
Boogie: A Modular Reusable Verifier for

Object-Oriented Programs

Mike Barnett0 , Bor-Yuh Evan Chang1 , Robert DeLine0 ,
Bart Jacobs2 , and K. Rustan M. Leino0

0 Microsoft Research, Redmond, Washington, USA
{mbarnett,rdeline,leino}@microsoft.com

1 University of California, Berkeley, California, USA
bec@cs.berkeley.edu

2 Katholieke Universiteit Leuven, Belgium
bartj@cs.kuleuven.be

Abstract. A program verifier is a complex system that uses compiler
technology, program semantics, property inference, verification-condition
generation, automatic decision procedures, and a user interface. This
paper describes the architecture of a state-of-the-art program verifier for
object-oriented programs.

0 Introduction

A program verifier is built from a number of complex pieces of technology: a
source programming language, its usage rules and formal semantics, a logical
encoding suitable for automatic reasoning, abstract domains for program analy-
sis and property inference, decision procedures for discharging proof obligations,
and a user interface that lets a user understand the results of the verification
process. Dealing with these complexities, like other software engineering prob-
lems, requires a modular architecture with well established interface boundaries.

In this paper, we describe the architecture of Boogie, a state-of-the-art pro-
gram verifier for verifying Spec# programs in the object-oriented .NET frame-
work. Internally, Boogie is structured as a pipeline performing a series of trans-
formations from the source program to a verification condition (VC) to an error
report (see Fig. 0). The novel aspects of the Boogie architecture include the
following:

0. Design-Time Feedback. Boogie (together with the Spec# compiler) is inte-
grated with Microsoft Visual Studio to provide design-time feedback in the
form of red underlinings that highlight not only syntax and typing errors
but also semantic errors like precondition violations.

1. Distinct Proof Obligation Generation and Verification Phases. The Boogie
pipeline is centered around intermediate representations in BoogiePL [DL05],
a language tailored for expressing proof obligations and assumptions (Sec. 3).
BoogiePL serves a critical role in separating the generation of proof oblig-
ations from the semantic encoding of the source program and the proving

2

Fig. 0. The Boogie pipeline.

of those obligations. This separation has been critical in the simultaneous
development of the object-oriented program verification methodology and
the core verification technology.

2. Abstract Interpretation and Verification Condition Generation. Boogie per-
forms loop-invariant inference using abstract interpretation (Sec. 5) and gen-
erates verification conditions to be passed (Sec. 6) to an automatic theorem
prover. This combination allows Boogie to utilize both the precision of verifi-
cation condition generation (that must necessarily be lost in an abstraction)
and the inductive invariant inference of abstract interpretation (that simply
cannot be obtained with a concrete model).

1 Overview

In this introductory section, we give an overview of Boogie’s architecture. The
rest of the paper provides more details of each architectural component.

Source Language. The Spec# language is a superset of C#, adding specifi-
cation features (i.e., contracts) such as pre- and postconditions and object in-
variants [BLS04]. Spec# prescribes static type checks beyond those prescribed
by C# and introduces dynamic checks for the specified contracts. The compiler
performs the static type checking and emits the dynamic checks as part of the
target code. Boogie makes use of the type properties enforced by the compiler
and attempts statically to prove that the dynamic checks will always succeed.
Boogie thus checks for error conditions defined by the virtual machine, such
as array bounds errors and type cast errors, and error conditions specified by
user supplied contracts, such as precondition violations. To ensure soundness of
the verification, Boogie additionally checks for error conditions defined by the
programming methodology [BDF+04,LM04,BN04,LM05,LM06].

As depicted in Fig. 0, Spec# programs are compiled into CIL, the executable
format of the .NET virtual machine. Boogie starts with an abstract syntax tree
(AST) for this CIL, which it either gets directly from the compiler or reconstructs
from reading a compiled .dll or .exe file. The latter is the more conventional
mode of a program verifier and allows batch processing. The former allows Boogie
to run as part of compilation, which enables a clean integration with Microsoft
Visual Studio to provide design time feedback. This feedback shows up as red
underlinings (fondly known as “red squigglies”) in the program text, and the

3

Fig. 1. Design time feedback of verification errors within Microsoft Visual Studio 2005.
The red squiggly under the call to Substring indicates an error. The hover text shows
the error to be a precondition violation.

user can get further information by rolling the cursor over these underlinings,
which brings up some hover text that explains the problem (as shown in Fig. 1).
To our knowledge, Boogie is the first program verifier to provide such interactive
design-time feedback.

Intermediate Language. The generation of verification conditions from source
code involves a great number of verifier design decisions. By staging this process
by first translating CIL into BoogiePL, the Boogie architecture separates the
concerns of deciding how to encode source language features and their usage
rules from the concerns of how to reason about control flow in the program.
BoogiePL provides assert statements that encode proof obligations stemming
from the source program, to be checked by the program verifier, and assume

statements that encode properties guaranteed by the source language and ver-
ification process, available for use in the proof by the program verifier. The
architectural layering of verification condition generation via an intermediate
program notation was used by ESC/Modula-3 [DLNS98] (cf. [Lei95]), which
made use of guarded commands whose semantics is given by weakest precondi-

tions [Dij76]. This architecture was sharpened by ESC/Java [FLL+ 02], which
defined and staged the translation further [LSS99].

Verification condition generation involves not just the executable program
statements in the source language, but also other declarations of the source
program and properties guaranteed by the source language. In the aforemen-
tioned ESC tools, the logical encoding of these additional properties, called the
background predicate, was produced separately from the intermediate program

4

notation and fed directly to the theorem prover. BoogiePL innovates further by
allowing the background predicate to be encoded as part of the intermediate pro-
gram. That is, BoogiePL includes declarations for mathematical functions and
axioms. Consequently, the translation of CIL culminates in a BoogiePL program
that encodes the entire proof task—in fact, properties of Spec# and the source
program are no longer used after this point in Boogie’s pipeline, except when
mapping errors back to line numbers in the source text.

Like other languages, BoogiePL can be printed as and parsed from a textual
representation. This feature has been the most important vehicle in debugging
and experimenting with our semantic encoding of Spec#. For example, it is
often convenient to manually perform small changes to the BoogiePL program
without having to modify the Spec# compiler and/or the bytecode translator.

This strong interface boundary between the bytecode translation and the rest
of Boogie’s pipeline also makes it possible for other program verifiers to reuse
Boogie’s VC generation, simply by encoding their proof obligations as BoogiePL
programs. As such, BoogiePL can also be viewed as a high-level front-end to a
theorem prover.

Inferred Properties. BoogiePL programs are turned into first-order verifica-
tion conditions, a process which requires loop invariants. While these can come
from the source programs, many loop invariants can be “boring” or “obvious” to
the programmer, in which case the task of manually supplying these is onerous
and having them as part of the source text provides more clutter than insight.
Sometimes, the loop invariants are even impossible to express in the source lan-
guage, as is the case when the invariant needs to refer to variables or functions
of the BoogiePL encoding of the source program. Therefore, Boogie includes a
framework for abstract interpretation [CC77], which can infer loop invariants of
the BoogiePL program. These inferred invariants are inserted as assume state-
ments into the loop heads of the BoogiePL program, so that they can be assumed
by the VC to hold at the start of each loop iteration.

