Communication-Avoiding Nonsymmetric Eigensolver using Spectral Divide & Conquer

Grey Ballard1 Jim Demmel1 Ioana Dumitriu2

1UC Berkeley
2University of Washington

June 5, 2012

Research supported by Microsoft (Award #024263) and Intel (Award #024894) funding and by matching funding by U.C. Discovery (CAREER Award #DIG07-10227), as well as the National Science Foundation (Award #DMS-0847661)
Summary

Goal: solve nonsymmetric eigenproblem using only communication-efficient algorithms
 - matrix multiplication and QR decomposition

We take the approach of spectral divide & conquer
 - instead of reduction to Hessenberg and QR iteration

For communication optimality, we need randomization

Note: no Strassen in this talk!
By *communication* we mean
- moving data within memory hierarchy on a sequential computer
- moving data between processors on a parallel computer
Communication Cost Model

Measure communication in terms of *messages* and *words*

- Flop cost: γ
- Cost of message of size w words: $\alpha + \beta w$
- Total running time of an algorithm (ignoring overlap):

 $$\alpha \cdot (# \text{ messages}) + \beta \cdot (# \text{ words}) + \gamma \cdot (# \text{ flops})$$

- think of α as latency+overhead cost, β as inverse bandwidth

As flop rates continue to improve more quickly than data transfer rates, the relative cost of communication (the first two terms) grows larger
Motivation

Sequential

<table>
<thead>
<tr>
<th></th>
<th>Flops</th>
<th>Words</th>
<th>Messages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matmul</td>
<td>$O(n^3)$</td>
<td>$O\left(\frac{n^3}{\sqrt{M}}\right)$</td>
<td>$O\left(\frac{n^3}{M^{3/2}}\right)$</td>
</tr>
<tr>
<td>QR/LU/Chol</td>
<td>$O(n^3)$</td>
<td>$O\left(\frac{n^3}{\sqrt{M}}\right)$</td>
<td>$O\left(\frac{n^3}{M^{3/2}}\right)$</td>
</tr>
<tr>
<td>Sym Eig</td>
<td>$O(n^3)$</td>
<td>$?$</td>
<td>$?$</td>
</tr>
<tr>
<td>NonSym Eig</td>
<td>$O(n^3)$</td>
<td>$?$</td>
<td>$?$</td>
</tr>
</tbody>
</table>

$n =$ matrix dimension
$M =$ fast memory size

- We know how to avoid communication for matrix multiplication, one-sided factorizations, and the symmetric eigenproblem.
 - Algorithms match theoretical lower bounds.
- It’s not clear how to obtain optimal communication efficiency using standard approaches to the nonsymmetric eigenproblem.
- We will use alternative approach: spectral divide & conquer.
We know how to avoid communication for matrix multiplication, one-sided factorizations, and the symmetric eigenproblem

- algorithms match theoretical lower bounds

It’s not clear how to obtain optimal communication efficiency using standard approaches to the nonsymmetric eigenproblem

We will use alternative approach: spectral divide & conquer
History of Spectral Divide & Conquer

- Ideas go back to Bulgakov, Godunov, Malyshev [BG88], [Mal89]

- Bai, Demmel, Gu [BDG97]
 - reduced to matmul, QR, generalized QR with pivoting (bug)

- Demmel, Dumitriu, Holtz [DDH07]
 - instead of QR with pivoting, use RURV (randomized URV) (no bug)
 - requires matmul and QR, no column pivoting

- Demmel, Grigori, Hoemmen, Langou [DGHL12]
 - communication-optimal QR decomposition ("CAQR")

- New communication-optimal algorithm
 - use generalized RURV for better rank-detection than [DDH07]
 - use communication-optimal implementations for matrix multiplication and QR as subroutines
 - use randomization in divide and conquer
Overview of Algorithm

One step of divide and conquer:

1. Compute \(\left(I + (A^{-1})^{2k} \right)^{-1} \) implicitly
 - maps eigenvalues of \(A \) to 0 and 1 (roughly)
2. Compute rank-revealing decomposition to find invariant subspace
3. Output block-triangular matrix

\[
A_{\text{new}} = U^* AU = \begin{bmatrix}
A_{11} & A_{12} \\
E_{21} & A_{22}
\end{bmatrix}
\]

