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Abstract—In this paper we motivate the need for complex-
ity based design for performing joint iterative equalization
and decoding. This joint iterative process, which requires
the exchange of soft information, incurs a huge complexity
increase over hard-decision based algorithms. We introduce
complexity as a design parameter and provide two different
methodologies. The first approach is a combination of SOVA
and DFSE, and is called soft-output DFSE (SO-DFSE). The
second approach, called soft-decision DFSE (SD-DFSE) gen-
eralizes the notion of reliabilies to soft-decisions through the
use of appropriately chosen functions. By varying the design
parameters in both approaches, the module can range from
being as simple as a soft output DFE to being as complex
as a SOVA or APP. We conclude by presenting performance
curves of iterative algorithms that utilize these modules.

I. INTRODUCTION

Joint Iterative Equalization and Decoding, a concept
first presented as turbo equalization in [1}, models the
channel as a time varying convolutional code and performs
iterative decoding by passing reliability information be-
tween two soft-output modules (which we shall call “mod-
ules” or “algorithms” interchangeably in the rest of this
paper)(Figure 2), one functioning as an equalization and
the other as a decoding module. The soft-output modules
used by most researchers to this end are either Soft Out-
put Viterbi Algorithm (SOVA) modules (2] or a-posteriori
probability (APP) modules based on the BCJR algorithm
[1]. The complexity and performance of these two mod-
ules are compared in {3]. This technique of performing
iterative decoding using SOVA modules or BCJR based
APP modules shows excellent performance improvements
over non-iterative hard decision schemes, but it poses chal-
lenges in implementation since it leads to a huge increase in
computational complexity and storage requirements’ over
hard decision algorithms. Table I (from [4]) provides a con-
crete measure of this complexity increase. Note that the
complexity of SOVA is roughly twice that of the Viterbi
algorithm [5]. Thus, If the number of iterations performed
is M, then Table I and [5] indicate that present day iter-
ative algorithms require a complexity increase of at least
2M. This sharp increase in power consumption and stor-
age requirements at the receiver makes their usage difficult
on the downlink in present day wireless systems.

Although low complexity soft-output algorithms are rel-
atively few, low complexity solutions to the conventional
hard decision Viterbi algorithm, called the decision feed-

1this increase is when they are implemented digitally
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Method | Delay | Products | Sums | Memory

Viterbi | D 2N.N; N.N; | D.N

APP K 4ANN; 2N.Nr | > K.N;
TABLE I

COMPLEXITY COMPARISON OF VITERBI AND BCJR BASED APP,
WHERE D MINIMUM DELAY , N NUMBER OF STATES, K BLOCK
LENGTH AND Ny IS THE CARDINALITY OF THE INPUT ALPHABET.

back sequence estimation (DFSE) algorithms have been
proposed in [6], [7]. In DFSE, a part of the channel im-
pulse response is taken as the trellis definition, while the
remaining ISI is removed by a separate decision feedback
for each state. Depending on the length of the part of the
channel response that is taken as the trellis definition, the
DFSE can range from being the same as a zero forcing de-
cision feedback equalizer (DFE) to the same as the Viterbi
Algorithm operating on the whole trellis.

A similar algorithm has also been proposed for decod-
ing of binary convolutional codes on AWGN channels [8].
Previously, decision feedback structures (like DFSEs) have
been used primarily in the area of equalization. The use
of DFSE for decoding of convolutional codes introduces a
new concept - that convolutional and trellis encoders can be
looked at as “controlled ISI” introduced by the transmitter.
Thus “equalizers” can be built for coded systems that act
as decoders. In this paper, we shall use this new concept
while constructing our new low complexity decoders.