To modularly combine abstract domains and to support the use of object
references that dereference the heap in the source program, Boogie innovates by
connecting its abstract domains to a special abstract domain that, essentially,
symbolically names locations in the heap, names that then are used by the other
abstract domains [CL05].

Verification Conditions. After generating loop invariants, Boogie generates
verification conditions from the resulting BoogiePL program. There are many
logically equivalent ways of expressing the verification conditions, and which
way is chosen can have a dramatic impact on the performance of the underlying
theorem prover. Boogie performs a series of transformations on the program,
essentially producing one snippet of the verification condition from each basic
block of the BoogiePL procedure implementation being verified [BL05]. The ver-
ification condition is represented as a formula in first-order logic and arithmetic.

5

public class Example {
int x ;
string! s;
invariant s.Length >= 12;

public Example(int y) requires y > 0; { . . . }

public static void M (int n) {
Example e = new Example(100/n);
int k = e.s.Length;
for (int i = 0; i < n; i++) { e.x += i; }
assert k == e.s.Length;

}
}

Fig. 2. An example Spec# class. Its BoogiePL translation is shown in Fig. 3.

It is then passed to a first-order automated theorem prover to determine the
validity of the verification condition (and thus the correctness of the program).

The verification conditions are encoded in such a way as to make it possible
to reconstruct from a failed proof an error trace (i.e., an execution path through
the procedure leading to a proof obligation that the theorem prover is unable
to establish [LMS05]). The bytecode translator performs enough bookkeeping
to map the BoogiePL error trace back into a Spec# error trace, much like
a compiler performs enough bookkeeping for a source-level debugger to operate
from compiled code. Typically, a failed proof indicates an error in the program or
some missing condition in a contract, but due to incompleteness in the theorem
prover, there is also the possibility of spurious error reports. If the theorem
prover runs out of some limited resource, such as the allotted time or space, that
event is reported.

Theorem Prover. Boogie can generate verification conditions for the off-the-
shelf theorem prover Simplify [DNS05], as well as for Zap [BLM05], a set of
decision procedures developed at Microsoft Research. At the moment, most of
our Boogie experience has been with Simplify, but we expect to shift our use
toward Zap. The Boogie architecture makes it fairly easy to retarget the final
step of the VC generation to a new theorem prover.

2 Spec#

Figure 2 shows a synthetic example pro-
gram to highlight some of the features
of Spec#; a more detailed introduc-
tion is found in the Spec# overview
paper [BLS04]. The example shows one
class, called Example , which contains

6

two fields, an object invariant, a constructor, and a method. The body of the
method allocates a new Example object. The actual argument to the construc-
tor, 100/n , contains a potential division-by-zero error. The loop repeatedly in-
crements the x field of the newly allocated object by various amounts. The code
also saves the length of the string e.s and later checks, using an assert statement,
that it is unchanged by the loop.

Spec# incorporates a non-null type system [FL03]; the type string! means
the field s can never hold the value null . We have found this to be the most
common specification in object-oriented programming.

The Spec# compiler generates standard .NET assemblies. A .NET assembly
contains bytecode in the form of method bodies within type definitions and meta-

data for describing extra-runtime features of the types and their members. The
meta-data format allows custom attributes, which are arbitrary user-defined data
that we use to encode specifications. Due to the limitations of the meta-data for-
mat, we persist specifications as serialized ASTs. We use the same meta-data for-
mat to store out-of-band specifications. These are Spec# specifications for types
and methods that are already defined in third-party assemblies. For instance,
the Spec# distribution [Spe06] provides out-of-band contracts for the two most
central assemblies in the .NET Base Class Library (BCL), mscorlib.dll and
System.dll . Both the Spec# compiler and Boogie have the ability to weave to-
gether an assembly and its out-of-band specification so that it appears as if the
contracts were natively present in the original assembly. One of the key benefits
is that client code, which generally is heavily dependent on the BCL, receives
warnings/errors related to incorrect usage of the library APIs. This feature has
been critical in obtaining a usable development system with contracts.

3 BoogiePL

BoogiePL [DL05] is an effective intermediate language for verification condition
generation of object-oriented programs because it lacks the complexities of a full-
featured object-oriented programming language, while also introducing features
of the target logic. As a result, it distributes the complexity of verification con-
dition generation over two well-defined phases, each of which is significantly less
complex than the whole. Compared with Spec#, BoogiePL retains the following
features: procedures (but not methods), mutable variables, and pre- and postcon-
ditions. On the other hand, it lacks the following complications: expressions with
side effects, a heap with objects, classes and interfaces, call-by-reference parame-
ter passing, and structured control-flow. It introduces the following features for
modeling: constants, function symbols, axioms, non-deterministic control-flow,
and the notion of “going wrong”.

Figure 3 shows the translation of the Spec# example given in Fig. 2. While
we give details on how this translation is obtained in Sec. 4, we observe some
salient features of BoogiePL here. BoogiePL looks somewhat like a high-level
assembly language in that the control-flow is unstructured but the notions of
statically-scoped locals and procedural abstraction are retained; however, in-

7

traprocedural control-flow is given by a non-deterministic goto . Also, observe
that the heap has been made explicit with the global variable Heap and similarly
the implicit receiver object of the method is now an explicit parameter this .

A BoogiePL program consists of a theory that is used to encode the semantics
of the source language, followed by an imperative part. We show the abstract
syntax for BoogiePL; for punctuation and other concrete details, see [DL05].

program ::= typedecl∗ symboldecl∗ axiom∗ vardeclstmt∗ proc∗ impl∗

We use the meta-level symbols ∗, +, ? to indicate a sequence, a nonempty se-
quence, and an optional syntactic entity, respectively, use | for alternatives, and
use 〈·〉 for grouping.

A theory consists of type declarations, symbol declarations, and axioms.

typedecl ::= type typename ;
symboldecl ::= constdecl | functiondecl

constdecl ::= const var : type ;
type ::= bool | int | ref | name | any | typename | arraytype

arraytype ::= [type , type] type

functiondecl ::= function function (type∗) returns (type) ;
axiom ::= axiom expr ;

BoogiePL has types and the type checker enforces that every expression is prop-
erly typed. However, all type information is erased during the translation into
verification conditions. The reason for having the types is to improve readability
by expressing intent and to catch simple errors. However, any expression may
be cast to type any and thence to any other type; just as types are erased in
verification conditions, so are casts. In addition to built-in types like bool and
int , BoogiePL supports user-defined types (typename) and arrays (arraytype).
The types used to index into arrays can be any types, not just integers (we might
therefore have called arrays maps). For brevity, we show only 2-dimensional ar-
rays.

