Communication Bounds for Sequential and Parallel Eigenvalue Problems

Grey Ballard¹, Jim Demmel¹, Ioana Dumitriu²

¹UC Berkeley
²University of Washington

April 19, 2010

Research supported by Microsoft (Award #024263) and Intel (Award #024894) funding and by matching funding by U.C. Discovery (CAREER Award #DIG07-10227), as well as the National Science Foundation (Award #DMS-0847661)
1. Communication-Avoiding Linear Algebra

2. Randomized Spectral Divide and Conquer
 - Divide and Conquer Algorithm
 - Randomized Bisection
 - Communication Costs
 - Numerical Experiments

3. Other Optimal (Deterministic) Algorithms

4. Conclusions
Motivation

By *communication* we mean

- moving data within memory hierarchy on a sequential computer
- moving data between processors on a parallel computer

Communication is expensive, so our goal is to minimize it

- some algorithms for one-sided factorizations attain lower bounds
- need new algorithms to solve eigenvalue problems optimally
Communication Cost Model

- Time required to perform one flop: γ

- Time required to transfer one message of w words:
 \[\alpha + \beta w \]
 - in the sequential case, a message is a contiguous block of memory

- α is latency+overhead cost, βw is bandwidth cost

- Total running time of an algorithm (ignoring overlap):
 \[\alpha \cdot (\# \text{ messages}) + \beta \cdot (\# \text{ words}) + \gamma \cdot (\# \text{ flops}) \]
Matrix Multiplication Lower Bounds

- Assume $O(n^3)$ algorithm (i.e. not Strassen-like)
- Sequential case with fast memory of size M
 - lower bound on words moved between fast/slow mem:
 \[\Omega \left(\frac{n^3}{\sqrt{M}} \right) \]
 \[\text{[HK81]} \]
 - attained by blocked algorithm
- Parallel case with P processors (local memory of size M)
 - lower bound on words communicated (along critical path):
 \[\Omega \left(\frac{n^3}{P\sqrt{M}} \right) \]
 \[\text{[ITT04]} \]
- “2D” and “3D” algorithms:

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>lower bound</th>
<th>attained by</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D</td>
<td>$O\left(\frac{n^2}{P}\right)$</td>
<td>$\Omega\left(\frac{n^2}{\sqrt{P}}\right)$</td>
<td>[Can69]</td>
</tr>
<tr>
<td>3D</td>
<td>$O\left(\frac{n^2}{P^{2/3}}\right)$</td>
<td>$\Omega\left(\frac{n^2}{P^{2/3}}\right)$</td>
<td>[Joh93]</td>
</tr>
</tbody>
</table>
We extended the approach of [ITT04] to other algorithms:
- the rest of BLAS
- Cholesky, LU, QR factorizations
- Eigenvalue and SVD reductions
- sequences of algorithms (e.g. repeated matrix squaring)
- graph algorithms (e.g. all pairs shortest paths)
- to dense or sparse problems
- to sequential, hierarchical, or parallel cases

see [BDHS10] for details and proof

general lower bound:

\[
\text{# words} = \Omega \left(\frac{\text{# flops}}{\sqrt{\text{fast/local memory size}}} \right)
\]
Optimal Algorithms

Existing implementations in (Sca)LAPACK don’t attain lower bounds, but new algorithms do:

- Communication-Avoiding LU [GDX08]
 - Need to replace partial pivoting (but still stable)
 - Does $O(n^2)$ extra work

- Communication-Avoiding QR [DGHL08]
 - Need to represent output (Q) differently (architecture dependent)
 - Does $O(n^2)$ extra work
 - “Tall-skinny QR” used to factor panel

- Communication-Avoiding Rank-Revealing QR
 - Column-pivoting, but different pivot order than standard algorithm
1 Communication-Avoiding Linear Algebra

2 Randomized Spectral Divide and Conquer
 - Divide and Conquer Algorithm
 - Randomized Bisection
 - Communication Costs
 - Numerical Experiments

3 Other Optimal (Deterministic) Algorithms

4 Conclusions
Conventional algorithms for solving eigenvalue problems communicate too much
 - costs lie in reduction to condensed form and HessQR
 - these algorithms could be improved to reduce communication

Alternative: spectral divide-and-conquer approach
 - requires matrix multiplication, QR, and rank-revealing QR
 - deterministic rank-revealing QR algs also communicate too much

Randomized rank-revealing QR algorithm communicates less!