- block sizes chosen so that norm of \(E_{21} \) is small
- eigenvalues of \(A_{11} \) all lie outside unit circle, eigenvalues of \(A_{22} \) lie inside unit circle, subproblems \(A_{11} \) and \(A_{22} \) solved recursively
- stable, but progress guaranteed only with high probability
Implicit Repeated Squaring

\[A_0 = A, \quad B_0 = I \]

Repeat

1. \[
\begin{bmatrix}
Q_{11} & Q_{12} \\
Q_{21} & Q_{22}
\end{bmatrix}
\cdot
\begin{bmatrix}
R_j \\
0
\end{bmatrix}
= qr \left(\begin{bmatrix}
B_j \\
-A_j
\end{bmatrix} \right)
\]

2. \[A_{j+1} = Q_{12}^* \cdot A_j \]

3. \[B_{j+1} = Q_{22}^* \cdot B_j \]

until \(R_j \) converges

Output is \(A_k, B_k \) such that

\[A_k^{-1}B_k = \left(A^{-1} \right)^{2^k} \]
Implicit Repeated Squaring

\[A_0 = A, \quad B_0 = I \]

Repeat

1. \[
\begin{bmatrix}
Q_{11} & Q_{12} \\
Q_{21} & Q_{22}
\end{bmatrix}
\begin{bmatrix}
R_j \\
0
\end{bmatrix}
= \text{qr}\left(\begin{bmatrix}
B_j \\
-A_j
\end{bmatrix}\right)
\]

2. \[A_{j+1} = Q_{12}^* \cdot A_j \]

3. \[B_{j+1} = Q_{22}^* \cdot B_j \]

until \(R_j \) converges

Output is \(A_k, B_k \) such that

\[A_k^{-1}B_k = \left(A^{-1}\right)^{2^k} \]

Next step is to compute a rank-revealing decomposition of

\[
\left(I + (A^{-1})^{2^k} \right)^{-1} = \left(I + A_k^{-1}B_k \right)^{-1} = (A_k + B_k)^{-1}A_k
\]
Randomized Rank-Revealing QR (RURV)

Use a Haar-distributed random matrix:

1. generate random matrix B with i.i.d. $N(0, 1)$ entries
2. $V \cdot R_1 = \text{qr}(B)$
3. $U \cdot R = \text{qr}(A \cdot V^*)$

so that

$$A = U \cdot R \cdot V$$

where U and V are orthogonal and R is upper triangular

- this decomposition is rank-revealing with high probability
- deterministic algorithm involves column pivoting and is communication-inefficient
 - could use tournament pivoting idea
We want to compute RURV of matrices of the form $C^{-1}D$:

$$(A_k + B_k)^{-1}A_k$$

We can do it implicitly:

1. $U_2 \cdot R_2 \cdot V = \text{rurv}(D)$
2. $R_1 \cdot U_1 = \text{rq}(U_2^* \cdot C)$

so that

$$C^{-1}D = (U_2R_1U_1)^{-1}(U_2R_2V) = U_1^*(R_1^{-1}R_2)V$$

- No inverses computed (we need only the orthogonal matrix U_1)
- Computing $U_1 \cdot A \cdot U_1^*$ completes one step of divide and conquer
Overview of Algorithm

One step of divide and conquer:

1. Compute \(\left(I + (A^{-1})^{2^k} \right)^{-1} \) implicitly
 - maps eigenvalues of \(A \) to 0 and 1 (roughly)
2. Compute rank-revealing decomposition to find invariant subspace
3. Output block-triangular matrix

\[
A_{\text{new}} = U^* A U = \begin{bmatrix}
A_{11} & A_{12} \\
E_{21} & A_{22}
\end{bmatrix}
\]

- block sizes chosen so that norm of \(E_{21} \) is small
- eigenvalues of \(A_{11} \) all lie outside unit circle, eigenvalues of \(A_{22} \) lie inside unit circle, subproblems \(A_{11} \) and \(A_{22} \) solved recursively
- stable, but progress guaranteed only with high probability
Choosing splitting lines

- Computing \(\left(I + (A^{-1})^{2^k} \right)^{-1} \) splits spectrum along unit circle

- Use Moebius transformation to split along any circle or line in complex plane
 - set \(A_0 = wA + xl, B_0 = yA + zl \)

