈ γ(M`), (σ, ν` < Ψ`) ∈ γ(M), ν` <Ψ` satisfies F ′`, and

σ`, σ are disjoint,

then (σ′`, ν`) ∈ γ(M ′`), (σ′, ν` <Ψ`) ∈ γ(M),

σ` ∗ σ = σ′` ∗ σ′ (for some σ′`, σ
′).

2. if (σr, νr) ∈ γ(Mr), (σ, νr <Ψr) ∈ γ(M), νr <Ψr satisfies F ′r, and

σr, σ are disjoint,

then (σ′r, νr) ∈ γ(M ′r), (σ′, νr <Ψr) ∈ γ(M),

σr ∗ σ = σ′r ∗ σ′ (for some σ′r, σ
′).

As a consequence,

if M` tF`,FrΨ Mr = M , then

1. if (σ`, ν`) ∈ γ(M`) and ν` <Ψ` satisfies F`, then (σ`, ν` <Ψ`) ∈ γ(M).

2. if (σr, νr) ∈ γ(Mr) and νr <Ψr satisfies Fr, then (σr, νr <Ψr) ∈ γ(M).

Proof. By the soundness of fragment rewriting (Lemma 4.12). Observe that in the rewriting

rule ((4.1a) in Definition 4.13) the input fragments are consumed and the output fragment is

added to the result, which allows us to conclude that σ` ∗ σ = σ′` ∗ σ′ (or σr ∗ σ = σ′r ∗ σ′).



121

The consequence is proven by induction on the derivation of the multistep rewriting and

using Lemma A.7 as needed, which says that satisfaction of residual constraints is closed

under backwards rewriting.

Join in the Combined Domain

Like the comparison operator, the join operator for the combined domain first

computes the join in the shape domain, discharges the residual conditions from unfolding,

and then performs a join in the data domain. I write tP] for the join operator in the data

domain, which should satisfy the following condition:

If (P` <Ψ`) tP] (Pr <Ψr) = P , then γP](P` <Ψ`) ∪ γP](Pr <Ψr) ⊆ γP](P ).

Definition 4.15 (Join in the combined shape and data domain).

〈M`, P`〉 tΨ 〈Mr, Pr〉 = 〈M,P 〉

if M` tF`,FrΨ Mr = M

proveP](P` <Ψ`, F`), proveP](Pr <Ψr, Fr), and

(P` <Ψ`) tP] (Pr <Ψr) = P

Moreover, 〈E`,M`, P`〉 t 〈Er,Mr, Pr〉 = 〈E,M,P 〉 if the above join evaluates successfully

when started with Ψ = Ψinit and where E is the environment computed from E` and Er

during initialization.

Theorem 4.16 (Soundness of join in the combined shape and data domain). The join

operation is sound.

If 〈M`, P`〉 tΨ 〈Mr, Pr〉 = 〈M,P 〉, then

1. if (σ`, ν`) ∈ 〈M`, P`〉, then (σ`, ν` <Ψ`) ∈ 〈M,P 〉.

2. if (σr, νr) ∈ 〈Mr, Pr〉, then (σr, νr <Ψr) ∈ 〈M,P 〉.
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As a consequence,

if 〈E`,M`, P`〉 t 〈Er,Mr, Pr〉 = 〈E,M,P 〉,

then γ( 〈E`,M`, P`〉 ) ∪ γ( 〈Er,Mr, Pr〉 ) ⊆ γ( 〈E,M,P 〉 ).

Proof. Direct by the soundness of join in the shape domain (Theorem 4.14) and the sound-

ness conditions on proveP] and tP] in the data domain.

Widening

A widening operator O is a join operator with a stabilizing property so as to ensure

termination of the analysis [Cousot and Cousot 1977]. This operator should ensure that

both shape and data invariants are stable after finitely many iterations. The shape join

already has the stabilizing property, so a widening operation for the combined domain can

be obtained by simply using the widening operator OP] instead of the join operator tP] in

the data domain.

Theorem 4.17 (Stabilization of widening in the shape domain). Given any sequence of in-

dividual analysis states 〈E′n,M ′n, P ′n〉n∈N, let 〈En,Mn, Pn〉n∈N be the sequence defined as

follows:

〈E0,M0, P0〉
def= 〈E′0,M ′0, P ′0〉

〈En+1,Mn+1, Pn+1〉
def= 〈En,Mn, Pn〉 O 〈E′n+1,M

′
n+1, P

′
n+1〉 .

Then, the sequence (Mn)n∈N (computed by joins in the shape domain defined in Defini-

tion 4.13) is ultimately stationary.

Proof. See Theorem A.8.
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Theorem 4.18 (Stabilization of widening in the combined shape and data domain).

The widening operator in the combined shape and data domain has the stabilizing property.

Given any sequence of individual analysis states 〈E′n,M ′n, P ′n〉n∈N, define the se-

quence of widenings 〈En,Mn, Pn〉n∈N as in Theorem 4.17. Then, 〈En,Mn, Pn〉n∈N is ulti-

mately stationary.

Proof. Once the shape graphs stabilize as given by Theorem 4.17, the stabilizing property

of the widening operator in the data domain OP] ensures that the sequence of data elements

(Pn)n∈N converges. This argument is similar to those required to prove the stabilization of

widening in cofibered domains [Venet 1996].

Examples

To get an idea how the rewriting rules in Figure 4.8 apply, I present a few examples

that walk through the computation. In Example 4.7, we focus on computing the upper

bound in the shape domain. Then, in Example 4.8 and Example 4.9, we look at how

computing the join in the combined domain requires careful coordination between the shape

and data domains.

Example 4.7 (Inferring a loop invariant for the skip list rebalancing code). Figure 4.9

shows a sequence of rewritings to compute the loop invariant in the skip list rebalancing

example from Figure 2.5. The highlighting of nodes in the upper bound graph indicate the

node pairings that are required to apply the rule, and the highlighting of edges in the input

graphs show the fragments that are consumed in the rewriting step.

Line 1 shows the state after initialization: we have nodes in upper bound graph
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previous (M`) current (Mr) upper bound (M)

1

null

α0 α1 α2

l, p c
n

s

skip0(α2) skip1

null

β0 β1 β2 β3

l p c
n

s

n

s

skip0(β3) skip1
α0·β0 α0·β1 α1·β2

l p c

skip1

j-chk

j-chk

j-waliases

j-pt

2

null

α0 α1 α2

l, p c
n

s

skip1

null

β0 β1 β2 β3

l p c
n

s

n

s

skip1
α0·β0 α0·β1 α1·β2 α2·β3

l p c

skip0(α2·β3)

3

null

α0 α1 α2

l, p c
n

s
null

β0 β1 β2 β3

l p c
n

s

n

s

α0·β0 α0·β1 α1·β2 α2·β3

l p c

skip0(α2·β3) skip1

4

null

α0 α1

l, p c
n

s
null

β1 β2

p c
n

s

α0·β0 α0·β1 α1·β2 α2·β3

l p c

skip1 skip0(α2·β3) skip1

5 emp emp

null

α0·β0 α0·β1 α1·β2 α2·β3

l p c

skip1 skip0(α2·β3) skip1n

s

Figure 4.9: An example sequence of rewriting steps to compute an upper bound. The
inputs are the graphs on the first iteration at program point 4 and point 8 in the skip list
example from Figure 2.5. The fixed-point graph at point 4 is obtained by computing the
upper bound of this result and the upper bound of the first-iteration graphs at program
point 4 and program point 10. The valuation transformers Ψ`,Ψr are given implicitly by
naming the nodes in the upper bound graph as pairs from the input graphs (i.e., a upper
bound node γ is written as Ψ`(γ)·Ψr(γ) in the above.) Also, the skip and next fields are
abbreviated as s and n, respectively.
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for the program variables. The first two steps (applying rule j-chk) match complete checker

edges (first from α1·β2 and then from α2·β3). Note that the second application is enabled

by the first where we add the mappings for α2·β3. Extra parameters are essentially implicit

target nodes.