We also use randomization to choose how to divide the spectrum
Eigenvalue Algorithms on Sequential Machines

- Communication lower bounds

\[
\text{# words} = \Omega \left(\frac{n^3}{\sqrt{M}} \right) \quad \text{# messages} = \Omega \left(\frac{n^3}{M^{3/2}} \right)
\]

- Factors by which algorithms exceed lower bounds:

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>New Algorithms</th>
<th>LAPACK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td># words</td>
<td># messages</td>
</tr>
<tr>
<td>Symm Eig/SVD</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Nonsymm Eig</td>
<td></td>
<td>Optimal!</td>
</tr>
</tbody>
</table>

- M is fast memory size, n is problem size
- New algorithms have same communication complexity as QR decomposition and achieve lower bound
Communication lower bounds

\[\text{# words} = \Omega \left(\frac{n^2}{\sqrt{P}} \right) \quad \text{# messages} = \Omega \left(\sqrt{P} \right) \]

Factors by which algorithms exceed lower bounds:

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>New Algorithms</th>
<th>ScaLAPACK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td># words</td>
<td># messages</td>
</tr>
<tr>
<td>Symm Eig/SVD</td>
<td>(O(\log P))</td>
<td>(O(\log P))</td>
</tr>
<tr>
<td>Nonsymm Eig</td>
<td>Nearly optimal!</td>
<td></td>
</tr>
</tbody>
</table>

\(P \) is number of processors, \(n \) is problem size

New algorithms have same communication complexity as QR decomposition and achieve lower bound (up to polylog factors)
History of Spectral Divide and Conquer

- Ideas go back to Bulgakov, Godunov, Malyshev [BG88], [Mal89]
- Bai, Demmel, Gu [BDG97]
 - reduced to matmul, QR, generalized QR with pivoting (bug)
- Demmel, Dumitriu, Holtz [DDH07]
 - instead of QR with pivoting, use RURV (randomized URV) (no bug)
 - requires matmul and QR, no column pivoting
- Demmel, Grigori, Hoemmen, Langou [DGHL08]
 - communication-optimal QR decomposition ("CAQR")
- New communication-optimal algorithm
 - use generalized RURV for better rank-detection than [DDH07]
 - use communication-optimal implementations for matrix multiplication and QR as subroutines
 - use randomization in divide and conquer
Overview of Algorithm

One step of divide and conquer:

1. Compute \(\left(I + (A^{-1})^{2^k} \right)^{-1} \) implicitly
 - maps eigenvalues of \(A \) to 0 and 1 (roughly)

2. Compute rank-revealing decomposition to find invariant subspace

3. Output block-triangular matrix

\[
A_{\text{new}} = U^* A U = \begin{bmatrix}
A_{11} & A_{12} \\
\varepsilon & A_{22}
\end{bmatrix}
\]

- block sizes chosen to minimize norm of \(\varepsilon \)
- eigenvalues of \(A_{11} \) all lie outside unit circle, eigenvalues of \(A_{22} \) lie inside unit circle, subproblems solved recursively
- stable, but progress guaranteed only with high probability
Implicit Repeated Squaring

\[A_0 = A, \quad B_0 = I \]

Repeat

1. \[\begin{bmatrix} Q_{11} & Q_{12} \\ Q_{21} & Q_{22} \end{bmatrix} \cdot \begin{bmatrix} R_j \\ 0 \end{bmatrix} = qr \left(\begin{bmatrix} B_j \\ -A_j \end{bmatrix} \right) \]
2. \[A_{j+1} = Q_{12}^* \cdot A_j \]
3. \[B_{j+1} = Q_{22}^* \cdot B_j \]

until \(R_j \) converges

Output is \(A_k, B_k \) such that

\[A_k^{-1} B_k = \left(A^{-1} \right)^{2^k} \]
Implicit Repeated Squaring

\[A_0 = A, \quad B_0 = I \]

Repeat

1. \[
\begin{bmatrix}
Q_{11} & Q_{12} \\
Q_{21} & Q_{22}
\end{bmatrix}
\cdot
\begin{bmatrix}
R_j \\
0
\end{bmatrix}
= \text{qr}\left(\begin{bmatrix}
B_j \\
-A_j
\end{bmatrix}\right)
\]

2. \[
A_{j+1} = Q_{12}^\ast \cdot A_j
\]

3. \[
B_{j+1} = Q_{22}^\ast \cdot B_j
\]

until \(R_j \) converges

Output is \(A_k, B_k \) such that

\[
A_k^{-1} B_k = \left(A^{-1}\right)^{2^k}
\]