BoogiePL’s expressions include boolean, reference, and integer literals and
arithmetic and first-order logical operators:

expr ::= literal | var | unop expr | expr binop expr | expr [expr , expr]
| funapp | quant | cast (expr , type) | old (expr)

literal ::= false | true | null | integer

binop ::= ⇔ | ⇒ | ∨ | ∧ | <: | 6 | < | 6= | = | + | − | ∗ | / | %
unop ::= − | ¬
funapp ::= function (expr∗)
quant ::= (∀ vardecl∗ trigger∗ • expr) | (∃ vardecl∗ trigger∗ • expr)
vardecl ::= var : type 〈where expr〉?

trigger ::= { expr+ }

For use in procedure postconditions and implementations, the expression old(E)
refers to the value of E in the procedure’s pre-state. The where clause in a

8

const System.Object : name;
const Example : name;
axiom Example <: System.Object;
function typeof(obj : ref) returns (class : name);

const allocated : name;
const Example.x : name;
const Example.s : name;

var Heap : [ref ,name]any;

function StringLength(s : ref) returns (len : int);

procedure Example..ctor(this : ref , y : int);
requires . . . ∧ y > 0; modifies Heap; ensures . . . ;

procedure Example.M(n : int);
requires . . . ; modifies Heap; ensures . . . ;

implementation Example.M(n : int)
{

var e : ref where e = null ∨ typeof(e) <: Example;
var k : int, i : int, tmp : int, PreLoopHeap : [ref ,name]any;

Start :
assert n 6= 0;
tmp := 100/n;
havoc e;
assume e 6= null ∧ typeof(e) = Example ∧ Heap[e, allocated] = false;
Heap[e, allocated] := true;
call Example..ctor(e, tmp);

assert e 6= null; k := StringLength(cast(Heap[e,Example.s], ref));
i := 0;
PreLoopHeap := Heap;
goto LoopHead;

LoopHead :
goto LoopBody,AfterLoop :

LoopBody :
assume i < n;
assert e 6= null;
Heap[e,Example.x] := cast(Heap[e,Example.x], int) + i;
i := i + 1;
goto LoopHead;

AfterLoop :
assume ¬(i < n);
assert e 6= null; assert k = StringLength(cast(Heap[e,Example.s], ref));
return;

}

Fig. 3. A simplified version of the BoogiePL resulting from translation of the Example class in
Fig. 2. The Length property of strings is translated specially as a BoogiePL function. The local
variable PreLoopHeap , which stores a copy of the entire heap, is later used by the invariant
inference.

9

variable declaration postulates a unary constraint on the variable’s value (like a
type qualifier). Triggers are for use by the underlying theorem prover in deciding
how to instantiate universal quantifiers [DNS05].

The imperative part of a BoogiePL program consists of global variable dec-
larations, procedure headers (procedures), and procedure implementations (im-

plementations).

vardeclstmt ::= var vardecl∗ ;
proc ::= procedure procname (vardecl∗) 〈returns (vardecl∗)〉?

〈free? requires expr ;〉∗ 〈modifies var∗ ;〉∗ 〈free? ensures expr ;〉∗

implbody?

impl ::= implementation procname (vardecl∗) 〈returns (vardecl∗)〉?

implbody

block ::= label : cmd∗ transfercmd

implbody ::= { vardeclstmt block+ }

As a syntactic sugar, a procedure header can have an optional implementation
body, which has the same effect as an implementation declaration with the same
name. While many languages have named out-parameters and an anonymous
return value, BoogiePL simply allows multiple return values; they are all named
as out-parameters in the returns clause.

An implementation body consists of a sequence of local variable declarations,
followed by a sequence of blocks. An implementation starts at the block listed
first, in a state where the procedure’s preconditions hold and where global and
local variables and in-parameters have values that satisfy their respective where

clauses.

A block has a label and a sequence of commands, followed by a control
transfer command.

cmd ::= passive | assign | call

passive ::= assert expr ; | assume expr ;
assign ::= var 〈[expr , expr]〉? := expr ; | havoc var+ ;
call ::= call var∗ := procname (expr∗) ;
transfercmd ::= goto label+ ; | return ;

The assert and assume commands indicate conditions to be checked or used,
respectively, in the verification. If the given expression evaluates to true , then
each of these commands proceeds like a no-op. If the condition evaluates to false ,
the assert command goes wrong, which is a terminal failure. For the assume com-
mand, if the condition evaluates to false , one is freed of all subsequent proof
obligations, thus indicating a terminal success. The assume command, which is
known as a partial command [Nel89] or miracle (cf. [BvW98]), is a crucial ingre-
dient when encoding verification problems as programs (cf. [Lei95]). The havoc

command assigns an arbitrary value to each indicated variable; when present, the
variable’s where clause constrains this value. The goto command jumps non-
deterministically to one of the indicated blocks. The return command ends the

10

implementation. It goes wrong if the procedure’s non-free postconditions are
not satisfied; otherwise, the procedure implementation terminates successfully.

The call command is defined in terms of the specification of the procedure
being called. It goes wrong if the procedure’s non-free preconditions do not hold.
Otherwise, the state after the call command satisfies the procedure’s postcon-
ditions and the where clauses of the procedure’s out-parameters. Specifically,
it is not assumed that the procedure implementation that gets executed is one
of the implementations declared in the program.

Free pre- and postconditions, like where clauses, are used for encoding prop-
erties guaranteed by the source language. For the most part, these features are
just for convenience, because they encapsulate the many assumptions that would
otherwise have to be sprinkled in many places. However, in the VC generation
for loops (see Sec. 6), where clauses are essential for maintaining enough infor-
mation about loop targets.

4 Translating CIL to BoogiePL Programs

In this section, we describe some key issues
and design choices for the bytecode translator.
These issues include encoding the heap, allocation,
and fields, axiomatizing the Spec# type system,
translating call-by-reference parameters, translat-
ing methods and method calls, and generating
frame conditions.

The bytecode translator first transforms a method body, consisting of CIL
instructions, into a normalized AST, which is essentially an enriched object
model that augments CIL with contract features: non-null type annotations,
assert and assume statements, loop invariants, method contracts, object in-
variants, and various custom attributes for the programming methodology. In a
normalized AST, as in CIL, a method body contains no structured programming
constructs such as if statements or while statements. Rather, a method body
contains a sequence of labeled blocks, each of which contains a sequence of state-
ments, some of which may be conditional or unconditional branch statements
that specify the label of the target block.

One of the differences between a normalized AST and BoogiePL is that in the
former, a statement may contain expressions that may have side effects and that
may go wrong (such as method calls). For this reason, Boogie transforms the nor-
malized AST into a flattened AST, where the values of expressions are assigned
to evaluation stack slots and only evaluation stack slots appear as operands
of expressions and statements. A flattened AST is suitable for walking the se-
quence of statements and generating BoogiePL commands based on the kind of
statement, though we do need a dataflow analysis to provide some flow-sensitive
contextual information necessary for the translation of some statements.

In addition to inferring the CIL type of each local variable and evaluation
stack slot, the analysis attempts to track the following information:

11

– managed pointers (i.e., reference parameters or arguments for reference pa-
rameters or the pointers used when dealing with structs)

– method pointers (which appear when creating a delegate instance)
– type tokens and System.Type objects (which appear when reflecting over

types)
– booleans (for which CIL code uses integers)

Encoding the Heap, Allocation, and Fields. Recall that BoogiePL has no
built-in notion of a heap, object allocation, or fields. The translation models the
heap as a BoogiePL global two-dimensional array, named Heap , that maps an
object reference o and a field name f to the current value of o.f (as shown
in Fig. 3) [Bur72]. Field names encountered during translation are emitted as
unique constants, whose names are qualified by the name of the declaring class.

We use a 2-dimensional heap [PH97] rather than one 1-dimensional “heap”
per field (cf. [DLNS98,Lei95]), because the encoding of our modular verification
methodology quantifies over field names (see frame conditions below).