The core of the join is the three weakening rules where we fold memory regions.

The next rule application j-waliases is a critical weakening step that introduces a segment

(line 3 to 4). In this case, a node on one side corresponds to two nodes on the other (α0·β0

and α0·β1). This situation arises where on one side, we have must-alias information, while

the other side does not (l and p are aliased on the left but not on the right). In this case,

we weaken both sides to a segment. These weakenings are justified as follows:

l, p

v

l p
skip1

(see Lemma 3.7)

l p
n

s
v

l p
skip1

(see Example 4.5)

As shown on the top line, we weaken on the left by “splitting the node” and viewing it as

an empty segment; this step is justified by Lemma 3.7. The j-waliases then checks that the

segment is a weakening of the fragment on the right by using the comparison operation;

the check that we need to perform here is the one shown in Example 4.5. Observe that we

utilize the edge matching rules that populate Ψ to delineate the region to be folded (e.g.,

the region between β0 and β1 in the right graph). For the j-waliases rule, we do not specify

here how the checker c is determined, but in practice, we can limit the checkers that need

to be tried by, for example, tracking the type of the node (or looking at the fields used in

outgoing points-to edges).

The last step is simply matching points-to edges. When we reach emp for M` and
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Mr, then M is the upper bound.

Example 4.8 (Inferring a loop invariant for a list of given length traversal). In this exam-

ple, we consider the join of the first two iterates that arise during the traversal of a list of

length n (checker listn from Example 3.3):

α0

l, c
listn(αlen

0
) t

β0 β1

l c

next
listn(βlen

1
) =

γ0 γ1

l c
listn(γlen

0
) listn(γlen

1
) listn(ηlen

1
)

αlen
0 = n βlen

1 = n− 1

The join algorithm produces the shape invariant shown above by applying rules j-chk and

j-waliases. Rule j-chk extends the valuation transformer so that Ψ(ηlen
1 ) = (αlen

0 , βlen
1 ). From

rule j-waliases, we get on the left side that γlen
0 = γlen

1 (i.e., Ψ`(γlen
0 ) = Ψ`(γlen

1 )). On the

right side, one unfolding step is required in the comparison (to fold from β0 to β1 into a

listn segment), so by the definition of the additional parameter of the recursive call in the

definition of checker listn, we have the relation that γlen
0 = γlen

1 + 1. This relation cannot be

tracked by Ψr as I have defined it above (for presentation purposes), but we can consider an

extended valuation transformer that not only maps nodes of the result into nodes of one of

the inputs, but also allows expressing such relations among the nodes of the output graph.

Such relations typically arise in the unfoldings performed during the comparisons required

for applying rules j-waliases, j-wchk, and j-wseg.

After the join of the shape abstractions, the above relations are propagated to P`

and Pr (i.e., by applying <). This results in the following for the join in the data domain

P]:

[
ηlen

1 = n ∧ γlen
0 = γlen

1

]
tP]

[
ηlen

1 = n− 1 ∧ γlen
0 = γlen

1 + 1
]

If we let P] be the domain of linear equalities Karr [1976], the result of the join is [γlen
0 −γlen

1 =

n − ηlen
1 ], which says that the sum of the lengths corresponding to the partial and the
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complete checker segments is n (i.e., the length of the list does not change during the

traversal). This invariant is the most precise one can hope for on this example.

Example 4.9 (Inferring a loop invariant for a search tree traversal). Consider again ana-

lyzing the code for finding a value d in a binary search tree (i.e., basically, lines 2–8 in

Figure 3.2). For this example, we assume P] is an abstract domain that supports inequal-

ities among pairs of variables (e.g., octagons [Miné 2006]). Suppose in the first iteration,

the cursor c is advanced to the left subtree (i.e., d is smaller than the data at the root),

then the first widening is applied to the following arguments:

α0

t, c bst(αlo
0 , α

up
0 )

−∞ = αlo
0 < d < α

up
0 = ∞

t

β1

β0

β2t

c
βd
0 , βlo

0 , β
up
0

l

r

bst(βlo
0 , βd

0 )

bst(βd
0 , β

up
0 )

−∞ = βlo
0 < d < βd

0 < β
up
0 = ∞

(4.2a)

The join in the shape domain yields the following shape graph:

γ0 γ1

t c
bst(ηlo

1 , η
up
1 )bst(γlo

0 , γ
up
0 ) bst(γlo

1 , γ
up
1 ) (4.2b)

The valuation transformer Ψ is initialized to

Ψ(γ0) = (α0, β0) Ψ(γ1) = (α0, β1)

from the environment. Then, rule j-chk applies to add the complete checker edge from γ1,

which also extends Ψ so that

Ψ(ηlo
1 ) = (αlo

0 , β
lo
0 ) Ψ(ηup

1 ) = (αup
0 , βd

0 ) .

Finally, rule j-waliases applies to create the segment from γ0 to γ1. This rule enriches Ψ so
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that the following relations hold:

Ψ`(γlo
0 ) = Ψ`(γlo

1 ) Ψ`(γ
up
0 ) = Ψ`(γ

up
1 ) (for the initial state)

Ψr(γlo
0 ) = Ψr(γlo

1 ) = βlo
0 Ψr(γ

up
0 ) = βup

0 Ψr(γ
up
1 ) = βd

0 (for the first iterate)

Note that the inclusion check that we need in order to weaken the subgraph from β0 to β1

to a partial checker edge is the comparison shown in Example 4.6. The extensions to Ψr

can be read from there.

Then, applying the valuation transformers Ψ`,Ψr to the respective input elements,

the data invariants to join are as follows:

[
γlo

0 = γlo
1 ∧ γup

0 = γup
1 ∧ −∞ = ηlo

1 < d < ηup
1 =∞

]
tP]

[
−∞ = γlo

0 = γlo
1 = ηlo

1 < d < γup
1 = ηup

1 < γup
0 =∞

]
However, the join of these two data invariants is problematic because the first invariant

is, in a sense, too general, for any (γlo
0 , γ

up
0 ) = (γlo

1 , γ
up
1 ) approximates a 0-step segment.

Specifically, the equality constraint (γlo
0 , γ

up
0 ) = (ηlo

0 , η
up
0 ) is not required in the initial state

(i.e., the left data element) but is required in the first iterate (i.e., the right data element).

Moreover, the segment between γ0 and γ1 is only an approximation of the corresponding

subgraph on the right when (γlo
0 , γ

up
0 ) = (−∞,∞).

This example illustrates one of the difficulties that we sketched at the beginning

of this chapter. As the symbolic values form the coordinates of the base data domain, it is

quite sensitive to large changes in the shape graph. Here, we see that between the graph

at the initial state and the join, α0 has been “split” into γ0 and γ1 and (γlo
0 , γ

up
0 ) has been

“split” into (γlo
0 , γ

up
0 ) and (γlo

1 , γ
up
1 ). However, we observe that this becomes a non-issue

once the graph stabilizes. Therefore, we propose to delay the join of the data invariants

until the next iteration, which is a common static analysis technique.
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Now, for the case where the cursor is advanced to the right subtree in the first iter-

ation, the result of the widening yields the same shape graph shown above in display (4.2b).