Next step is to compute a rank-revealing decomposition of

\[
\left(I + (A^{-1})^{2^k}\right)^{-1} = \left(I + A_k^{-1} B_k\right)^{-1} = (A_k + B_k)^{-1} A_k
\]
Randomized Rank-Revealing QR (RURV)

Use a Haar-distributed random matrix:

1. generate random matrix B with i.i.d. $N(0, 1)$ entries
2. $V \cdot R_1 = \text{qr}(B)$
3. $U \cdot R = \text{qr}(A \cdot V^*)$

so that

$$A = URV$$

where U and V are orthogonal and R is upper triangular
If $\sigma_r \sim \sigma_1$ and $\sigma_{r+1} \sim \frac{1}{\text{poly}(n)} \sigma_r$, then with high probability

\[
\sigma_{\min}(R_{11}) \geq O\left(\frac{1}{\sqrt{rn}}\right) \sigma_r
\]
\[
\sigma_{\max}(R_{22}) \leq O\left((rn)^2\right) \sigma_{r+1}
\]

- first inequality matches best deterministic URV algorithms
- second inequality is much weaker, but proof is lax (actual bound may be linear)
- repeated squaring will drive σ_r and σ_{r+1} very far apart
Generalized RURV (GRURV)

We want to compute RURV of matrices of the form $C^{-1}D$:

$$(A_k + B_k)^{-1}A_k$$

We can do it implicitly:

1. $U_2 \cdot R_2 \cdot V = \text{rurv}(D)$
2. $R_1 \cdot U_1 = \text{rq}(U_2^* \cdot C)$

so that

$$C^{-1}D = (U_2R_1U_1)^{-1}(U_2R_2V) = U_1^*(R_1^{-1}R_2)V$$

- No inverses computed (we only need the orthogonal matrix U_1)
- Computing $U_1 \cdot A \cdot U_1^*$ completes one step of divide and conquer
Generalized RURV works for arbitrary products of matrices:

\[A_1 \pm 1 \cdot A_2 \pm 1 \cdots A_k \pm 1 \]

- requires one RURV (or RULV) and \(k - 1 \) QR’s (or RQ’s)
- output is \(U(R_1 \pm 1 \cdot R_2 \pm 1 \cdots R_k \pm 1) V \)
- rank-revealing properties same as for RURV (on one matrix)

Deterministic rank-revealing QR (for one matrix) doesn’t suffice in generalized case
Choosing splitting lines

- Computing \(\left(I + (A^{-1})^{2^k} \right)^{-1} \) splits spectrum along unit circle

- Use Moebius transformation to split along any circle or line in complex plane
 - set \(A_0 = \alpha A + \beta I, B_0 = \gamma A + \delta I \)

- Continue splitting until subproblem fits
 - on one processor or
 - in fast memory

and use standard algorithms (no extra communication costs)
Randomized Bisection

Pick inner circle around center

Gershgorin bounding disc
Randomized Bisection

Choose random angle

θ
Randomized Bisection
Randomized Bisection

Choose random perpendicular in range
Randomized Bisection
“Success” means iterative process converges
- either we split the spectrum, or
- we narrow down the region containing all the eigenvalues

If the splitting line does not intersect the $(\epsilon \cdot \|A\|)$-pseudospectrum, then convergence occurs within a constant number of iterations
- number of iterations depends on smallest relative perturbation that moves an eigenvalue onto splitting line (it does not depend on n)

For the case of normal matrices, the probability of not intersecting the pseudospectrum with randomized bisection is

$$1 - O(n \cdot \epsilon)$$
Communication Upper Bound (sequential case)

- $M =$ memory size, $\gamma =$ cost of flop, $\beta =$ inverse bandwidth, $\alpha =$ latency

Assuming constant number of iterations, cost of one step of divide-and-conquer is

$$C_{D+C}(n) = \alpha \cdot O \left(\frac{n^3}{M^{3/2}} \right) + \beta \cdot O \left(\frac{n^3}{\sqrt{M}} \right) + \gamma \cdot O(n^3)$$

Assuming we split the spectrum by some fraction each time, the total cost of the entire algorithm is asymptotically the same

- same communication complexity as matrix multiplication and QR
- attains lower bound
Communication Upper Bound (parallel case)

- $P =$ number of processors, $\gamma =$ cost of flop, $\beta =$ inverse bandwidth, $\alpha =$ latency

Assuming constant number of iterations, cost of one step of divide-and-conquer is

$$C_{D+C}(n, P) = \alpha \cdot O\left(\sqrt{P \log P}\right) + \beta \cdot O\left(\frac{n^2}{\sqrt{P}} \log P\right) + \gamma \cdot O\left(\frac{n^3}{P} \log P\right)$$