Various papers have addressed the problem of combining
low complexity equalizers with decoders. In [9], a combi-
nation of reduced-state sequence estimator (RSSE) as the
channel equalizer and Viterbi decoder is proposed. In {10]
and [11], DFEs are used as channel equalizers and are com-
bined with decoders by using the notion of tentative or soft
decisions for feedback. However, these techniques are non-
iterative. In [12], turbo equalization using DFEs as equal-
izers and hard decision Viterbi algorithm as the decoder is
proposed. However, iterative decoding using low complex-
ity soft-decision modules both as the equalizer and decoder
are yet to be studied in detail. In this paper, we present
two different approaches to the problem of obtaining mod-
ules that generate soft-outputs and allow complexity to be
a design parameter. In both approaches, our iterative algo-
rithms employ modules that can range from being as high
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as that of an APP module to as low as the soft-output DFE
algorithm. We term these soft DFSE (SDFSE) modules.
For our first approach, we show that both the APP [1]
and the SOVA [2] algorithms can be suitably modified and
combined with the DFSE algorithm in [7). We call SDFSEs
obtained thus as soft-output DFSEs or as SO-DFSEs.

Next, we observe that the notion of soft-output presently
used by most researchers is restricted to that of “reliabil-
ities”, i.e. probability ratios. in the second approach, we
generalize them to “soft-decisions”, where the output of
these modules is some continuously differentiable function
of their inputs. This function can be chosen in different
ways [12]. We call these SDFSEs as soft-decision DFSEs
or as SD-DFSEs. Lastly, we explore the combination on
soft-output and hard-output modules in iterative decod-
ing.

The remainder of this paper is organized as follows. In
the next section we present the system model. In Section
III, we present an overview of the DFSE and the SOVA
algorithms. In Section IV, we present soft-output DFSEs,
while in Section V we present soft-decision DFSEs. In Sec-
tion VI, we present some simulation results and in Section

" VII we conclude the paper.

II. SysTEM MODEL

‘We use P; to denote the a-priori probability of a variable
z. If = is binary, we use L, to denote its reliability defined
as 10g[Plz=41)/ Ple=-1)]-

‘We consider a discrete time transmission model as shown
in Figure 1. Since the timing, in terms of number of uses
per second of the encoder and channel may differ, we use
k to denote the time index for the encoder and t to de-
note the time index of the channel. The source {dx} are
encoded by a convolutional encoder of memory ¢. The en-
coded bits {cx} are then interleaved (using an interleaver
denoted as 7 in the Figure 1). These interleaved sym-
bols {z;:} are transmitted through an Inter Symbol Inter-
ference (ISI) channel with a finite length impulse response
h = {hg, hy,... ,h,} with output {z;}. We assume di,cx
to be vectors with binary elements drawn from {—1,+1}
and that z; € {—1,+1}. Note that z; need not be binary
in general. Mathematically, we have

,
2z = E Te—ihi + e

i=1

The channel is assumed to have additive circularly sym-
metric complex Gaussian noise with variance o2. This
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sampled signal is now processed by an iterative receiver
as shown in Figure 2. In Figure 2, the soft-output sym-
bol detector is a soft-output module that is dedicated to
“equalizing” the channel, i.e., to reversing the ill-effects of
the ISI, while the soft-output channel decoder is dedicated
to decoding the convolutional code. After performing many
iterations, hard decisions will be made on the soft-output
of the channel decoder to obtain the decoded bits.

Throughout this paper, we assume that the receiver has
perfect channel state information at all time (perfect RSI),
i.e., knows h. Also, we assume that the transmitter has
no knowledge of the channel. This completes the system
model description. In the next section, we provide the
necessary background that helps understand the new al-
gorithms presented later in this paper.

Soft-output Soft-output
Symbol 7} ' Channel _
Detector Decoder  |—

Decoded Data
Fig. 2. Joint Iterative Equalizer and Decoder

III. BACKGROUND : DFSE, SOVA aAnD APP
ALGORITHMS

As we are introducing algorithms that have applications
as either equalization or decoding modules, we shall use
{y:} to denote the input and {u;} to denote the output
of some module trying to reverse the effects of an en-
coder/channel of memory u. Thus, for a decoding module,
i = k, yx is a noisy version of ci, uy is the estimate of di,
and p = ¢ while for the equalization module ¢ = ¢, y; = z,,
ug is an estimate of z; and p = 1.