Object allocation is modeled by adding an extra boolean field called allocated

to each object, which indicates whether the object has been allocated. Allocating
an object consists of choosing an object that has not yet been allocated and
setting its allocated bit, see Fig. 3 (cf. [HW73,DLNS98,Lei95]). In managed code
like Spec#, all objects reachable from the program are allocated. This property
is important for proving that newly allocated objects are distinct from previously
allocated objects, which is crucial for reasoning about object state updates.
Allocatedness information is emitted in the form of procedure preconditions,
frame conditions, and loop invariants, as well as axioms that state that objects
reachable from allocated objects are allocated (cf. [LN02]). This statement is
complicated somewhat by the fact that a path between two objects may pass
through one or more structs.

Static fields are stored in the heap, just like instance fields. In particular,
fields are translated as follows:

o.f translates to Heap[o,C f]
C.g translates to Heap[TypeObject(C),C g]

where fields f and g are declared by class C and o is an expression of type C .
A major advantage of storing static fields in the heap as opposed to, for example,
separate global variables, is that one frame condition can govern both static and
instance fields. It also allows a more uniform treatment of both kinds of fields
by the modular verification methodology.

Axiomatizing the Spec# Type System. In order to model the semantics
of Spec# type tests and typecasts, an axiomatization of the subtype relation on
reference types is required. This axiomatization additionally helps in deriving
object distinctness results, which reduces the number of inequalities that users
need to include in method contracts, object invariants, loop invariants, etc.

12

It turns out to be a challenge to author a type axiomatization that is queried
efficiently by our theorem prover, so we are considering adding a decision pro-
cedure specifically for this purpose. Unfortunately, this choice would probably
require that BoogiePL be made aware of the Spec# type system.

Translating Call-By-Reference Parameters. Both C# and Spec# support
call-by-reference argument passing (reference parameters are marked ref). A
call-by-reference parameter of type T takes as an argument not a value of type
T but a pointer to a variable of type T . Accesses to the parameter are thus
dereferences of the pointer.

BoogiePL does not support call-by-reference parameters directly. Since it
does support both in- and out-parameters, we model reference parameters by
performing copy-in/copy-out for the purposes of verification. In the Spec# pro-
gram, when a variable x is passed as an argument to a reference parameter p ,
then in the BoogiePL program the value of x is passed as an argument to an
in-parameter. At the start of the body of the callee, the in-parameter is copied
into a local variable. Accesses to p in the Spec# program are translated into
accesses of the local variable in the BoogiePL program. When the procedure
completes, the local variable is copied into an out-parameter and at the call site
the out-parameter is copied back into x .

Translating from IL introduces a snag: accesses to reference parameters ap-
pear as pointer dereferences, and the pointers being dereferenced are read from
the parameter in some preceding instruction. As a result, it is impossible to tell
by looking at the instruction itself which reference parameter is being referred to.
This problem is solved by the bytecode translator’s dataflow analysis mentioned
above.

Using copy-in/copy-out is sound only if there is no aliasing amongst the
actual arguments for reference parameters. Therefore, we disallow such aliasing
in Spec#. (This is not yet implemented in the compiler, but we intend to impose
enough restrictions on actual arguments that a simple syntactic check suffices to
forbid such aliasing, cf. [Rey78].)

Translating Methods and Method Calls. For each declaration of a method
or method override, the bytecode translation generates a BoogiePL procedure.
For each method implementation, it also generates a BoogiePL implementation.
Having a separate procedure per override permits specification refinement in
subclasses.

For translating method calls, we distinguish two cases. When we can deter-
mine the exact target of a call (that is, the call is statically bound, such as for a
non-virtual method or a base call), it is translated into a call to the associated
procedure. When the call is dynamically bound, we translate the call into a call
of an additional BoogiePL procedure that we generate for virtual methods. This
gives us the flexibility to use a slightly different specification for such calls, as
used by our methodology [BDF+04].

13

Method Framing. In BoogiePL, the effect of a procedure is framed by its
modifies clause. Specifically, a procedure may assign to a global variable only if
the variable appears in the procedure’s modifies clause. As mentioned above,
the Spec# heap is modeled in BoogiePL as a global variable (observe the
modifies clauses in Fig. 3 for Heap). Since almost all methods may potentially
modify the heap (by creating a new object or assigning to a field), the heap ap-
pears in almost every procedure’s modifies clause. However, this is clearly an
overapproximation. Therefore, additional framing information is encoded in the
BoogiePL program in the form of an extra postcondition on the procedure. This
postcondition is known as the frame condition. The precise form of the frame
condition depends on the modular verification methodology used; for example,
for the original Boogie methodology [BDF+04], each procedure gets a frame
condition of the following form:

(∀o : ref , f : name •
(o, f) 6∈ W ∧ old(Heap[o, allocated] ∧ ¬Heap[o, committed])
⇒ Heap[o, f] = old(Heap[o, f]))

where W are the locations listed in the Spec# method’s modifies clause,
and Heap[o, committed] is a special field introduced by the modular verification
methodology related to an ownership model [BDF+04]. Essentially, the frame
condition says that unless a given location satisfies certain criteria, it is guaran-
teed not to incur a net modification by the method call.

The frame conditions generated by Boogie’s bytecode translation are more
complicated than the one we have shown here, but we lack the space to describe
them in further detail.

Loop Framing. In order to generate verification conditions [BL05] for a loop,
such as the following:

LoopHead : assert I; S; goto LoopHead ;

it must be transformed into acyclic control flow that abstracts the behaviors
of the loop (for soundness). Specifically, we transform the loop above into the
following sequence of statements:

x0
1 := x1; . . . x0

n := xn; assert I;
havoc x1, . . . , xn; assume I;
S; assert I; assume false;

where S is the loop body (which may include commands that jump out of the
loop) , x1, . . . , xn are the variables (global or local) updated by S , and x0

1, . . . , x
0
n

are fresh local variables. The predicate I serves as a loop invariant.
The transformation causes the loop body (as well as code paths that exit

the loop) to be verified in all possible states that satisfy the loop invariant. The
assume false; command indicates that a code path that does not exit the loop

14

can be considered to reach terminal success at the end of the loop body, provided
that the loop invariant has been re-established.

When the loop body updates the heap (which is the typical situation), the
heap is havoced (i.e., assigned an arbitrary value) on entry to a loop. This
abstraction results in a sound but gross overapproximation of the set of heap
locations that may be modified by loop body executions. Some of the lost pre-
cision must necessarily be recovered by inference (see Sec. 5), but we can also
emit loop frame conditions that increase the precision of the verification and are
guaranteed by the verification methodology. For example, one loop frame condi-
tion that is always added states that all objects that were allocated on entry to
the loop are still allocated at the start of the current iteration:

(∀o : ref • Heap0[o, allocated] ⇒ Heap[o, allocated])

5 Invariant Inference

Compared with other static analysis tech-
niques, verification-condition generation of-
fers a high degree of precision. However, a
well-known issue with producing first-order
verification conditions is the need for loop invariants. Loop invariants may be
specified by the user in BoogiePL or Spec#, but while some loop invariants are
key ideas in the verification of a program and thus useful to incorporate in the
source, others—in particular, those that state which heap locations are left un-
touched by the loop body—are often boring or unintuitive to the programmer.
To mitigate the need for user-supplied loop invariants, we use abstract inter-

pretation [CC77], which systematically computes overapproximations of sets of
reachable states, to infer some loop invariants before generating the verification
condition.