By assigning disjoint subsets of processors to two subproblems after each split, subproblems can be solved in parallel yielding the same asymptotic cost for the entire algorithm

- same communication complexity as QR
- attains lower bound (to within logarithmic factors)
Numerical Experiments

One step of divide-and-conquer to split spectrum of A about unit circle:

$$A_0 = A, \quad B_0 = I$$

Repeat

1. $$\begin{bmatrix} Q_{11} & Q_{12} \\ Q_{21} & Q_{22} \end{bmatrix} \cdot \begin{bmatrix} R_j \\ 0 \end{bmatrix} = \text{qr} \left(\begin{bmatrix} B_j \\ -A_j \end{bmatrix} \right)$$

2. $$A_{j+1} = Q_{12}^* \cdot A_j$$

3. $$B_{j+1} = Q_{22}^* \cdot B_j$$

4. $$U = \text{GRURV}(A_j + B_j, A_j)$$

5. $$A_{\text{new}} = U \cdot A \cdot U^* = \begin{bmatrix} A_{11} & A_{12} \\ E_{21} & A_{22} \end{bmatrix}$$

until $$\frac{\|E_{21}\|}{\|A\|}$$ is small

$$\frac{\|E_{21}\|}{\|A\|}$$ measures backward error, shown in convergence plots
Random matrix $A = QDQ^*$
Try a tougher matrix

- Half the eigenvalues lie at distance 10^{-5} outside unit circle
- Other half of eigenvalues lie at distance 10^{-5} inside unit circle

Unit circle worst choice for splitting curve!
Try a different splitting curve

- Half the eigenvalues lie at distance 10^{-5} outside unit circle
- Other half of eigenvalues lie at distance 10^{-5} inside unit circle
1 Communication-Avoiding Linear Algebra

2 Randomized Spectral Divide and Conquer
 - Divide and Conquer Algorithm
 - Randomized Bisection
 - Communication Costs
 - Numerical Experiments

3 Other Optimal (Deterministic) Algorithms

4 Conclusions
Another approach to Symmetric/SVD case using reduction to tri-/bidiagonal form
- minimizes words moved in both parallel and sequential cases
- minimizes messages moved in parallel case (up to log factor)

SBR: Two-step reduction
1. reduce the full matrix to banded form
 - uses QR factorization and BLAS 3 - communication-optimal
2. reduce the banded matrix to tri-/bidiagonal form
 - not optimal alone, but communication dominated by first step
Initial bandwidth $b = \Theta \left(\sqrt{M} \right)$

Choose $d = c = b/2$ (at each pass) to minimize communication
Eigenvector matrix X of triangular matrix T can be computed by

$$X_{ij} = \frac{T_{ij}X_{jj} + \sum_{k=i+1}^{j-1} T_{ik}X_{kj}}{T_{jj} - T_{ii}}$$

for $i < j$ where X_{jj}’s can be arbitrary nonzeros.

- Lower bounds given by results in [BDHS10]
- Current (Sca)LAPACK algorithms solve for one eigenvector at a time (pessimal communication costs)
- New blocked algorithms (for sequential and parallel) attain lower bounds
Conclusions

- New divide-and-conquer approach communication-optimal
 - Symm/SVD, Nonsymm, and generalized problems, words and messages, sequential and parallel
 - possible large constant factor more flops than standard algorithms
 - requires randomization

- Successive Band Reduction approach communication-optimal
 - Symm/SVD cases
 - similar flop count to standard algs for values only, more for vectors

- Standard libraries not optimal - time for new algorithms
 - we have asymptotically faster (optimal) algorithms for nearly all direct linear algebra

- Current work
 - Prove lower bounds for computing Schur form
 - Develop optimal SBR parallel algorithm
 - Develop deterministic communication-optimal rank-revealing QR
Thank you!
Sequential Algorithm for **TREVC**

Algorithm 1 Blocked Iterative Algorithm

```
for j = 1 to n/b do
    for $i = j - 1$ down to 1 do
        $S = 0$
        for $k = i + 1$ to j do
            $S = S + T[i, k] \cdot X[k, j]$
        end for
        solve $T[i, i] \cdot X[i, j] + S = X[i, j] \cdot D[j, j]$ for $X[i, j]$
    end for
end for
```