The data constraints are, however, as follows:

−∞ = γlo
0 < γlo

1 = ηlo
1 < d < γup

1 = ηup
1 = γup

0 =∞

The join of the numerical invariants corresponding to the left and right branches after one

iteration is as follows:

−∞ = γlo
0 ≤ γlo

1 = ηlo
1 < d < γup

1 = ηup
1 ≤ γ

up
0 =∞ (4.2c)

After the next iteration, we get the following two shape graphs:

β0 β1
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β3

βd
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1 , β
up
1

t
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r

bst(βlo
1 , βd

1 )

bst(βd
1 , β

up
1 )

bst(βlo
0 , β

up
0 ) bst(βlo

1 , β
up
1 )

∨ β0 β1

β2

β3

βd
1 , βlo

1 , β
up
1

t

c

l

r

bst(βlo
1 , βd

1 )

bst(βd
1 , β

up
1 )

bst

The computation of the join of each of these invariants with the result of the first widening

output (4.2b) reveals that the latter is stable at the shape level. Furthermore, from this

point, the data invariant (4.2c) above is also stable, so we have obtained a fixed point. The

loop invariant says that at any step of the find, the cursor c points to a subtree of t where

the range of the data values in the subtree contains d.

Example 4.9 also shows the other difficulty alluded to at the beginning of this

chapter, which was solved by a different technique. In the above, the range of the subtree

is not only expressed in the checker parameters of a folded region but also as fields of

unfolded nodes. Without these fields, the resulting situation of the first widening (shown

in display (4.2a)) is similar to what is described above without the delayed join of data
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invariants. Specifically, we would get a “too general” instantiation of the partial checker

edge where the lower bound at the head (γlo
0 ) could be any value smaller than the key at the

root. The valuation transformer Ψr is never constrained so that Ψr(γlo
0 ) = Ψr(γlo

1 ) = βlo
0 .

This folding would be sound, but it would not allow folding at the next step, due to being too

general. Instead, with these fields, we break the dependence on synthesizing the appropriate

“less general” parameters. Example 4.8 does not require such fields because of the tight

constraints on the parameters. Note that this kind of technique is also rather common in

verification (e.g., McPeak and Necula [2005]), which we apply here to separate the analysis

concerns from the modeling ones.

Implementation

In this subsection, we have described the join and widen algorithms through ex-

amples and with a focus on soundness. We now discuss some implementation concerns.

A Strategy for Applying Rewrite Rules. Unlike the comparison operation, the upper

bound rules as described in Figure 4.8 have a fair amount of non-determinism, and unfortu-

nately, applying the rules in different orders may yield different results in terms of precision.

To avoid an exponential explosion in computational complexity, we fix a particular strategy

in which to apply the rules, which has been determined, in part, experimentally. Note,

however, that neither soundness nor termination is affected by the strategy that we choose.

Intuitively, we obtain a good result when we are able to consume all the edges in the input

graphs by applying the upper bound rules. A potential bad interaction between the rules is

if we prematurely match (and consume) points-to edges that rather should be weakened to-
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gether with other edges. For example, in Figure 4.9 (Example 4.7) before j-waliases (line 3),

if instead we match the points-to edges α0@n 7→ α1 on the left and β0@n 7→ β1 on the right

(i.e., apply j-pt) creating the node α1·β1, then we will not be able to consume all edges

with further rewriting. Our strategy is to first exhaustively match complete checker edges

(j-chk), as it does not prohibit any other rules and corresponds to identifying the “yet to

be explored tail of the structure”. Then, since the weakening rules for segments (j-waliases

and j-wseg) only apply once we have identified corresponding regions (and that can only

be consumed by performing this weakening), we apply these rules exhaustively when appli-

cable. Then, to identify such regions, we apply j-pt but incrementally (i.e., we match one

pair of points-to edges and restart). Finally, when nothing else applies, we try weakenings

to complete checker edges (j-wchk).

Synthesis of Complete Checker Edges. The fragment rewriting rules for computing

an upper bound in the shape domain (Figure 4.8) are based on using the iteration history

to guide the weakening process. In particular, the hypothesis is that summaries in previous

iterations give an indication where “unfolded regions” in the current iteration should be

folded. This design principle translates directly to the weakening rules j-wchk and j-wseg.

The j-waliases introduces a partial checker edge (i.e., segment), which is directed by the

presence of aliasing in the previous iteration but not in the current iteration. However,

there is no corresponding rule for introducing complete checker edges, which in part is

based on our design principle. Such a rule would need to guess a folding with no history

information, essentially requiring a generic canonicalization operation. Making a good guess

becomes particularly difficult when there are additional parameters where we need to find
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appropriate instantiations and which may be involved in complex data constraints. From

the user’s perspective, making bad guesses would be particularly unintuitive, as the analyzer

would have come up with an unintended data structure. Furthermore, such situations where

the analyzer needs to synthesize a complete checker edge arise in relatively few places. They

come up when a new structure is being constructed, which could be resolved by, for example,

using constructor functions with postconditions asserting the appropriate checkers. In our

implementation, we optionally associate checker definitions with type definitions. Then,

when an object of a particular type is malloced, then we assert the associated checker

invariant with that object.

Widening Disjunctive Analysis States. In general, we consider widening disjunctions

of states

〈E0,M0, P0〉 ∨ · · · ∨ 〈En,Mn, Pn〉 O 〈E0,M0, P0〉 ∨ · · · ∨ 〈Em,Mm, Pm〉 .

The widening operator for disjunctions is based on the operator for individual states and

attempts to find pairs of graphs that can be widened precisely in the sense that no region

needs to be weakened to > (i.e., because an input region cannot be matched). In addition to

this selective widening process, the widening may leave additional disjuncts, up to some fixed

limit (perhaps based on trace partitioning [Rival and Mauborgne 2007]). More precisely,

consider the following two disjunctions of states:

〈M0, P0〉 ∨ · · · ∨ 〈Mi, Pi〉 ∨ · · · ∨ 〈Mn, Pn〉 and 〈M ′0, P ′0〉 ∨ · · · ∨ 〈M ′j , P ′j〉 ∨ · · · ∨ 〈M ′m, Pm〉

where we omit the environment for presentation purposes. Then, the widening on the two

disjunctive states is described informally as follows:
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• For each M ′j , if there exists an element Mi such that the rewriting for the upper

bound in the shape domain for Mi tM ′j does not get stuck (Definition 4.13), then we

add 〈Mi, Pi〉O〈M ′j , P ′j〉 to the result. If there exists no such element Mi, then we add

〈M ′j , P ′j〉 to the result.

• For each disjunct Mi such that no 〈Mi, Pi〉O〈M ′j , P ′j〉 has been added to the result,

then we add 〈Mi, Pi〉 to the result unless adding it would cause the generation of more

disjuncts than a fixed constant. In this case, an 〈M ′j , P ′j〉 should be widened against

〈Mi, Pi〉 (with unmatched regions weakened to > if necessary).

Termination follows from the stabilizing property of the widening operator for individual

analysis states (Theorem 4.18) and from the bound on the number of disjuncts.
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Chapter 5

Discussion

To conclude the detailed discussion, I complete the presentation of the red-black

tree insertion example from Section 5.1. I then provide an experimental evaluation of our

algorithm (Section 5.2) and a discussion of our experience applying it (Section 5.3).