Currently, the interaction between the abstract interpretation and the theo-
rem proving is exceedingly simple: the abstract interpreter instruments the input
BoogiePL program with the invariants it can infer using the selected abstract
domains and passes the instrumented BoogiePL program to the verification-
condition generator to produce a formula for the theorem prover. Particularly,
there is no feedback from the theorem prover to the abstract interpreter, though
we have some evidence that such an interaction may be beneficial [LL05].

In this section, we first discuss the design goals for our abstract interpretation
framework used in Boogie and then show how these goals are achieved. Finally,
we sketch the kinds of invariants that can be obtained and are particularly
important for Boogie to infer.

A Generic Abstract Interpretation Framework. Because we would like
to use the abstract interpretation in different settings and with varying config-
urations (e.g., to trade-off precision for efficiency), we heavily modularize the
abstract interpretation framework. In particular, when we design the abstract

15

domains, which capture the kind of invariants we can infer, we want to ignore
the following concerns:

0. Exploration Strategies. We want to separate out the efficiency concerns in
how the (abstract) state space is explored. As is standard, we use a generic
fixed point engine.

1. The Abstract Transition Relation. The abstract transition relation defines
how program statements affect abstract states; that is, given an abstract
state at the program point before a given statement, what are the abstract
successor states that conservatively approximate the effect of the statement.
We want to be agnostic to the input language when designing the abstract
domains, and we want to be able to define different abstract transition re-
lations over the same abstract domains easily (e.g., for both intra- and in-
terprocedural analyses). To achieve this goal, we fix some generic operators
on abstract domains that can be easily combined to define various abstract
transition relations.

2. Combining Abstract Domains. It is well-known that a combined analysis can
be more precise than the separate sub-analyses working independently. We
would like to design and implement logically separate abstract domains inde-
pendently but obtain the precision of the combined analysis easily. In other
words, we want an easy way to construct reduced product analyses [CC79].

Expressions. For goals 1 and 2 above, we fix a common language of expressions
for communicating with or among abstract domains. In implementation, this
language is defined using a Spec# interface hierarchy, which is implemented by
the BoogiePL AST classes. This setup makes it easy to use the abstract domains
with other tools, as one simply needs to implement the abstract interpretation
framework interfaces with the AST classes for the language of interest (instead
of writing translation routines).

Expressions are simply variables, λ -expressions (for variable binding), and
function symbols applied to expressions:

expressions Expr e, p ::= x | λx. e | f(e∗)
variables Var x, y, ...
function symbols FunSym f

A constraint is any boolean-valued expression, and the set of function symbols
include the usual operators from first-order logic: ¬ , ∧ , ∨ , ⇒ , ⇔ , ∀ , and ∃ .

Abstract Domains. An abstract domain must implement the signature shown
in Fig. 4. Each abstract domain defines a type Elt , which represent the elements
of the domain. The concretization function γ yields the predicate that corre-
sponds to the given element. (In the literature, the concrete domain is usually
phrased in terms of sets of machine states, rather than state predicates.) When
analyzing a program, we do not need to evaluate the corresponding abstraction

16

function α , so we have omitted it from the signature. As usual, we require a par-
tial ordering on domain elements, a greatest element, and a least element, which
are given by v , > , and ⊥ , respectively; > is required to correspond to true and

type Elt

val γ : Elt → Expr

val > : Elt
val ⊥ : Elt
val v : Elt× Elt → bool

val t : Elt× Elt → Elt

val O : Elt× Elt → Elt

val Constrain : Elt× Expr → Elt

val Eliminate : Elt× Var → Elt

val Rename : Elt× Var× Var → Elt

Fig. 4. Abstract domains.

⊥ to false . We also need join t
and widen O upper bound oper-
ators for the fixed point engine to
handle control-flow join points: t
is usually the least upper bound
operator and O must have the
stabilizing property.

The final three operations
provide a generic interface for
implementing abstract transition
relations. The Constrain oper-
ation adds (i.e., conjoins) a con-
straint to an element, Eliminate
existentially quantifies (i.e., projects out) a variable, and Rename renames a free
variable. For example, we might define the abstract transition relation on an
assignment statement as follows:

y

A

x := e

y

Rename(Eliminate(Constrain(A, x′ = e), x), x′, x)
(for a fresh variable x′)

which says if A is the state before the assignment, the successor state is obtained
by constraining A with x′ = e for a fresh variable x′ , then eliminating the old
variable x , and finally renaming x′ to x .

Base Domains. Typically, the elements of an abstract domain can be viewed
as constraints of a particular form on a set of variables (that is, on independent
coordinates). For example, the polyhedra abstract domain [CH78] can represent
linear-arithmetic constraints like x+y 6 z . We have implementations for a num-
ber of such standard abstract domains, which we call base domains. For inferring
linear-arithmetic constraints, we have an implementation of the polyhedra do-
main [CH78], though we do not currently have implementations of any cheaper
numerical domains (e.g., intervals or octagons [Min01]). We also have various
basic abstract domains for constant propagation and dynamic type analysis. Fi-
nally, we have an important base domain that tracks what parts of the heap are
preserved across updates (the heap succession domain) [CL05].

Combining Abstract Domains. Often, the constraints of interest involve
function and relation symbols that are not all supported by any single ab-
stract domain. For example, a constraint of possible interest in the analysis
of a Spec# program is sel(H, o, x)+k 6 length(a) where H denotes the current

17

heap, sel(H, o, x) represents the value of the x field of an object o in the heap
H (written o.x in Spec# and written H[o, x] is our BoogiePL encoding), and
length(a) gives the length of an array a . A constraint like this cannot be rep-
resented directly in the polyhedra domain because the polyhedra domain does
not support the functions sel and length . Rather than building support for these
functions into polyhedra, our framework includes a coordinating abstract domain
that hides such alien expressions from base domains like polyhedra. This coordi-
nating abstract domain, called the congruence-closure domain, is parameterized
by the various base domains and tracks equalities and performs congruence-
closure in order transparently to extend the base domains to work with alien
expressions (i.e., expressions it does not understand and should be treated as
uninterpreted) [CL05]. Such a modularization is particularly important. For ex-
ample, including the heap succession domain as a base domain enables other
base domains to obtain more precise properties of fields that depend on knowing
that parts of the heap are preserved (without requiring the other base domains
to know anything about heap updates).

Inferred Invariants. To get an idea of the kinds of invariants inferred by
Boogie, consider again the example shown in Fig. 3. Using a standard polyhedra
base domain (or in fact an interval domain would suffice) with the congruence-
closure domain, we get the loop invariant 0 6 i that gives the range of i . Using
the heap succession domain with the congruence-closure domain, we infer the
following important frame condition loop invariant (here shown in a simplified
form):

(∀ o : ref , f : name •
(o 6= this ∨ f 6= Example.x) ⇒ Heap[o, f] = PreLoopHeap[o, f])

This loop invariant is not only “boring” to the user but cannot even be specified
at the source-level, since it quantifies over all objects and field names; however,
it is necessary to be able to verify the assertion at the end of the method body
in Fig. 2. The inferred loop invariants are inserted into the BoogiePL program
in Fig. 3 as assume statements at the beginning of block LoopHead .