- Continue splitting until subproblem fits
 - on one processor or
 - in fast memory

and use standard algorithms (no extra communication costs)
Randomized Bisection

Goals: split spectrum or split bounding region

Pick inner circle around center

Gershgorin bounding disc
Randomized Bisection

Goals: split spectrum or split bounding region

Choose random angle \(\theta \)
Randomized Bisection

Goals: split spectrum or split bounding region
Randomized Bisection

Goals: split spectrum or split bounding region

Choose random perpendicular in range
Randomized Bisection

Goals: split spectrum or split bounding region
Probability of Success

“Success” means iterative process converges
 - either we split the spectrum, or
 - we narrow down the region containing all the eigenvalues

If the splitting line does not intersect the \((\epsilon \cdot \|A\|)-\text{pseudospectrum}\), then convergence occurs within a constant number of iterations
 - number of iterations depends on smallest relative perturbation that moves an eigenvalue onto splitting line (it does not depend on \(n\))

For the case of normal matrices, the probability of not intersecting the pseudospectrum with randomized bisection is

\[1 - O(n \cdot \epsilon) \]

(\(\epsilon\) is machine precision)
Communication Upper Bound (sequential case)

- $M =$ memory size, $\gamma =$ cost of flop, $\beta =$ inverse bandwidth, $\alpha =$ latency

Assuming constant number of iterations, cost of one step of divide-and-conquer is

$$C_{D+C}(n) = \alpha \cdot O\left(\frac{n^3}{M^{3/2}}\right) + \beta \cdot O\left(\frac{n^3}{\sqrt{M}}\right) + \gamma \cdot O(n^3)$$

Assuming we split the spectrum by some fraction each time, the total cost of the entire algorithm is asymptotically the same
- same communication complexity as matrix multiplication and QR
- attains lower bound
Communication Upper Bound (parallel case)

- $P = \#$ processors, $\gamma = $ cost of flop, $\beta = $ inverse bandwidth, $\alpha = $ latency

Assuming constant number of iterations, cost of one step of divide-and-conquer is

$$C_{D+C}(n, P) = \alpha \cdot O\left(\sqrt{P} \log^2 P\right) + \beta \cdot O\left(\frac{n^2}{\sqrt{P}} \log P\right) + \gamma \cdot O\left(\frac{n^3}{P}\right)$$

By assigning disjoint subsets of processors to two subproblems after each split, subproblems can be solved in parallel yielding the same asymptotic cost for the entire algorithm

- same communication complexity as QR
- attains lower bound (to within logarithmic factors)
Repeat

1. \[
\begin{bmatrix}
Q_{11} & Q_{12} \\
Q_{21} & Q_{22}
\end{bmatrix} \cdot \begin{bmatrix} R_j \\
0
\end{bmatrix} = \text{qr} \left(\begin{bmatrix} B_j \\
-A_j
\end{bmatrix} \right)
\]

2. \[A_{j+1} = Q_{12}^* \cdot A_j\]

3. \[B_{j+1} = Q_{22}^* \cdot B_j\]

until \(\frac{\|R_j - R_{j-1}\|}{\|R_{j-1}\|}\) is small

4. \[U = \text{GRURV}(A_j + B_j, A_j)\]

5. \[A_{\text{new}} = U \cdot A \cdot U^* = \begin{bmatrix} A_{11} & A_{12} \\
E_{21} & A_{22}
\end{bmatrix}\]

check that \(\frac{\|E_{21}\|}{\|A\|}\) is small

Repeat

1. \[
\begin{bmatrix}
Q_{11} & Q_{12} \\
Q_{21} & Q_{22}
\end{bmatrix} \cdot \begin{bmatrix} R_j \\
0
\end{bmatrix} = \text{qr} \left(\begin{bmatrix} B_j \\
-A_j
\end{bmatrix} \right)
\]

2. \[A_{j+1} = Q_{12}^* \cdot A_j\]

3. \[B_{j+1} = Q_{22}^* \cdot B_j\]

4. \[U = \text{GRURV}(A_j + B_j, A_j)\]

5. \[A_{\text{new}} = U \cdot A \cdot U^* = \begin{bmatrix} A_{11} & A_{12} \\
E_{21} & A_{22}
\end{bmatrix}\]

until \(\frac{\|E_{21}\|}{\|A\|}\) is small

\(R_{\text{conv}} = \frac{\|R_j - R_{j-1}\|}{\|R_{j-1}\|}\) is cheaper to compute \(E_{\text{conv}} = \frac{\|E_{21}\|}{\|A\|}\) is relative backward error
Random matrix $A = \text{randn}(50)$

