Errata: Soft X-Rays and Extreme Ultraviolet Radiation / David Attwood

(April 2009)

Page \#	Corrections	Where
7	bonds \rightarrow bands	1st sentence
9	$1 / \mathrm{e}^{\mathrm{x}} \rightarrow 1 / \mathrm{e}^{\rho \mu \mathrm{x}}$ (Fig. 1.8)	Fig. 1.8e
17	Add $\mathrm{L}_{\beta_{2}}\left(\mathrm{~N}_{5}\right.$ to $\left.\mathrm{L}_{3}\right)$; remove $\mathrm{L}_{\beta_{1}}$ (historically correct, but confusing)	Fig. 1.11
50	$(2.71) \rightarrow(2.71 \mathrm{a})$	renumber equation
50	(2.72) \rightarrow (2.71b)	renumber equation
67	$\|\mathbf{k}\|=\left\|\mathbf{k}^{\prime \prime}\right\|=\omega / \mathbf{c}$	eq. 3.31
74	$\left(\begin{array}{ll} & \theta_{\mathrm{c}}\end{array}\right) \rightarrow\left(\begin{array}{ll}\theta & \theta_{\mathrm{c}}\end{array}\right)$	4 lines below eq. 3.50
75	(3.51)	boxed equation
90	subscript \rightarrow superscript	below eq. for $\mathrm{f}^{0}(\omega)$
99	interference transition \rightarrow interface transition	Fig. 4.1 caption, 5th sentence
101	(4.5a) \rightarrow (4.4b)	1 st sent. below eq. 4.4 b
101	Remove right-most $\sqrt{ }$ sign	footnote
102	Table $1.4 \rightarrow$ the periodic Table of the Elements	(pg. 102) end of 1st para.
103	(continued from above) on the inside back cover	(pg. 103) below eg. 4.8
106	observed \rightarrow theoretical	1st sentence
123	(5.80), (5.82), (5.85)	wiggler eg. \#s
131	Appendix B \rightarrow Appendix D. 1	1st sentence
134	ϕ-dependence $\rightarrow \psi$-dependence	para. above eq. 5.8
135	correct magnet arrows	Fig. 5.8
148	5.3.3 \rightarrow 5.3.2	1 st sentence
154	$J_{n}(x)=\ldots(x / 2)^{n+2 s}$	below eq. 5.40a
161	$P_{T, 1} \rightarrow \bar{P}_{T, 1}$ (two places)	eqs. 5.50 a and 5.50 b
162	(5.51b) \rightarrow (5.51) (two places)	above and below eq. 5.52
168	$B_{\Delta \omega / \omega}(0) \rightarrow \bar{B}_{\Delta \omega / \omega}(0)$	eq. 5.65
175	$\gamma^{*} \omega_{u}{ }^{l} \rightarrow \gamma^{*} \omega_{u}$	above eq. 5.71
183	$P_{T} \rightarrow \bar{P}_{T}$ (two places)	eqs. 5.85 a and 5.85 b
183	$1.90 \times 10^{-6}(\mathrm{~W}) \rightarrow\left(1.90 \times 10^{-6} \mathrm{~W}\right)$	eq. 5.85 b
184	(5.76b) \rightarrow (5.7b)	below eq. 5.88b
189	$1.6 \rightarrow 1.16$	footnote
196	Larmor radius*	4th sent. below eq. 6.8
196	*See pg. 280 footnote for practical units	
198	$\partial\left(\mathrm{r}-\mathrm{r}_{\mathrm{i}}\right) / \partial \mathrm{r}_{\mathrm{i}} \rightarrow \partial \delta\left(\mathrm{r}-\mathrm{r}_{\mathrm{i}}\right) / \partial \mathrm{r}_{\mathrm{i}}$	middle of page
198	Appendix B \rightarrow Appendix D. 7	1 st sentence \& middle of page
205	$\partial \mathrm{ne} / \partial \mathrm{t}+\nabla \cdot\left(\mathrm{n}_{\mathrm{e}} \mathbf{v}\right)=0$	eq. 6.40