- notation: $T[i, j]$ is a $b \times b$ block
- use blocksize $b = \Theta(\sqrt{M})$ and block-contiguous DS for optimality
- this algorithm ignores need for scaling to prevent under/overflow
- a recursive, cache-oblivious algorithm also achieves optimality
- LAPACK’s **TREVC** solves for one eigenvector at a time
Parallel Algorithm for **PTREVC**

- Using 2D blocked layout for T on square grid of processors, compute X with same layout
- Iterate over block diagonals, updating trailing matrix each step
 - Local computation occurs in gray: (a) and (d)
 - Communication occurs along arrows: (b) is a broadcast of X block, (c) is a nearest-neighbor pass of T block

Communication costs within log P of optimality

ScaLAPACK's PTREVC solves for one eigenvector at a time
Subproblem assignment

- Assign number of processors proportional to size of subproblem

- assuming 2D blocked layout, at most one processor owns pieces of both subproblems
- use one of the idle processors to help out
- cost of larger subproblem dominates cost of smaller subproblem
Alternate Convergence Criterion

One step of divide-and-conquer to split spectrum of A about unit circle:

$A_0 = A$, $B_0 = I$

Repeat

1. \[
\begin{bmatrix}
 Q_{11} & Q_{12} \\
 Q_{21} & Q_{22}
\end{bmatrix} \cdot \begin{bmatrix}
 R_j \\
 0
\end{bmatrix} = qr \left(\begin{bmatrix}
 B_j \\
 -A_j
\end{bmatrix} \right)
\]

2. $A_{j+1} = Q_{12}^* \cdot A_j$

3. $B_{j+1} = Q_{22}^* \cdot B_j$

until $\frac{||R_j - R_{j-1}||}{||R_{j-1}||}$ is small

4. $U = GRURV(A_j + B_j, A_j)$

5. $A_{\text{new}} = U \cdot A \cdot U^*$

cheap convergence test, we’ll refer to this as “$R\ conv$”
Normal Matrix

- Half the eigenvalues lie at distance 10^{-5} outside unit circle
- Other half of eigenvalues $< .5$ in absolute value
Non-normal Matrix with Jordan block

- Half the eigenvalues form Jordan block centered at 1.3
- Other half of eigenvalues < .5 in absolute value
Try restarting

- Half the eigenvalues form Jordan block centered at 1.3
- Other half of eigenvalues < .5 in absolute value

- Restart iteration with nearly block triangular matrix
Create a set of bulges and chase into second half of columns
Parallel SBR

- Chase a set of bulges from first half to second half of columns
Parallel SBR

- Clear a set of bulges off the end
Proof of Communication Lower Bound on $C = A \ast B$ (5/6)

cubes in black box with side lengths x, y and z
$= \text{Volume of black box}$
$= x \cdot y \cdot z$
$= (\#A\square \ast \#B\square \ast \#C\square)^{1/2}$
$= (xz \cdot zy \cdot yx)^{1/2}$

(i,k) is in “A shadow” if (i,j,k) in 3D set
(j,k) is in “B shadow” if (i,j,k) in 3D set
(i,j) is in “C shadow” if (i,j,k) in 3D set

Thm (Loomis & Whitney, 1949)
$\# \text{cubes in 3D set} = \text{Volume of 3D set}$
$\leq (\text{area}(A\text{ shadow}) \ast \text{area}(B\text{ shadow}) \ast \text{area}(C\text{ shadow})))^{1/2}$
Z. Bai, J. Demmel, and M. Gu.
An inverse free parallel spectral divide and conquer algorithm for nonsymmetric eigenproblems.

Minimizing communication in linear algebra.

Circular dichotomy of a matrix spectrum.

ScaLAPACK Users’ Guide.
Also available from http://www.netlib.org/scalapack/.

C. Bischof, B. Lang, and X. Sun.
A framework for symmetric band reduction.

L. Cannon.
A cellular computer to implement the Kalman filter algorithm.
J. Demmel, I. Dumitriu, and O. Holtz.
Fast linear algebra is stable.

J. Demmel, L. Grigori, M. Hoemmen, and J. Langou.
Communication-optimal parallel and sequential QR and LU factorizations.

L. Grigori, J. Demmel, and H. Xiang.
Communication-avoiding Gaussian elimination.
Supercomputing 08, 2008.

J. W. Hong and H. T. Kung.
I/O complexity: The red-blue pebble game.

D. Irony, S. Toledo, and A. Tiskin.
Communication lower bounds for distributed-memory matrix multiplication.

S. Lennart Johnsson.
Minimizing the communication time for matrix multiplication on multiprocessors.

A.N. Malyshev.
Computing invariant subspaces of a regular linear pencil of matrices.