6 Verification Condition Generation

A BoogiePL program encodes sets of pro-
gram traces and proof obligations in those
traces. Verification condition generation
turns those proof obligations into first-order
formulas. As already described, BoogiePL is intentionally not a structured pro-
gramming language. That is, a BoogiePL program is a somewhat high-level way
of specifying a control-flow graph whose nodes are basic blocks. Since our verifica-
tion conditions are computed using the standard weakest-precondition calculus
[Dij76,Nel89], we had to develop a method for computing first-order weakest
preconditions of an unstructured program.

18

Our method, which we have described in detail elsewhere [BL05], produces
one VC for every BoogiePL procedure implementation. It starts by transforming
the implementation into some loop-free BoogiePL code that over-approximates
the loops in the original. It then performs a single assignment transformation
(cf. [CFR+ 91,FS01]), resulting in only passive code, that is, code without state
changes. Finally, to encode the unstructured nature of the control flow, we in-
troduce for every block A a boolean variable Aok , defined to be true if every
execution starting from A is correct (i.e., does not go wrong). For a block:

A: PassiveCommands; goto B,C;

the block equation that defines Aok is:

Aok ⇐ wp(PassiveCommands, Bok ∧ Cok)

where wp computes the weakest precondition of PassiveCommands with respect
to the postcondition Bok ∧ Cok . The VC is then:

Axioms ∧ BlockEqs ⇒ Startok

where Axioms is the conjunction of the axioms in the BoogiePL program,
BlockEqs is the conjunction of block equations (which thus encode the seman-
tics of the passive BoogiePL code), and Start is the implementation’s start
block.

While translating the BoogiePL program into a verification condition, the
back-end phase builds up a table mapping labeled subformulas to BoogiePL
program elements. The back-end phase uses this table to translate the label
output from the theorem prover into an error message in terms of the BoogiePL
program [LMS05]. Similarly, the front-end bytecode translation creates a table
mapping BoogiePL program elements to Spec# program elements. This table
allows it to take an error message on a BoogiePL program and generate an
error message on the original Spec# program in terms that the programmer
can understand.

Currently, Boogie produces verification conditions for the Simplify theorem
prover [DNS05], which has a successful history of being used in program veri-
fiers, starting with ESC/Modula-3 [DLNS98] for which it was first developed. A
crucial ingredient in this success is the generation of VCs that allow the theo-
rem prover to find concise proofs, essentially. Simplify uses what it calls the goal

property heuristic [DNS05], which thrives on the kind of formulas generated by
ESC/Modula-3 and, especially, by ESC/Java [FS01,Lei05]. However, Boogie’s
VCs represent the program’s control flow in a different (and more compact) way
than was used in ESC/Java, which sometimes causes Simplify to be slower than
we would like. In addition, we have found that the formulas we use to axiomatize
the Spec# class and interface subtypes are unexpectedly causing the prover to
spend too much time in unfruitful ways. Finally, our heavy use of quantifiers
in expressing certain changes in the heap sometimes causes Simplify to run out
of steam (in particular, it reaches its “matching depth” [DNS05]). We are look-
ing forward to addressing these issues in the further use and development of
Zap [BLM05], but at present, Zap is not able to match the utility of Simplify.

19

7 Related Work

The body of previous work in program verification is enormous. In this section,
we mention some of the tools that are most closely related to Boogie.

Three static program verifiers for the object-oriented language Java are LOOP,
Jive, and KeY. LOOP [BJ01,JP03] takes Java plus contracts written in the
Java Modeling Language (JML) [LBR99,LBR03]. It uses the interactive theo-
rem prover PVS [ORR+96], for which it generates proof obligations that look
like Hoare triples [Hoa69,JP01]. It also provides some automation by a weakest-
precondition tactic [Jac04]. Jive [MMPH97] also uses a Hoare-like logic [PH97]
and its custom-built interactive theorem prover operates at the level of Hoare
triples (as opposed to first-order VCs generated from the programs). The KeY
tool [ABB+ 05] offers several specification notations, including JML and dy-
namic logic, and targets several proof engines. The main differences between
these three tools and Boogie are that they address a more limited subset of the
source language and that they are not automatic.

Program verification technology has also been used in tools that find some
program errors without promising to find all errors. These include the Ex-
tended Static Checkers for Modula-3 and Java [DLNS98,FLL+02,Lei00,KC04],
JACK [BRL03], Krakatoa [MPMU04], and Cadeuces [FM04]. The automation
in these tools rivals that of Boogie, and they all support the Simplify [DNS05]
theorem prover. In addition, JACK supports PVS and the interactive prover of
the Atelier B toolkit. Like Boogie, Krakatoa and Cadeuces generate verification
conditions via an intermediate language, called Why [Fil03]. Though developed
independently, Why and BoogiePL are more similar than they are different. The
Why tool currently supports six different theorem provers, both interactive and
automatic, but does not support property inference like Boogie’s.

A number of programming languages have built-in specifications or were de-
signed with verification in mind. Among these are Gypsy [AGB+ 77], Euclid
[LHL+ 81], APP [Ros95], and others mentioned in the Spec# overview pa-
per [BLS04]. The languages SPARK Ada [Bar03], B [Abr96], ACL2 [KMM00],
Perfect Developer [Esc06], and C0 [LPP05] include verifiers with interactive the-
orem provers. The Eiffel language [Mey92] is well known for its pioneering com-
bination of object-orientation and dynamically checked contracts, but it does
not yet offer static verification.

8 Conclusion

In summary, Boogie is an automatic program verifier for modern object-oriented
programs. Its architecture helps tame the complexity of the program verification
task. Providing design-time feedback, Boogie moves the program verifier closer
to the developer, while still hiding the theorem prover and other verification
machinery from the developer. Designed around an intermediate programming
notation, BoogiePL, it separates the semantic encoding of the source program
from the analysis of this encoding. Since Boogie can also read BoogiePL programs

20

directly, it offers the possibility for others to write program verifiers by encoding
their proof obligations in BoogiePL.

We have applied Boogie to a growing number of small (300–1500 lines) pro-
grams, and we are applying Boogie to parts of its own implementation (which
is written in Spec#). We also are supporting an experiment in using Boogie on
production code. This experience constantly demands support for more program-
ming idioms, more targeted default specifications, better explanations of error
messages (especially those having to do with violations of the ownership-based
alias-confinement regime), and higher performance.

Boogie can be run as part of compilation, where the compiler provides its
in-memory data structures to Boogie for verification. The verification results
of Boogie could be used by the compiler’s code optimizer to produce better
performing code (cf. [Van94,FKR+00]). However, this is not part of the current
Boogie architecture. The prospects of including this feedback in the architecture
seem promising, but also contains some research questions such as how and to
what degree to rely on specifications of code that may not have been verified.

The Spec# compiler produces both metadata and compiled code from Spec#
contracts like preconditions. Lately, we have considered the possibility of using
only stylized patterns of compiled code. Under such a design, Boogie would
reconstruct the contracts from the stylized patterns of CIL instructions, and
special method stubs would have to be created to support contracts on abstract
methods. The advantage of such a design would be to make it possible to write
contracts in .NET languages without contract features, by manually coding the
stylized precondition checks. Boogie could then be applied to other .NET lan-
guages, too.