A. DFSE

First, we provide a brief description of the DFSE algo-
rithm in [7]. The DFSE permits us to choose the desired
complexity by choosing the trellis size? to be 27, where
0 < v < pis a design parameter. Once < is chosen, we use
Ui_1,..- Ui~y as the trellis state, and the DFSE recursion
proceeds as follows:

The DFSE Algorithm (7]

1. At time instant ¢ — 1, associate each state in the trellis
diagram with the best path leading to that state, the metric
of the best path and an estimate of uj_,—1,... , Ui—p-

2. At time i, for each previous-state next-state pair, we
compute the branch metric as 3 ; |y;—:|, where §; is either
the output of the encoder with u,... ,u;—, as the input or
equals 3°%_, u;—jh; as the case may be. For this, we derive
Ui, . . , Ui— from the state-pair and w;—y—1,--. , Ui—, from
the estimates associated with the previous-state.

2The complexity of any equalization algorithm is proportional to
the trellis size
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3. Using the branch metric we compute the path metric for
all paths leading to a state s and select the path with the
minimum path metric (exactly the same as add compare
select in Viterbi algorithm).

4. Based on the path chosen, choose an estimate
Uiy .- , Ui—py1 to be associated with the state s. O

B. SOvVA

 Next, we provide an outline of SOVA. Since this algo-
rithm is very well known, and [13] an excellent reference for
it, we shall not describe its steps here, but refer to steps in
the algorithm in [13] when the need arises. Assuming the
simple case where trellis has two paths ending at each node,
and that the Viterbi algorithm (VA) has a decision delay
of §, we consider the metrics M; and M,, My < M, of the
two paths that meet at any state s; at time . This met-
ric is computed using the channel information, the channel
state diagram, and a-priors reliabilities on the input {u;}.
Denoting (1 + eM2~1)™ by p, we update the reliabilities
L,,; of u; at those places j where the two paths differ as
Ly;; + Ly, ;(1—p) + (1= Ly, ;)p. Thus, the SOVA algo-
rithm generates reliability values on the input symbols as
its output.

C. APP

The APP algorithm is very well known, and also, [4] is
an excellent reference on it. Hence, we shall only outline
the algorithm. We compute state dependent parameters
a;(s) and B;(s) using forward and backward recursions:

ai(s) = Y ai-1(s2)P(ui(e))P(uile))

e:gl=s

Bi(s)= Y Bira(s?) + Plui(e)P(yi(e)

e:sl=s

where P denotes the input a-priori probabilities, si the
starting state and s/ the ending state of edge e. Next, we
find the extrinsic information by

e Dew, ;=a{0i-1(88)P(us) P(y:)Bi(s])}

e P(u;,; = z)
pe Py gmal@i-1(2)P(u) P(y:)Bi(s])}
vas=e P(yi; =7)

Note that we can use probabilities and reliabilities for bi-
nary variables interchangeably using the transformations
presented in [13]. In the next section, we present the soft-
output DFSE algorithm.

1V. THE SoFT-OuTPUT DFSE ALGORITHM

As mentioned in Section I, the Soft-output DFSE mod-
ule is designed to be a low complexity version of SOVA and
BCJR based APP modules, and like them, generates reli-
abilities as its output. First, we present the SOVA based
SO-DFSE algorithm.

0-7803-7484-3/02/$17.00 ©2002 1EEE.

A. SOVA based SO-DFSE Algorithm

1. The desired complexity level for the algorithm is fixed
by choosing the trellis size 27. Between time instants ¢ — 1
and i, construct a trellis section using %;_j, ... u;_, for the
trellis definition. This trellis section is referred to as the
reduced trellis.

2. At time instant i — 1, associate with each state in the
reduced trellis with the best path leading to that state, the
metric of the best path and an estimate of u;_y—1,... ,%i—p
(same step as DFSE).

3. At time 7, we obtain the metric associated with each
previous state next state pair in the reduced trellis as y;3; —
L,,/2 plus the path metric of the previous state at time
i — 1. As before, §; is obtained by combining the state
information u;, . .. u;_y and the estimates u;—y—1,-.- , %i—p
associated with the state. Note that the metric used in this
step is identical to that in SOVA ([13]), while the process
employed to obtain §; is identical to that used in DFSE.
4. Perform an add-compare select at each state in the re-
duced trellis at time 7. This step is common to the Viterbi,
SOVA, DFSE and the SO-DFSE algorithms.