5.1 Example: Red-Black Trees

We return to the red-black tree insertion example from Figure 3.2 to discuss how

the invariants in the rebalancing loop after an insertion can be obtained. In Figure 5.1,

I present one of the rebalancing cases in detail with the fixed-point invariants shown at

key points. At program point 21, I show a loop invariant for the rebalancing loop that is

sufficient to show that after the loop, α (pointed to by *t) is a red-black tree according to

checker rbtree. The shape portion of the loop invariant indicates that δ and ε are red-black

trees (with certain parameters) but perhaps not locally around β. In the data portion, we

have the ordering property on the data (shown at the bottom), which is obtained in the
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10 while (pa != null) {
11 if (pa->r && pa->r->r

&& pa->r->clr == RED && pa->r->r->clr == RED) {
12 son = pa->r;

13

�

�

�

�

κ

α γ
δ

β

ε

ζ
*t pa

son

εclr = red

βclr = red

γclr = black

rbtree

l

r l

r

rbtree

rbtree

rbtree

p
p

−∞ = αlo ≤ γlo ≤ βlo ≤ εlo < εup = βd = δlo < δup = γd = κlo < κup ≤ γup ≤ αup = ∞

κbh = βbh

= ite(γclr = red, γbh, γbh − 1)

δbh = εbh

= ite(βclr = red, βbh, βbh − 1)

αbh − β′

bh = bh − βbh

son->r->clr = BLACK;

14 son->p = pa->p; set the l or r field of pa->p to replace pa with son;

15 pa->r = son->l; if (son->l) { son->l->p = pa; }
16 son->l = pa; pa->p = son;

17 pa = son;

18

�

�

�

�

κ

γ

δ
α β

ε
ζ

*t pa, son
εclr = black

βclr = red

γclr = black

rbtree

l

r

l

r

rbtree

rbtree

rbtree
p

p

−∞ = αlo ≤ γlo ≤ βlo ≤ εlo < εup = βd = δlo < δup = γd = κlo < κup ≤ γup ≤ αup = ∞

κbh = βbh

= ite(γclr = red, γbh, γbh − 1)

δbh = εbh

= ite(βclr = red, βbh, βbh − 1)

αbh − β′

bh = bh − βbh

}
19 . . . other rebalancing cases . . .

20 son = pa; pa = pa->p;

21

�

�

�

�

δ
α β

ε

γ
*t

pa

son
rbtree

l

r
rbtree

rbtreep

−∞ = αlo ≤ βlo ≤ εlo < εup = βd = δlo < δup ≤ βup ≤ αup = ∞

δbh = εbh

= ite(βclr = red, βbh, βbh − 1)

αbh − β′

bh = bh − βbh

}
at fixed point

Figure 5.1: Rebalancing in the red-black tree insertion example from Figure 3.2.
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search loop (lines 2–8 in Figure 3.2) prior to the insertion. Note that this ordering invariant

is obtained by the analysis algorithm as described in the example widening on a binary

search tree traversal (Example 4.9 of Section 4.2.2) and then preserved in this loop. The

other data constraints describe the invariant on the black height parameters of the checkers

(e.g., βbh). The top constraint gives the relation between the black height at β with those

at δ and ε, which first comes from the unfolding of the rbtree in the search loop and then

notably preserved on insertion (line 9 in Figure 3.2). The middle constraint is the relation

between the black height at α with the subtree at β (where bh is the initial black height

of the entire tree and β′bh is the black height checker parameter at the end of segment to

β—as opposed to βbh, which is the black height parameter from β). This invariant is also

obtained in the search loop and in the same manner as the example widening on lists of

given length (Example 4.8 of Section 4.2.2). However, the base domain should be richer to

handle the additional Boolean structure (on whether a node is red or black) by using, for

example, binary decision diagrams (BDDs) with linear equalities at the leaves.

Observe that we have no constraints on the red-ok parameters (e.g., εredok) mean-

ing that any of δ, ε, and β may be red and thus locally violating the color aspect of the

red-black tree invariant for the entire structure. The shown rebalancing case addresses this

violation by performing a left rotation and coloring. From program point 21 to point 13,

the analysis does a backward unfolding to materialize the fields of pa. This unfolding (along

with αbh − β′bh = bh − βbh) yields the additional black height constraint on κbh and βbh.

Then the condition that βclr = red (and an unfolding constraint on εredok) tells us that

γclr = black. For compactness, I do not show the unfolding of ε, which is needed only to



137

access its color field. Aside from the coloring of ε, the rotation only affects the graph (as

shown at point 18). Now, compare this after-rotation state with the loop invariant at pro-

gram point 21. We see that the after-rotation state is contained in the loop invariant (after

advancing the cursor pa) by folding the region from γ into a rbtree, which is computed by

the join as described in Section 4.2. In the data constraints, the key observation is that the

coloring gives us that κbh = δbh = εbh. Also, while the new black height at β and ε increase

by one, this is summarized by the difference equality constraint.

5.2 Experimental Evaluation

We evaluate our shape analysis using an implementation for analyzing C code. Our

analysis is written in OCaml and uses the CIL infrastructure [Necula et al. 2002]. We have

applied our analysis to a number of data structure manipulation benchmarks and a larger

Linux device driver benchmark (scull). Table 5.1 presents analysis statistics executed on

a 2.0 GHz Intel Xeon with 2 GB of RAM where each timing result is the mean time over 10

runs. In each case, we verified that the pointer manipulation preserved the shape invariants

of the data structures (e.g., back-pointer property, acyclicity, non-sharing, treeness) as given

by a checker. When the operation exists for the both the back and non-back pointer version

of the data structure (e.g., doubly-linked list versus singly-linked list), we present analysis

statistics for both as a point of comparison. The “doubly-linked list remove, single cursor”

benchmark is a variant where the search for the element to remove is done with only one

cursor, so back pointers are required to perform the operation. The “doubly-linked list

remove and loop back” example finds an element if it exists, removes it, and walks back



138

Benchmark

Analysis
Time
(ms)

Max.
Disj.

(num)

Max.
Iter.

(num)

Widening
Time
(ms)

Widening
Time

(fraction)

singly-linked list reverse 1.0 1 3 0.5 0.50

doubly-linked list reverse 1.5 1 3 1.1 0.74

singly-linked list create 1.2 1 3 0.9 0.72

doubly-linked list create 3.0 1 3 2.5 0.82

singly-linked list find 3.0 1 4 2.7 0.89

doubly-linked list find 3.6 1 4 3.0 0.84

singly-linked list copy 4.4 2 3 3.8 0.86

doubly-linked list copy 5.4 2 3 4.7 0.87

singly-linked list insert 8.5 2 4 7.6 0.89

doubly-linked list insert 5.9 2 4 5.0 0.86

singly-linked list remove 8.6 2 4 7.6 0.88

doubly-linked list remove 10.4 3 4 9.4 0.91

doubly-linked list remove, single cursor 17.9 5 4 16.8 0.94

doubly-linked list find and loop back 5.9 1 4 5.2 0.87

doubly-linked list remove and loop back 18.1 5 4 16.8 0.93

search tree find 5.4 2 5 4.7 0.87

search tree with parent find 8.1 2 5 7.4 0.92

search tree insert 24.7 3 5 22.6 0.92

search tree with parent insert 16.6 3 5 14.7 0.89

search tree with parent find and loop back 15.3 2 5 14.2 0.93

search tree with parent insert and loop back 64.7 5 5 62.3 0.96

two-level skip list rebalance 11.7 1 7 10.7 0.92

Linux scull driver (894 lines of C code) 3,969.6 4 16 3,895.3 0.98

Table 5.1: Benchmark results for verifying shape preservation. The columns show the total
analysis time in milliseconds, the maximum number of disjuncts at any program point, the
maximum number of iterations at any point, the total time spent in widening, and the
fraction of time spent in widening.
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modifying the previous nodes (e.g., updating a length field); the other “loop back” examples

are similar. We did not verify any numerical properties on the node data (e.g., ordering),

as we do not yet have an effective interface to implementations of numerical base domains.