In developing Boogie’s abstract interpretation framework, we found on nu-
merous occasions the need to determine whether or not a given predicate holds.
This functionality is readily available in the theorem prover, so we have wished
that the abstract interpreter and the theorem prover would be more closely
related. Indeed, there is already overlap between these two components. For ex-
ample, both deal with linear arithmetic, both deal with uninterpreted function
symbols, and both deal with the heap. Unlike the abstract interpreter, the the-
orem prover supports quantifiers and therefore provides a simple way to extend
its reasoning to special domains; and unlike the theorem prover, the abstract
interpreter computes fixpoints, rather than just answering boolean queries. We
see the combination of these two components as a possible improvement in the
Boogie architecture and as an exciting and important research area.

Acknowledgments This work would not have been possible without the efforts of
the rest of the Spec# team: Manuel Fähndrich, Wolfram Schulte, and Herman
Venter. We are especially grateful for the persistence and patience that Herman
Venter has shown as he pioneers the use of Boogie in production code. We
thank Peter Müller and Arnd Poetzsch-Heffter for performing case studies and
diagnosing bugs in the system, and Francesco Logozzo for writing part of the
abstract interpretation code. We are indebted to the Spec# user community
and also to the anonymous reviewers.

21

References

[ABB+ 05] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard Bubel, Mar-
tin Giese, Reiner Hähnle, Wolfram Menzel, Wojciech Mostowski, Andreas
Roth, Steffen Schlager, and Peter H. Schmitt. The KeY tool. Software and
System Modeling, 4(1):32–54, February 2005.

[Abr96] Jean-Raymond Abrial. The B-Book: Assigning Programs to Meanings.
Cambridge University Press, August 1996.

[AGB+ 77] Allen L. Ambler, Donald I. Good, James C. Browne, Wilhelm F. Burger,
Richard M. Cohen, Charles G. Hoch, and Robert E. Wells. GYPSY: A
language for specification and implementation of verifiable programs. SIG-
PLAN Notices, 12(3):1–10, March 1977.

[Bar03] John Barnes. High Integrity Software: The SPARK Approach to Safety and
Security. Addison Wesley, 2003.

[BDF+ 04] Michael Barnett, Robert DeLine, Manuel Fähndrich, K. Rustan M. Leino,
and Wolfram Schulte. Verification of object-oriented programs with invari-
ants. Journal of Object Technology, 3(6):27–56, 2004.

[BJ01] Joachim van den Berg and Bart Jacobs. The LOOP compiler for Java and
JML. In Tiziana Margaria and Wang Yi, editors, Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), volume 2031 of
Lecture Notes in Computer Science, pages 299–312. Springer, 2001.

[BL05] Mike Barnett and K. Rustan M. Leino. Weakest-precondition of unstruc-
tured programs. In Workshop on Program Analysis for Software Tools and
Engineering (PASTE), pages 82–87, 2005.

[BLM05] Thomas Ball, Shuvendu Lahiri, and Madanlal Musuvathi. Zap: Automated
theorem proving for software analysis. Technical Report MSR-TR-2005-
137, Microsoft Research, October 2005.

[BLS04] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec#
programming system: An overview. In Construction and Analysis of Safe,
Secure, and Interoperable Smart devices (CASSIS), volume 3362 of Lecture
Notes in Computer Science, pages 49–60. Springer, 2004.

[BN04] Mike Barnett and David A. Naumann. Friends need a bit more: Maintain-
ing invariants over shared state. In Dexter Kozen and Carron Shankland,
editors, Mathematics of Program Construction (MPC), volume 3125 of Lec-
ture Notes in Computer Science, pages 54–84. Springer, 2004.

[BRL03] L. Burdy, A. Requet, and J.-L. Lanet. Java applet correctness: a developer-
oriented approach. In Keijiro Araki, Stefania Gnesi, and Dino Mandrioli,
editors, FME 2003: Formal Methods, International Symposium of Formal
Methods Europe, volume 2805 of Lecture Notes in Computer Science, pages
422–439. Springer, September 2003.

[Bur72] Rod M. Burstall. Some techniques for proving correctness of programs
which alter data structures. Machine Intelligence, 7:23–50, 1972.

[BvW98] Ralph-Johan Back and Joakim von Wright. Refinement Calculus: A Sys-
tematic Introduction. Graduate Texts in Computer Science. Springer-
Verlag, 1998.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction or approxima-
tion of fixpoints. In Fourth ACM Symposium on Principles of Programming
Languages (POPL), pages 238–252, January 1977.

22

[CC79] Patrick Cousot and Radhia Cousot. Systematic design of program analy-
sis frameworks. In Sixth ACM Symposium on Principles of Programming
Languages (POPL), pages 269–282, January 1979.

[CFR+ 91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. Efficiently computing static single assignment form
and the control dependence graph. ACM Transactions on Programming
Languages and Systems, 13(4):451–490, October 1991.

[CH78] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear re-
straints among variables of a program. In Fifth ACM Symposium on Prin-
ciples of Programming Languages (POPL), pages 84–96, January 1978.

[CL05] Bor-Yuh Evan Chang and K. Rustan M. Leino. Abstract interpretation
with alien expressions and heap structures. In Radhia Cousot, editor, Ver-
ification, Model Checking, and Abstract Interpretation (VMCAI), volume
3385 of Lecture Notes in Computer Science, pages 147–163. Springer, 2005.

[Dij76] Edsger W. Dijkstra. A Discipline of Programming. Prentice Hall, Engle-
wood Cliffs, NJ, 1976.

[DL05] Robert DeLine and K. Rustan M. Leino. BoogiePL: A typed procedural
language for checking object-oriented programs. Technical Report MSR-
TR-2005-70, Microsoft Research, March 2005.

[DLNS98] David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe.
Extended static checking. Research Report 159, Compaq Systems Research
Center, December 1998.

[DNS05] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem prover
for program checking. Journal of the ACM, 52(3):365–473, May 2005.

[Esc06] Escher Technologies. Perfect Developer. http://eschertech.com/, 2006.
[Fil03] Jean-Christophe Filliâtre. Verification of non-functional programs using

interpretations in type theory. The Journal of Functional Programming,
13(4):709–745, July 2003.

[FKR+ 00] Robert Fitzgerald, Todd B. Knoblock, Erik Ruf, Bjarne Steensgaard, and
David Tarditi. Marmot: An Optimizing Compiler For Java. Software—
Practice and Experience, 30(3):199–232, 2000.

[FL03] Manuel Fähndrich and K. Rustan M. Leino. Declaring and checking non-
null types in an object-oriented language. In Ron Crocker and Guy L. Steele
Jr., editors, Object-Oriented Programming Systems, Languages and Appli-
cations (OOPSLA), pages 302–312. ACM, 2003.

[FLL+ 02] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson,
James B. Saxe, and Raymie Stata. Extended static checking for Java. In
Programming Language Design and Implementation (PLDI), pages 234–
245, 2002.

[FM04] Jean-Christophe Filliâtre and Claude Marché. Multi-prover verification of
C programs. In Jim Davies, Wolfram Schulte, and Michael Barnett, editors,
Formal Engineering Methods (ICFEM), volume 3308 of Lecture Notes in
Computer Science, pages 15–29. Springer, 2004.

[FS01] Cormac Flanagan and James B. Saxe. Avoiding exponential explosion:
Generating compact verification conditions. In POPL 2001: The 28th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 193–205. ACM, January 2001.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Commu-
nications of the ACM, 12(10):576–580,583, October 1969.