5. Perform either the trace-back or the stack register up-
dation techniques used in SOVA [13] to update the values
of L,, , which are the desired soft-outputs of this module.O
In order to perform iterative equalization and decoding, we
must obtain extrinsic information from the {L,,} in order
to be interleaved and input to the next module as a-priori
information. This procedure of computing the extrinsic
information {L } is identical to SOVA and hence is not
explained further. Next, we explain how this SO-DFSE
algorithm can be used to function as either an equalization
or as a decoding module.

B. SO-DFSE as an Equalizer Module

For the SO-DFSE equalizer, the desired inputs to the
module are the received symbols z;, the channel state h
and the a-priori reliability information on the interleaved
coded bits Lg , while the output is the updated reliability
information on the interleaved coded bits L,.

C. SO-DFSE as a Decoder Module

For the SO-DFSE decoder module, the desired inputs are
noisy coded bits (denoted 7, the encoder state diagram,
and the a-priori information L7 , while the output is the
updated reliability information on the input L4 . Note
that there is an incompatibility between the inputs and
the outputs of the equalizer and decoder modules. To make
them compatible, we need to perform some post-processing
on the output of the equalizer, and to modify the decoder
module.

C.1 Post-Processing the Output of the SO-DFSE equalizer
module

We use the extrinsic information to generate r; We
model r as ¢g +nc[k], where n.[k] is Gaussian and has the
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same noise variance 02 as the additive Gaussian noise in
the system model (Section II). This is a valid assumption,
since it is equivalent to assuming that the equalizer mod-
ule has perfectly equalized the channel. Since the extrinsic
information is designed to be the a-prior: information for
the next iteration, it can be written as

P(r, = +1)

e = ———————
L, =log Plre =-1)

1)

This, with the Gaussian assumption gives us

T = O'ZL;I/Z

)
C.2 Obtaining L, instead of Ly,

The output desired from the SO-DFSE decoding algo-
rithm is reliability information on the coded symbols, L, ,
while the SO-DFSE algorithm outputs Lg,. We generate
L., by using the updation L, ; - L, ;(1-p)+(1-Le, ;)p
wherever the two paths differ in ¢;. We derive extrinsic in-
formation Lg{k] from L., interleave it and provide it to
the equalizer as a-prior: information. This completes our
discussion of the SO-DFSE algorithm.

Note that the incompatibility problems arise because the
SOVA and the SO-DFSE modules as presented in [13] and
in Algorithm IV-A) respectively, are designed to work as
such for parallel concatenated systems.

D. APP based SO-DFSE Algorithm

1. Pick a reduced trellis of size 27.

2. At time —1, associate with each state s o;-1(s), Bi~1(s)
(Same as APP). In addition, associate with each state s
estimates of Uj—y—1,... , Yi—p-

3. Generate a;(s'), B:(s') and the extrinsic probabilities as
done in the APP algorithm (given in Section III-C.

4. Use the MAP rule to obtain an estimate of u;.

The APP based SO-DFSE algorithm has the same output
as the APP alogirithm, and hence can be used for equal-
ization and decoding modules in the same manner as illus-
trated in [1].

V. THE Sort-DECISION DFSE ALGORITHM

In most of the references cited above, the term soft-
output has been used to refer to a probabilistic value. The
SOVA algorithm, for instance, generates such a reliability
value. However, soft information can in general be some
real (unquantized) number that characterizes the input,
which we term the “soft-decision”. In the special case of
DFEs, a notion of soft-output other than that of “reliabil-
ity” has already been developed in [12]. This notion was
developed by replacing the the traditionally used hard lim-
iter in the DFE by another non-linear device that has real
values as outputs. This device is picked based on either the
MMSE criterion or a minimum BER criterion.

The same idea can be generalized to generate soft-
decisions for the DFSE algorithm, and in fact for the

0-7803-7484-3/02/$17.00 ©2002 IEEE.

Viterbi algorithm. We use the same notation here as de-
veloped in Section IIL.