The first aspect we consider is the expressiveness of our algorithm. Section 3.2.1

discusses the kinds of shapes expressible as checkers, and here, we provide some experimental

evidence by considering a wide range of data structures (e.g., lists or trees, with or without

a back pointer, and even a skip list shape). While there are shapes beyond the reach of

our current algorithm, our end-user shape analyzer enables the user to analyze custom

structures that can be variants or combinations of these basic forms, as well as focus the

analysis to the properties of interest to the user. This design choice is in contrast to the

specialized analyzers that build in the shapes of interest (e.g., Berdine et al. [2007] focus on

singly- and doubly-linked lists).

In the data structure manipulation benchmarks, the analysis times are mostly

negligible, but more importantly, the maximum number of disjuncts (i.e., the number of

shape graphs), we need to keep at any program point seems to be small. Keeping the number

of disjuncts seems to be critical for getting good efficiency. For most of the operations that

exist for both the back and non-back pointer versions of the data structure, the tracking

and checking of the additional pointer adds a bit to the analysis time, but there are a few

seeming anomalies. The non-back pointer version of insert for both lists and trees take

more time than on the data structure with back pointers while the maximum number of

disjuncts and iterations are the same. It turns out this difference is still due to the number

of disjuncts. The additional information provided by the back pointer allows disjuncts to
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be collapsed at additional program points. For lists, the doubly-linked list insert has two

disjuncts in one fewer program point (two to one), and for trees, the search tree with parent

insert has three disjuncts in one fewer place (two to one) and two disjuncts in six fewer

places (six to zero). While it is difficult to make timing comparisons with other shape

analyses due to different input languages and properties analyzed, as well as the relatively

small size of such benchmarks, we observe that shape analysis times for such data structure

benchmarks are often measured in the deciseconds to seconds range. Bogudlov et al. [2007]

report rather efficient analysis times for the generic TVLA analyzer, but there is still a cost

to complete generality. As a point in comparison, they report the analysis times of 290 ms

for singly-linked list reversal and 850 ms for insertion into a search trees where for each

case, they verify that the data structure invariant is maintained (like in Table 5.1).

We also look at a larger benchmark in a Linux device driver. The scull driver

is from the Linux 2.4 kernel and was used by McPeak and Necula [2005]. The main data

structure used by the driver is an array of doubly-linked lists. Because we do not yet have

support for arrays, we rewrote the array operations as linked-list operations (and ignored

other char arrays). We analyzed each function individually by providing appropriate pre-

conditions. All function calls were inlined, as our implementation does not yet support

proper interprocedural analysis (but which adds an exponential cost in the analysis time).

There has been prior work on interprocedural shape analysis that is likely to be applicable to

our algorithm [Rinetzky et al. 2005; Gotsman et al. 2006]. One function (cleanup module)

was not completely analyzed because of an incomplete handling of the array issues; it is

not included in the line count. Also, as discussed in Section 4.2, because we only fold into
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checkers edges based only on history information, sometimes we cannot generate the appro-

priate checker edge when a new structure is being constructed out of already existing cells.

Specifically, the small bit of information we sometimes need is that this null pointer should

be treated as, for example, the empty list. For these experiments, we use an annotation

that adds a checker edge for this purpose. Such an annotation is used six times in the scull

driver example (and no times in all of the small data structure manipulation benchmarks).

Observe that in this larger example, the number of disjuncts we need to maintain at any

program point (i.e., the number of graphs) seems to stay reasonably low.

In the two rightmost columns of Table 5.1, I show the portion of the analysis

time that is spent in the widening operation. It is the dominant factor in the analysis

time. Unlike updating the abstract memory state, our widening algorithm as described in

Section 4.2 is a global operation over the memory graphs. Each call to widening requires a

traversal over the input graphs from the program variables to identify the regions of memory

that are similar. In general, we expect that across iterations of a loop, there are portions of

memory that simply have not been touched by the body of the loop. Ideally, the widening

operation should also be able to take advantage of the disjointness constraint on memory

regions so that these portions do not need to be traversed.

5.3 Experience Discussion

In this section, we discuss our experience applying our analyzer, as well as current

limitations and possible extensions of our algorithm.
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Writing Data Structure Invariant Checkers for Shape Analysis

Our experience with providing checkers for analysis has been that they are quite

easy to write because they describe only the steady-state invariant of the data structure and

only need to be defined on a per-program basis. The disjointness restriction from separation

logic also makes the specification quite compact for data structures that make only careful

use of sharing (e.g., red-black trees in a few lines (Figure 3.1(b))). Like most specifications,

it is more difficult to “reverse engineer” the appropriate invariant checker for someone else’s

code (as we did for the scull driver example). We view this observation as another reason

for end-user program analysis and making specifications accessible to the developer.

There are aspects where usability can still be improved. We have found that

sometimes one would like to define data structure checkers polymorphically, that is, leave

the element kind unspecified or given by a parameter (either in terms of the shape or the

data properties of each node). This kind of extension has been described by Berdine et al.

[2007] for doubly-linked lists. They define a higher-order list segment predicate that is

parameterized by the shape of the “node” to add a level of polymorphism. In contrast, we

can describe custom structures monomorphically with the appropriate checker definitions.

Also, it might be convenient to automatically generate default checker definitions from type

definitions to cover simple cases. For example, the generated definitions could be tree-like

checkers that assume no sharing and thus only require the user to override the defaults

when the data structures of interest are more complex.

Static analysis and verification in general is always with respect to a specification

of what it means for the code to be correct, which leads to the issue of making sure that
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the specifications convey to the analysis what is intended by the user. For our end-user

shape analysis, the checker definitions are specifications that we take as axioms. Users are

responsible for ensuring that the checker definitions they provide correspond to the data

structure invariants they have in mind. For example, it is possible that a checker definition

describes no concrete stores. At the same time, here is a situation where it is particularly

helpful that view checkers as executable code. With an appropriate compilation of checker

definitions, the user can utilize run-time testing to refine the specifications and ensure they

correspond to their intent. In this scenario, testing complements static analysis. Specifically,

on runs of the simplest, expected test cases, if an invariant checker fails, then it is likely that

there is a disconnect between the specification and the developer’s intent. The specification

can then be quickly fixed. In turn, once there is reasonable confidence in the checker

definitions, our static shape analysis can assist in obtaining full coverage of the program

code (i.e., covering the unexpected corner cases). This concept that the same specification

should be used in both static checking and run-time checking does appear elsewhere, such

as the Spec# system [Barnett et al. 2004] where first-order logic specifications are compiled

into run-time checks.

Limitations and Possible Extensions

Section 3.2 discusses the class of data structure invariant checkers that we consider

in this work. Generally speaking, they capture invariants of a single structure where any

global property of the structure is broken down into a sequence of local checks. This class

does not include global properties between structures, such as, the invariant that two lists

have the same set of elements. Thinking in terms of run-time invariant checking code, such
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specifications might be implemented by manipulating global state or using an auxiliary

container (e.g., a set-valued checker parameter), but both methods are outside the class of

checkers we consider.