[HW73] C. A. R. Hoare and N. Wirth. An axiomatic definition of the programming
language PASCAL. Acta Informatica, 2(4):335–355, 1973.

23

[Jac04] Bart Jacobs. Weakest pre-condition reasoning for Java programs with JML
annotations. Journal of Logic and Algebraic Programming, 58(1–2):61–88,
January–March 2004.

[JP01] Bart Jacobs and Erik Poll. A logic for the Java Modeling Language JML.
In H. Hussmann, editor, Fundamental Approaches to Software Engineering
(FASE), volume 2029 of Lecture Notes in Computer Science, pages 284–299.
Springer, 2001.

[JP03] Bart Jacobs and Erik Poll. Java program verification at Nijmegen: De-
velopments and perspective. In Software Security—Theories and Systems,
Second Mext-NSF-JSPS International Symposium, ISSS 2003, pages 134–
153, November 2003.

[KC04] Joseph R. Kiniry and David R. Cok. ESC/Java2: Uniting ESC/Java and
JML: Progress and issues in building and using ESC/Java2, including a
case study involving the use of the tool to verify portions of an Internet
voting tally system. In Construction and Analysis of Safe, Secure, and
Interoperable Smart devices (CASSIS), volume 3362 of Lecture Notes in
Computer Science, pages 108–128. Springer, 2004.

[KMM00] Matt Kaufmann, Panagiotis Manolios, and J Strother Moore. Computer-
Aided Reasoning: An Approach. Kluwer Academic Publishers, June 2000.

[LBR99] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. JML: A notation
for detailed design. In Haim Kilov, Bernhard Rumpe, and Ian Simmonds,
editors, Behavioral Specifications of Businesses and Systems, pages 175–
188. Kluwer Academic Publishers, Boston, 1999.

[LBR03] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design
of JML: A behavioral interface specification language for Java. Technical
Report 98-06u, Iowa State University, Department of Computer Science,
April 2003.

[Lei95] K. Rustan M. Leino. Toward Reliable Modular Programs. PhD thesis,
CalTech, 1995. Available as Technical Report Caltech-CS-TR-95-03.

[Lei00] K. Rustan M. Leino. Extended static checking: A ten-year perspective. In
Reinhard Wilhelm, editor, Informatics—10 Years Back, 10 Years Ahead,
volume 2000 of Lecture Notes in Computer Science. Springer, 2000.

[Lei05] K. Rustan M. Leino. Efficient weakest preconditions. Information Process-
ing Letters, 93(6):281–288, March 2005.

[LHL+ 81] Butler W. Lampson, James J. Horning, Ralph L. London, James G.
Mitchell, and Gerald J. Popek. Report on the programming language
Euclid. Technical Report CSL-81-12, Xerox PARC, October 1981. An ear-
lier version of this report appeared as volume 12, number 2 in SIGPLAN
Notices. ACM, February 1977.

[LL05] K. Rustan M. Leino and Francesco Logozzo. Loop invariants on demand. In
Kwangkeun Yi, editor, Asian Symposium on Programming Languages and
Systems (APLAS), volume 3780 of Lecture Notes in Computer Science,
pages 119–134. Springer, 2005.

[LM04] K. Rustan M. Leino and Peter Müller. Object invariants in dynamic con-
texts. In Martin Odersky, editor, European Conference on Object-Oriented
Programming (ECOOP), volume 3086 of Lecture Notes in Computer Sci-
ence, pages 491–516. Springer-Verlag, 2004.

[LM05] K. Rustan M. Leino and Peter Müller. Modular verification of static class
invariants. In John Fitzgerald, Ian J. Hayes, and Andrzej Tarlecki, editors,
Symposium on Formal Methods Europe (FM), volume 3582 of Lecture Notes
in Computer Science, pages 26–42. Springer, 2005.

24

[LM06] K. Rustan M. Leino and Peter Müller. A verification methodology for
model fields. In Peter Sestoft, editor, European Symposium on Programming
(ESOP), volume 3924 of Lecture Notes in Computer Science, pages 115–
130. Springer, 2006.

[LMS05] K. Rustan M. Leino, Todd Millstein, and James B. Saxe. Generating error
traces from verification-condition counterexamples. Science of Computer
Programming, 55(1–3):209–226, March 2005.

[LN02] K. Rustan M. Leino and Greg Nelson. Data abstraction and informa-
tion hiding. ACM Transactions on Programming Languages and Systems,
24(5):491–553, September 2002.

[LPP05] Dirk Leinenbach, Wolfgang Paul, and Elena Petrova. Towards the formal
verification of a C0 compiler: Code generation and implementation cor-
rectness. In Bernhard K. Aichernig and Bernhard Beckert, editors, Third
IEEE International Conference on Software Engineering and Formal Meth-
ods (SEFM 2005), pages 2–12. IEEE Computer Society, September 2005.

[LSS99] K. Rustan M. Leino, James B. Saxe, and Raymie Stata. Checking Java
programs via guarded commands. In Formal Techniques for Java Programs,
Technical Report 251. Fernuniversität Hagen, May 1999. Also available as
Technical Note 1999-002, Compaq Systems Research Center.

[Mey92] Bertrand Meyer. Eiffel: The Language. Object-Oriented Series. Prentice
Hall, 1992.

[Min01] Antoine Miné. The octagon abstract domain. In Working Conference on
Reverse Engineering (WCRE), pages 310–319, 2001.

[MMPH97] Peter Müller, Jörg Meyer, and Arnd Poetzsch-Heffter. Programming and
interface specification language of Jive—specification and design rationale.
Technical Report 223, Fernuniversität Hagen, 1997.

[MPMU04] Claude Marché, Christine Paulin-Mohring, and Xavier Urbain. The
Krakatoa tool for certification of Java/JavaCard programs annotated
in JML. Journal of Logic and Algebraic Programming, 58(1–2):89–106,
January–March 2004.

[Nel89] Greg Nelson. A generalization of Dijkstra’s calculus. ACM Transactions
on Programming Languages and Systems, 11(4):517–561, October 1989.

[ORR+ 96] Sam Owre, S. Rajan, John M. Rushby, Natarajan Shankar, and Man-
dayam K. Srivas. PVS: Combining specification, proof checking, and model
checking. In Rajeev Alur and Thomas A. Henzinger, editors, Computer-
Aided Verification (CAV), volume 1102 of Lecture Notes in Computer Sci-
ence, pages 411–414. Springer, 1996.

[PH97] Arnd Poetzsch-Heffter. Specification and verification of object-oriented
programs. Habilitationsschrift, Technische Universität München, 1997.

[Rey78] John C. Reynolds. Syntactic control of interference. In Fifth ACM Sym-
posium on Principles of Programming Languages (POPL), pages 39–46,
January 1978.

[Ros95] David S. Rosenblum. A practical approach to programming with assertions.
IEEE Transactions on Software Engineering, 21(1):19–31, January 1995.

[Spe06] Spec# homepage. http://research.microsoft.com/specsharp, 2006.
[Van94] Mark T. Vandevoorde. Exploiting Specifications to Improve Program Per-

formance. PhD thesis, Massachusetts Institute of Technology, February
1994. Available as Technical Report MIT/LCS/TR-598.