A. The SD-DFSE Algorithm

1. Choose a desired complexity level by choosing the trellis
size 27(< 2* and a decision delay § >> p.

2. At time instant i, associate u;—y—1,... ,u;—, With each
state in the reduced trellis. (Same as DFSE)

3. Perform an add-compare-select operation for each state
at time i + 1 using f(y; — Jx—s) as the metric, where f is
any continuous function. If f is the L? norm, then this
metric is identical to the metric in the DFSE algorithm.
4. Retrace your algorithm to time ¢ — §. Assuming only
one path survives, use hi(u;—s + h2(y; — fr—s) as the soft
decision on u(i—delta), where h; and h, are suitably chosen
functions. O

Note that a DFE is when é = 0, h; is the signum function
and h; is the identity function, while the DFSE is when h;
is the identity function and ho the null function.

B. Special Case: Soft Decision DFE decoders

Soft decision DFEs have been previously constructed as
equalizers [12]. Here, we construct soft decision DFEs as
decoders by using the analytic expression for encoders in-
troduced in {14]. The output of an encoder can be writ-
ten in terms of the input as some non-linear function
¢k = hi(dk,dr~1,-- - ,dk—phi). In many cases, this enables
us to rewrite di as ho(ck,dk—1,- .. ,dk—g). Thus, if we pos-
sess a noisy estimate of ¢k, say 7, then we can estimate
di as ho(rk,dk—1,--- ,dk_¢). This method is further illus-
trated by the example in the next section.

VI. SIMULATION RESULTS

As an example of the SO-DFSE algorithm, we consider
a system where the transmitter has a rate 1/2 encoder
with octal representation (23,35) and a 64 x 64 block inter-
leaver. The channel has a constant impulse response given
by h = [0.671, 0.5, 0.387,0.316, 0.224] (identical to the ex-
ample in [1]) which is known to the receiver. We compare
the performance results obtained by using APP modules
at both the equalizer and decoder with the performance
of a 4-state SOVA based SO-DFSE equalizer and a 4-state
APP based SO-DFSE decoder module. We compare their
performance with that obtained using hard decision non-
iterative equalization and decoding. Figure 3 shows our
results.

Next we provide an example for the second approach,
i.e. where we utilize soft-decisions instead of reliabili-
ties. We consider a transmitter to be a TCM encoder
of memory length 2 with analytic representation given by
F(b1,b2,b3) = by — 2b, b3, an interleaver of size 96, and bi-
nary modulation. We consider a constant channel, where
the channel combined with the receiver feed-forward filter
has coefficients h = [1 0.05 0.6 — 0.27 0.03 0.12 0.22]. We
also assume perfect side information at the receiver. We
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wish to design an iterative processor at this point that has
two SDDFE modules as its components. SDDFEs are of
two types, the first type use soft-decisions in their feedback,
and the second type use hard decisions. We consider three
different combinations of these for our simulations:

1. The equalizer-DFE uses hard decision feedback and
passes hard decisions to the decoder-DFE, while the en-
coder uses hard decision feedback but passes soft informa-
tion to the equalizer.

2. The equalizer and decoder use hard decision feedback,
but exchange soft information.

3. The equalizer-DFE uses soft decision feedback and ex-
changes soft information with the decoder, and the decoder
uses hard decision feedback.

The performance of these three schemes is plotted in
Figure 4. Their performance is compared with that of a
DFE equalizer Viterbi decoder combination. In this figure,
we observe that the soft DFE case outperforms all the other
cases, and that the gap between the soft-DFE case and the
DFE-Viterbi case reduces with increasing SNR.

VII. CONCLUSIONS

In this paper, we point out that although the presently
known iterative decoding algorithms perform much bet-
ter than nonp-iterative ones, they are much more complex.
We obtain two different classes of soft-output algorithms,
where both classes allow a designer to pick the desired com-
plexity level, at the cost of performance. The first class
is termed the SO-DFSE algorithms, whose performance
is shown to be in between that of APP/SOVA based al-
gorithms and the non-iterative ones. The second class is
termed the SD-DFSE algorithms. These are obtained by
generalizing the notion of soft-output from reliabilities to
“soft-decisions”. The performance of a special case of these,
the soft-decision DFE is also presented in this paper.
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