Our end-user shape analysis algorithm consists of a number of techniques to ma-

terialize and summarize with checker-based summaries. While they are designed to be

applicable in many data structure manipulation contexts, they are situations where other

kinds of summaries may be useful. For example, we could have partial checker edges with

multiple holes that would allow us to summarize memory regions with more than two end-

points. The segments defined in this chapter (Section 3.3.1) work well for traversals that

use cursors along a path through the structure, but perhaps not as well for code that uses

multiple cursors along different branches of a structure.

In order to perform precise analysis on a larger class of programs, the clearest

hurdles are to cope with other ways C programs manipulate memory, specifically arrays

and pointer arithmetic. As mentioned already, we do not yet have any integration of array

reasoning techniques in our implementation. To reason precisely about the contents of

arrays, notions of materialization and summaries are also useful, so it might be fruitful

to consider extending our approach to reason about them. In some ways arrays are more

constrained than pointer-based data structures, as it is one fixed shape and disjointness of

array cells is a given. On the contrary, the access patterns for arrays are much more varied.

They can be treated like unidirectional containers (cf., singly-linked lists) or bidirectional

ones (cf., doubly-linked lists), traversed like search trees in divide-and-conquer routines,

used as binary heaps, or accessed seemingly at random (e.g., in hash tables). In the context
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of end-user program analysis, we would like to find ways in which the user can help the

analysis come up with the appropriate summaries when the uses can be so varied.

The only kind of addressing expression we currently consider is field offset (i.e.,

α@f). To perform shape analysis on code with pointer arithmetic, we need to extend the

kinds of addressing expressions. The main challenge with such an extension is for any

addressing expression, we need to determine which point-to edge it correspond to if it exists

(i.e., decide equality amongst addressing expressions) or otherwise perform the appropriate

unfolding to materialize it. The disjointness constraint and the framework of separation

logic does allows us to avoid proving disequality constraints amongst addressing expressions

while still performing destructive updates of the analysis state.
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Chapter 6

Conclusions and Future Work

The demand for program analysis tools will likely continue to rise, as we look to

any technique that can help us deal with the ever-growing complexity and importance of

software systems. Yet, if program analyzers continue to be viewed as expert tools, it seems

that a broad adoption of such tools into software engineering processes will be very difficult.

I have argued that because of the fundamental limitations in program analysis,

there have been two conflicting forces in program analysis design. On one hand, we are

driven towards generic verification frameworks that apply broadly with respect to both

programs and properties but expect a high-level of program analysis expertise from users.

On the other hand, specialized analyzers that expect no analysis expertise but also allow no

input from users (i.e., have built-in domain-specific knowledge tailored to particular classes

of users). In contrast, my thesis advocates a slight shift in mentality where we look to

users to cooperate with the analyzer but without expecting users to be program analysis

experts. In other words, this dissertation makes a step towards realizing end-user program
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analysis—where a non-expert can interact with an analyzer to provide the domain-specific

knowledge it needs in order to verify the property of interest to the user.

6.1 Summary of Contributions

The target user for most program analyzers are software developers, as they can

use analysis tools to help them better understand and eliminate errors from their code.

They are also the ones who have the domain-specific knowledge that can really boost an

analysis tool. In this context, I have described a new shape analysis technique based on the

end-user approach. Because of the high precision requirements for effective shape analysis,

it is a particularly attractive case study for the end-user approach. In summary, this work

makes the following contributions:

1. Invariant checking code as specification for analysis. We observe that data struc-

ture invariant checking code can help guide a shape analysis and provides a familiar

mechanism for the developer to supply information to the analyzer. For the ana-

lyzer, invariant checkers describe the program-specific data structures of interest to

the developer along with a hint on how they are used.

2. End-user shape abstractions. We develop an analysis abstraction that is built from

the user-supplied invariant checkers. In this way, we involve the user in providing the

fundamental elements for a good abstraction.

3. Generalize from the end-user abstractions. We introduce a generalization of invariant

checkers to describe the memory state when the data structure invariant holds only
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partially. This step is critical in bridging the gap between using invariant checking

code for run-time testing and building an analysis abstraction out of it.

4. Accommodate varying user specification. We make our analysis more robust with

respect to user specification by deriving additional information through a separate

type analysis on the checker definitions. This phase augments the testing specifications

with additional information necessary for static analysis.

5. Local shape invariant inference. We notice that the iteration history of the analysis can

be used to guide the weakening of abstract memory states built out of data structure

invariant checkers. Based on this observation, we design a widening operator so that

the user is involved only in specification at the more intuitive global level.

6.2 Future Work

The more technical limitations and possible extensions of this work are discussed

in Section 5.3. In this section, I focus on broader directions for extending the ideas described

in this dissertation.

In this dissertation, we examine how to obtain specifications from the user in a

way that is less obtrusive. Certainly, one line of interesting work is to broaden the class of

invariant checkers that can be utilized or find other kinds of less obtrusive specifications.

Yet, despite our best efforts, it seems likely that there will be facts about a program that are

both beyond the limitations of what can be efficiently computed automatically and what we

would hope to get from a non-expert user in terms of direct specification. In the following

examples, the underlying theme is then to broaden the context in which the developer and
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the analyzer cooperate.

User Mediation between Run-Time and Static Checking

As previewed in Section 5.3, run-time checking (e.g., testing) and static checking

(e.g., static analysis) have complementary strengths. Testing is more accessible and broadly

applicable, while static analysis provides more complete coverage, yet it is rare that both

techniques are consistently applied to the same software. However, if efforts applying one

technique can improve the results in the other and vice versa, then there will be a real

incentive to use both.

For example, based on our shape analysis with invariant checkers, one promising

direction is to trade off complexity in static analysis for run-time execution of validation

code (i.e., some form of hybrid checking). In Chapter 4, we assume that the base data

domain is as expressive as needed to capture the data properties of interest, but in practice,

we may not want incur the analysis overhead of a complex data domain (e.g., the one

necessary to verify the red-black tree example of Section 5.1). The challenge is that it is not

clear how to discharge some (but not all) of the complexity to run-time checks. Yet, with

user-supplied data structure invariant checkers, the user provides some guidance because

they indicate not only summarization of shape but also of data. For complete static checking

as in this dissertation, upon unfolding a checker, the data constraints can be assumed, and

upon folding, they must be proven. Since the user limits the kinds of summaries of interest,

it may be clear what the folding must be from the shape alone and so any unprovable data

constraints can be discharged using run-time checks. To sum up, while the general concept

of hybrid checking is not new in itself, the unique aspect here is that it might be possible
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to involve the user in mediating a desirable trade-off.

Furthermore, from the user’s perspective, the above scenario can be viewed as a

way to minimize the run-time cost of instrumenting software with validation code. A data

domain that can simply remember the data constraints from unfolding may be sufficient to

prove folding conditions on unchanged parts of the structure, leaving only more complicated

modifications to run-time checks. With such a framework, there would be a strong incentive

to write validation code because not only can the same annotation be used for both static

analysis and testing, but the work put into applying the static analysis would improve the

run time of tests.

Development-Time Interaction

Because our shape analysis uses abstractions that reflect developer intent, it seems

particularly amenable for a program understanding tool that shows how memory is manip-

ulated by the code (i.e., a heap-aware symbolic debugger). I envision this tool would assist

with the mental simulation of the program that the developer does when reasoning about a

program fragment. It would allow the developer to think at a higher-level of abstraction by

producing graphical diagrams analogous to those that would appear on a whiteboard while

leaving the analysis to keep track of the low-level details.