![Eigenvalues plot](image)

![Convergence plot](image)
Try a tougher matrix

- Half the eigenvalues have real part 10^{-5}
- Other half of eigenvalues have real part -10^{-5}
- Normal matrix

Imaginary axis worst choice for splitting line
Try a different splitting curve

- Half the eigenvalues have real part 10^{-5}
- Other half of eigenvalues have real part -10^{-5}
- Normal matrix

![Eigenvalues Plot](image1)

![Convergence Plot](image2)
Half the eigenvalues lie at distance 10^{-5} outside unit circle
Other half of eigenvalues $< .5$ in absolute value
Normal matrix
Convergence for Normal Matrices

Distance to splitting line

<table>
<thead>
<tr>
<th>Dimension</th>
<th>1e+00</th>
<th>1e-02</th>
<th>1e-04</th>
<th>1e-06</th>
<th>1e-08</th>
<th>1e-10</th>
<th>1e-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>8</td>
<td>15</td>
<td>21</td>
<td>28</td>
<td>35</td>
<td>41</td>
<td>48</td>
</tr>
<tr>
<td>100</td>
<td>8</td>
<td>15</td>
<td>21</td>
<td>28</td>
<td>35</td>
<td>41</td>
<td>48</td>
</tr>
<tr>
<td>500</td>
<td>9</td>
<td>15</td>
<td>22</td>
<td>28</td>
<td>35</td>
<td>42</td>
<td>48</td>
</tr>
<tr>
<td>1000</td>
<td>9</td>
<td>15</td>
<td>22</td>
<td>28</td>
<td>35</td>
<td>42</td>
<td>48</td>
</tr>
<tr>
<td>5000</td>
<td>10</td>
<td>15</td>
<td>22</td>
<td>30</td>
<td>35</td>
<td>42</td>
<td>49</td>
</tr>
<tr>
<td>10000</td>
<td>10</td>
<td>15</td>
<td>22</td>
<td>30</td>
<td>35</td>
<td>42</td>
<td>49</td>
</tr>
</tbody>
</table>

Table: Number of iterations to convergence for normal matrices

- Number of iterations to convergence depends on distance between the splitting line and the nearest eigenvalue
 - not on matrix dimension
- In these experiments, all eigenvalues are at specified distance from splitting line (and all eigenvalues are well-conditioned)
- Convergence means relative backward error of $O(n \cdot \epsilon)$
Conclusions / Summary

- New divide-and-conquer approach communication-optimal
 - minimizes words and messages, in sequential and parallel
 - constant factor more flops than standard algorithms
 - requires randomization

- Convergence depends on distance of splitting line to eigenvalues

- Progress involves
 - splitting the spectrum (reducing the problem size) or
 - splitting the complex plane (localizing the eigenvalues)

- Stability is guaranteed, progress occurs with high probability
Thank You!

Please contact me with questions!
ballard@cs.berkeley.edu
http://www.eecs.berkeley.edu/~ballard

Find links to papers and other resources at the BEBOP webpage:
http://bebop.cs.berkeley.edu/
Parallel subproblem assignment

- Assign number of processors proportional to size of subproblem

- Assuming 2D blocked layout, at most one processor owns pieces of both subproblems
- Use one of the idle processors to help out
- Cost of larger subproblem dominates cost of smaller subproblem
Convergence for Non-normal Matrices

Distance to splitting line

<table>
<thead>
<tr>
<th>Condition #</th>
<th>$1.0e+00$</th>
<th>$1.0e-02$</th>
<th>$1.0e-04$</th>
<th>$1.0e-06$</th>
<th>$1.0e-08$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0e+00</td>
<td>8</td>
<td>5e-15</td>
<td>15</td>
<td>21</td>
<td>2e-14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27</td>
<td>2e-13</td>
</tr>
<tr>
<td>1.0e+02</td>
<td>8</td>
<td>6e-16</td>
<td>15</td>
<td>21</td>
<td>2e-14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27</td>
<td>2e-13</td>
</tr>
<tr>
<td>1.0e+04</td>
<td>9</td>
<td>2e-13</td>
<td>14</td>
<td>5e-13</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28</td>
<td>2e-12</td>
</tr>
<tr>
<td>1.0e+06</td>
<td>9</td>
<td>9e-12</td>
<td>14</td>
<td>4e-11</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>2e-10</td>
</tr>
<tr>
<td>1.0e+08</td>
<td>9</td>
<td>7e-10</td>
<td>16</td>
<td>9e-09</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>8e-09</td>
</tr>
</tbody>
</table>