Possible user interactions during development time in an integrated development

environment (IDE) setting seem particularly interesting. In this setting, the user could

restrict the shape analysis to apply only to the program fragments currently in develop-

ment. For a precise analysis like ours, it becomes especially important to apply the analysis

modularly and incrementally on small fragments. More concretely, the developer could
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instrument the code with calls to invariant checkers when it should hold (i.e., the data

structure is in the steady state). The shape analysis could be applied only to the program

fragment between the steady states where the developer is currently working and show the

developer how the abstract memory state changes as modifications are made to the code

and whether the postcondition for the next steady state can be proven. There are number

of technical challenges, such as making sure the analysis can run incrementally and in inter-

active time. Nonetheless, by automating the mental simulation done by developers, there

would be another incentive for them to write validation code.
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Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development:

Coq’Art: The Calculus of Inductive Constructions. Springer, 2004.

Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, An-
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Appendix A

Proof Listings

This chapter provides more detailed proofs of some of the lemmas and theorems in

this dissertation. I also include here some auxiliary lemmas that do not appear in the main

text. When the lemmas or theorems are restatements of ones in the main text, I indicate

it by providing the appropriate references. The chapter is organized around the different

parts of our end-user abstraction and analyzer.

A.1 Checker Evaluation and Memory Abstraction

Theorem A.1 (Successful evaluations correspond to abstract memory states).

Restatement of Theorem 3.3.

If ν ` 〈σ, e〉 ⇓ 〈σ′, true〉, then σ = σ′′ ∗ σ′ and 〈σ′′, ν ′〉 |= �(e) (for some ν ′ ⊇ ν and

some σ′′).

In particular, if ν ` 〈σ, e〉 ⇓ 〈[·], true〉, then 〈σ, ν ′〉 |= �(e) (for some ν ′ ⊇ ν).

Proof. By induction on the given derivation.
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Case: ν, β � u ` 〈σ, e〉 ⇓ 〈σ′, true〉
ν ` 〈[ν(α) + f 7→ u] ∗ σ, let β = α.f in e〉 ⇓ 〈σ′, true〉

e-read

σ = σ′′ ∗ σ′ (for some σ′′) By i.h.

〈σ′′, ν ′〉 |= �(e) (for some ν ′ ⊇ ν, β � u) By i.h.

�(e) = 〈M0, F0〉 ∨ · · · ∨ 〈Mn, Fn〉 By def. of �(·)

〈σ′′, ν ′〉 |= 〈Mi, Fi〉 (for some i ∈ 0..n) By def. of |=

〈[ν ′(α) + f 7→ u] ∗ σ′′, ν ′〉 |= 〈α@f 7→ β ∗Mi, Fi〉 By def. of |=

〈[ν ′(α) + f 7→ u] ∗ σ′′, ν ′〉 |= �(let β = α.f in e) By def. of |= and �(·)

[ν ′(α) + f 7→ u] ∗ σ = [ν ′(α) + f 7→ u] ∗ σ′′ ∗ σ′

Case: ν ` 〈σ, [α, δ/π, ρ]e〉 ⇓ 〈σ′, true〉 (π.c(ρ) := e)

ν ` 〈σ, α.c(δ)〉 ⇓ 〈σ′, true〉
e-call

σ = σ′′ ∗ σ′ (for some σ′′) By i.h.

〈σ′′, ν ′〉 |= �([α, δ/π, ρ]e) (for some ν ′ ⊇ ν) By i.h.

〈σ′′, ν ′, ~ε � ν ′(~κ)〉 |= [α, δ, ~ε/π, ρ,~κ]�(e)
(where ~κ are the free variables of �(e) and ~ε are fresh)

〈σ′′, ν ′, ~ε � ν ′(~κ)〉 |= α.ci+1(δ)
(where i is the maximum call height in the above)

By def. of |=

〈σ′′, ν ′, ~ε � ν ′(~κ)〉 |= α.c(δ) By def. of |=

In the above, ν ′, ~ε � ν ′(~κ) is an extension of valuation ν ′ with mappings from εi to

ν ′(κi) for each i. This extension step assumes basic substitution and weakening

properties.

The remaining cases are similar, though require applying weakening of ν in evaluation

(Lemma A.2).



165

The following states a weakening property on valuations (adding of unused map-

pings) in evaluation, which is needed in the proof above.

Lemma A.2 (Weakening valuations in evaluation).

1. If ν ` 〈σ, e〉 ⇓ 〈σ′, u〉 and ν ′ ⊇ ν, then ν ′ ` 〈σ, e〉 ⇓ 〈σ′, u〉.

2. If ν ` t ⇓ u and ν ′ ⊇ ν, then ν ′ ` t ⇓ u.

Proof. By induction on the given derivations.

A.2 Typing: An Approximation of Checker Evaluation

Theorem A.3 (Typing computes an approximation of time-stamped stores).

Restatement of Theorem 3.9. Assume that each checker definition has been type-checked.

If ν ` 〈σ̄, e〉k ⇓ 〈σ̄′, u〉 , Γ ` e ok , and ` 〈σ̄, ν〉 : Γ + k ,

then ` 〈σ̄′, ν ′〉 : Γ′ + k (for some ν ′ ⊇ ν and Γ′ ⊇ Γ).

In the above, Γ + k is the function that increments all the levels in Γ by k (i.e., lifting the

function on types).

Proof. By induction on the first two derivations and case analysis on last one.

Case: ν, β � u ` 〈[ν(α) + f 7→ u]α·k ∗ σ̄, e〉k ⇓ 〈σ̄′, u〉
ν ` 〈[ν(α) + f 7→ u]any ∗ σ̄, let β = α.f in e〉k ⇓ 〈σ̄′, u〉

ie-read

{f〈0〉} <: Γ(α) Γ, β : τ ` e ok

Γ ` let β : τ = α.f in e ok
t-read

` 〈σ̄, ν〉 : Γ + k

` 〈[ν(α) + f 7→ u]any ∗ σ̄, ν〉 : Γ + k
st-any
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{f〈k〉} <: ((Γ, β : τ) + k)(α) By level increment

` 〈[ν(α) + f 7→ u]α·k ∗ σ̄, ν〉 : (Γ, β : τ) + k By st-stamped and
weakening

` 〈σ̄′, ν ′〉 : Γ′ + k

(for some ν ′ ⊇ ν, β � u and Γ′ ⊇ Γ, β : τ)
By i.h.

Case: ν ` 〈σ̄, [α, δ/π, ρ]e〉k+1 ⇓ 〈σ̄′, u〉 (π.c(ρ) := e)

ν ` 〈σ̄, α.c(δ)〉k ⇓ 〈σ̄′, u〉
ie-call

Γ(α)− 1 = τ0 Γ(δ)− 1 = τ1 ((π : τ0).c(ρ : τ1) := e)

Γ ` α.c(δ) ok
t-call

π : τ0, ρ : τ1 ` e ok Given

Γ− 1 ` [α, δ/π, ρ]e ok By weakening and
substitution

` 〈σ̄, ν〉 : Γ− 1 + k + 1 Given

` 〈σ̄′, ν ′〉 : Γ′ + k + 1
(for some ν ′ ⊇ ν and Γ′ ⊇ Γ− 1)

By i.h.

` 〈σ̄′, ν ′〉 : Γ′′ + k and Γ′′ ⊇ Γ Let Γ′′ = Γ′ + 1

The remaining cases are similar.

A.3 Soundness and Termination of Folding

Recall that intuitively, ν` <Ψ is the composition of a valuation ν` (for a state A`)

with a valuation transformer Ψ to give a valuation for νr (for a state Ar). In the case that Ψ

is simply a mapping from nodes on the right to nodes on the left, then < is simply function

composition. In particular, we assume the following property of <.

Property A.4 (Transformation of valuations).



167

If (σ, ν) ∈ γ(M), Ψ( ~αr) = ~α`, and ~α` are the free variables of M ,

then (σ, ν < Ψ) ∈ γ([ ~αr/ ~α`]M).

I write Ψ( ~αr) = ~α` to indicate some set of symbolic values ~αr that map to the symbolic

values ~α` in Ψ, which may not be unique.

Theorem A.5 (Soundness of comparison in the shape domain).

Restatement of Theorem 4.9. The comparison operation on shape graphs is sound.

If M` vFΨ Mr, (σ, ν) ∈ γ(M`), and ν <Ψ satisfies F , then (σ, ν <Ψ) ∈ γ(Mr).

Proof. By induction on the derivation of M` vFΨ Mr.

Case: M` vFΨ M ′r (M ′r, F
′) ∈ uαr(Mr ∗ αr.c(δr))

M` vF∧F
′

Ψ Mr ∗ αr.c(δr)
c-uchk

ν <Ψ satisfies F ∧ F ′ Given

(σ, ν <Ψ) ∈ γ(Mr) By i.h.

(σ, ν <Ψ) ∈ γ(Mr ∗ αr.c(δr)) By Lemma 4.8

The case for c-useg is analogous.

Case: Ψ(αr) = α` M` vFΨ Mr ∗ α′r.c′(δ′r)
Ψ(δr) = δ` Ψ(α′r) = α′` Ψ(δ′r) = δ′` (α′r, δ

′
r fresh)

M` ∗ α`.c(δ`) ∗= α′`.c
′(δ′`) vFΨ Mr ∗ αr.c(δr)

c-segchk



168

(σ′ ∗ σ′′, ν) ∈ γ(M` ∗ α`.c(δ`) ∗= α′`.c
′(δ′`)) Given

(σ′, ν) ∈ γ(M`) By def. of γ and |=

(σ′′, ν) ∈ γ(α`.c(δ`) ∗= α′`.c
′(δ′`)) By def. of γ and |=

(σ′, ν <Ψ) ∈ γ(Mr ∗ α′r.c′(δ′r)) By i.h.

σ′ = σ′′′ ∗ σ′′′′ (for some σ′′′ and σ′′′′) By def. of γ and |=

(σ′′′, ν <Ψ) ∈ γ(Mr) By def. of γ and |=

(σ′′′′, ν <Ψ) ∈ γ(α′r.c
′(δ′r)) By def. of γ and |=

(σ′′, ν <Ψ) ∈ γ(αr.c(δr) ∗= α′r.c
′(δ′r)) By Property A.4

(σ′′ ∗ σ′′′′, ν <Ψ) ∈ γ(αr.c(δr)) By Corollary 3.5

(σ′′ ∗ σ′′′ ∗ σ′′′′, ν <Ψ) ∈ γ(Mr ∗ αr.c(δr)) By def. of γ and |=

The case for c-segseg is analogous. Finally, the cases for c-emp, c-pt, and c-chk are

straightforward.

Lemma A.6 (Soundness of fragment rewriting).

Restatement of Lemma 4.12. The fragment rewriting rules preserve inclusion in the con-

cretizations.

If 〈m`,mr〉 F`,Fr
Ψ m, then

1. if (σ`, ν`) ∈ γ(m`) and ν` <Ψ` satisfies F`,

then (σ`, ν` <Ψ`) ∈ γ(m).

2. if (σr, νr) ∈ γ(mr) and νr <Ψr satisfies Fr,

then (σr, νr <Ψr) ∈ γ(m).

Proof. By case analysis on the derivation of 〈m`,mr〉 F`,Fr
Ψ m.
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Case: Ψ(α) = (α`, αr) Ψ(α′) = (α`, α′r) mr vFΨr α.c(δ) ∗= α′.c(δ′)
Ψ`(δ) = δ` Ψ`(δ′) = δ`

〈emp,mr〉 t,F
Ψ α.c(δ) ∗= α′.c(δ′)

j-waliases

Subcase: left side

σ` = [·] By def. of γ and |=

(ν` <Ψ`)(α) = (ν` <Ψ`)(α′) As Ψ`(α) = α` and
Ψ`(α′) = α`

(ν` <Ψ`)(δ) = (ν` <Ψ`)(δ′) As Ψ`(δ) = δ` and
Ψ`(δ′) = δ`

(σ`, ν` <Ψ`) ∈ γ(α.c(δ) ∗= α′.c(δ′) ) By def. of γ and |=

Subcase: right side

(σr, νr <Ψr) ∈ γ(α.c(δ) ) By Theorem 4.9

The remaining cases are similar. For the matching cases j-pt and j-chk, they follow directly

from the definition of γ and |=. The other weakening cases j-wchk and j-wseg require an

application of Theorem 4.9 (soundness of comparison in the shape domain).

Lemma A.7 (Satisfaction of residual constraints). Satisfaction of residual constraints is

closed under backwards rewriting.

If (M` t Mr) �F`,Fr M  Ψ (M ′` t M ′r) �F ′
` ,F

′
r
M ′, then

1. if ν` satisfies F ′`, then ν` satisfies F`.

2. if νr satisfies F ′r, νr satisfies Fr.

As a consequence,

if (M` t Mr) �F`,Fr M  ∗Ψ (M ′` t M ′r) �F ′
` ,F

′
r
M ′, then

1. if ν` satisfies F ′`, then ν` satisfies F`.

2. if νr satisfies F ′r, νr satisfies Fr.
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Proof. Direct by the definition of rewriting ((4.1a) in Definition 4.13). The consequence is

proven by induction on the derivation of the multistep rewriting.

Theorem A.8 (Stabilization of widening in the shape domain).

Restatement of Theorem 4.17. Given any sequence of individual states 〈E′n,M ′n, P ′n〉n∈N, let

〈En,Mn, Pn〉n∈N be the sequence defined as follows:

〈E0,M0, P0〉
def= 〈E′0,M ′0, P ′0〉

〈En+1,Mn+1, Pn+1〉
def= 〈En,Mn, Pn〉 O 〈E′n+1,M

′
n+1, P

′
n+1〉 .

Then, the sequence (Mn)n∈N (computed by joins in the shape domain defined in Defini-

tion 4.13) is ultimately stationary.

Proof. Let (Mn)n∈N be defined as above. Next, let a path in Mi be defined as a variable

x followed by a sequence of field edges where x ∈ dom(Ei). Observe that in the fragment

rewriting rules (Figure 4.8), a points-to edge can only be present in the upper bound if

points-to edges existed in the inputs. Thus, the set of paths in Mi+1 is contained in the set

of paths in Mi, that is,

paths(Mi+1) ⊆ paths(Mi) .

Thus, the sequence of sets of paths (paths(Mn))n∈N converges to some limit. Furthermore,

we can define an equivalence relation between paths where two paths are equivalent when

they evaluate to the same node (i.e., traversals from their respective variables along their

respective field edges end up at the same node). The sequence of equivalence classes of

paths defined by this relation must also converge to some limit.

The j-waliases is the only rule that can create a new node in Mn+1 not present in

Mn. However, when it is used, an equivalence class is split, so j-waliases can be applied only
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finitely many times. After j-waliases is applied for the last time, the set of nodes decreases

and converges to some limit. Then, the set of edges must converge. Thus, the sequence

(Mn)n∈N is ultimately stationary.
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