Table: Number of iterations to convergence and relative backward error after convergence for non-normal matrices ($n = 100$)

- In these experiments, all eigenvalues are at specified distance from splitting line and one eigenvalue has specified condition #
- Relative backward error is measured by $\frac{\|E_{21}\|}{\|A\|}$
- In case of large error after convergence, can try restarting
Non-normal Matrix with Jordan block

- Half the eigenvalues form Jordan block at 1.3
- Other half of eigenvalues $< .5$ in absolute value

![Eigenvalues, n=32](image)

![Convergence Plot](image)
Try restarting

- Half the eigenvalues form Jordan block centered at 1.3
- Other half of eigenvalues $< .5$ in absolute value

![Eigenvalues, n=32](image)

![Convergence Plot](image)

- Restart iteration with nearly block triangular matrix
If $\frac{\sigma_1}{\sigma_r} = O(1)$ and $\frac{\sigma_r}{\sigma_{r+1}} = \Omega(n)$, then with high probability

$$\sigma_{\text{min}}(R_{11}) \geq \Omega\left(\frac{1}{\sqrt{rn}}\right) \sigma_r$$

$$\sigma_{\text{max}}(R_{22}) \leq O\left((rn)^2\right) \sigma_{r+1}$$

- first inequality matches best deterministic URV algorithms
- second inequality is much weaker, but proof is lax (actual bound may be linear)
- repeated squaring will drive σ_r and σ_{r+1} very far apart
Generalized RURV works for arbitrary products of matrices:

\[A_1 \pm 1 \cdot A_2 \pm 1 \cdots A_k \pm 1 \]

- requires one RURV (or RULV) and \(k - 1 \) QR’s (or RQ’s)
- output is \(U(R_1 \pm 1 \cdot R_2 \pm 1 \cdots R_k \pm 1) V \)
- rank-revealing properties same as for RURV (on one matrix)

Deterministic rank-revealing QR (for one matrix) doesn’t suffice in generalized case
Sequential Algorithm for TREVC

Algorithm 1 Blocked Iterative Algorithm

\[
\text{for } j = 1 \text{ to } n/b \text{ do} \\
\quad \text{solve } T[j, j] \cdot X[j, j] = X[j, j] \cdot D[j, j] \text{ for } X[j, j] \\
\quad \text{for } i = j - 1 \text{ down to } 1 \text{ do} \\
\quad \quad S = 0 \\
\quad \quad \text{for } k = i + 1 \text{ to } j \text{ do} \\
\quad \quad \quad S = S + T[i, k] \cdot X[k, j] \\
\quad \quad \text{end for} \\
\quad \quad \text{solve } T[i, i] \cdot X[i, j] + S = X[i, j] \cdot D[j, j] \text{ for } X[i, j] \\
\quad \text{end for} \\
\text{end for}
\]

- notation: \(T[i, j] \) is a \(b \times b \) block
- use blocksize \(b = \Theta(\sqrt{M}) \) and block-contiguous DS for optimality
- this algorithm ignores need for scaling to prevent under/overflow
- a recursive, cache-oblivious algorithm also achieves optimality
- LAPACK’s TREVC solves for one eigenvector at a time
Parallel Algorithm for PTREVC

- Using 2D blocked layout for T on square grid of processors, compute X with same layout
- Iterate over block diagonals, updating trailing matrix each step
 - local computation occurs in gray: (a) and (d)
 - communication occurs along arrows: (b) is a broadcast of X block, (c) is a nearest-neighbor pass of T block

Communication costs within log P of optimality

ScaLAPACK’s PTREVC solves for one eigenvector at a time
Z. Bai, J. Demmel, and M. Gu.
An inverse free parallel spectral divide and conquer algorithm for nonsymmetric eigenproblems.

Circular dichotomy of a matrix spectrum.

J. Demmel, I. Dumitriu, and O. Holtz.
Fast linear algebra is stable.

J. Demmel, L. Grigori, M. Hoemmen, and J. Langou.
Communication-optimal parallel and sequential QR and LU factorizations.
To appear.

A.N. Malyshev.
Computing invariant subspaces of a regular linear pencil of matrices.