Page \#	Corrections	Where
208	$\widetilde{\mathbf{v}}^{2} \equiv \widetilde{\mathbf{v}} \cdot \widetilde{\mathbf{v}} \rightarrow \widetilde{\mathbf{v}}^{2} \equiv \widetilde{\mathbf{v}} \cdot \widetilde{\mathbf{v}}$	2 nd sent. below eq. 6.53
209	Replace with $\mathbb{P}_{j}=m n_{j} \overline{\widetilde{\mathrm{v}}^{2}} / 3 \quad \mathbf{1}=\mathrm{P}_{j} \mathbf{1}$	eq. 6.57
211	Eq. $6.60 \mathrm{~b} \rightarrow$ Eq. 6.60 a	3rd line below 6.64
211	... so that for a one-dimensional plasma ...	Just above Eq. 6.61
212	$n_{i}=n_{i 0} e^{-x / v_{\exp } t}$	Eq. 6.72
213	..., a 1 keV plasma of Ne-like titanium ions with an average charge state of $\mathrm{Z}=+12$ will expand at a velocity of approximately $0.20 \mu \mathrm{~m} / \mathrm{ps}$.	Sentence below eq. 6.73
215	$\omega_{r}+\mathrm{i} \omega_{i}$	last line above eq.6.85
220	$\nabla n_{\mathrm{o}} \rightarrow \nabla n_{\mathrm{e}}$	eq. 6.102
224	(6.18b) \rightarrow (6.118b)	boxed eq. at top of page
225	$e / \mathrm{cm}^{2} \rightarrow e / \mathrm{cm}^{3}$	last line
226	$N_{D} \simeq 3.4 \times 10^{3} \rightarrow N_{D} \simeq 2.4 \times 10^{3}$	1st para., 3rd line
226	$v_{e i} / \omega_{p} \simeq 2.4 \times 10^{-3} \rightarrow v_{e i} / \omega_{p} \simeq 3.4 \times 10^{-3}$	1st para., 3rd line
226	$v_{e i} \simeq 3.3 \times 10^{12} / \mathrm{s} \rightarrow v_{e i} \simeq 4.6 \times 10^{12} / \mathrm{s}$	1st para., 4rd line
226	$l_{\mathrm{abs}} \simeq 130 \mathrm{~m} \rightarrow l_{\mathrm{abs}} \simeq 93 \mathrm{~m}$	1st para., 5th line
230	$6.10 \mathrm{~b} \rightarrow 6.11 \mathrm{~b}$	Last para., line 2
248	titanium atoms \rightarrow titanium ions	7th line from end of 2nd para.
252	targets \rightarrow plasmas	1st line
254	Kr -like closed shell $\rightarrow[\mathrm{Kr}] 4 \mathrm{~d}^{10}$ closed sub-shell	$2 \mathrm{nd} \& 3 \mathrm{rd}$ lines of footnote
255	$0.35 \mathrm{w} / \mathrm{cm}^{2} \rightarrow 0.35 \mu \mathrm{~m}$	Fig. 6.27 caption, 2nd line
272	$\lambda^{2} / \Delta \lambda \rightarrow \lambda^{2} / 2 \Delta \lambda$	2nd para., last line
273	pum-laser \rightarrow pump-laser	4th line from bottom of para.
277	$\mathrm{v}_{i} / c \rightarrow 2 \sqrt{2 \ln 2} \mathrm{v}_{i} / c$	middle of eq.7.19a
278	$\mathrm{e} / \mathrm{cm} \rightarrow \mathrm{e} / \mathrm{cm}^{3}$ (three places)	para. below eq. $n_{u} F L$
280	target \rightarrow plasma	2nd line, last para.
289	$340 \mathrm{eV} \rightarrow 220 \mathrm{eV}$	6th line of Fig. 7.18 caption
289	$\mathrm{Ti}(100 \mathrm{eV}) \rightarrow \kappa \mathrm{Ti}(100 \mathrm{eV})$	in Fig. 7.18
290, 291	$13.99 \mathrm{~nm} \rightarrow 13.89 \mathrm{~nm}$	4 places
311	curve goes to zero power at 428 eV in Fig. 8.9c	Fig. 8.9
315	$\left(\mathrm{d}_{\mathrm{y}}, \theta_{\mathrm{y}}\right) \rightarrow\left(\mathrm{d}_{\mathrm{y}} \theta_{\mathrm{y}}\right)$	eq. 8.10 a
316	$3.5 \mathrm{~m} \rightarrow 4.3 \mathrm{~m}$	end of 2nd para.
317	Shift photon energy axis by 50 eV , so that $50 \mathrm{eV} \rightarrow 100 \mathrm{eV}$ $100 \mathrm{eV} \rightarrow 150 \mathrm{eV}$, etc. Extend curve to zero power at 428 eV	Fig. 8.11b
323	Fig. $8.17 \rightarrow$ Fig. 8.18a	above eq. 8.13
324	$\delta \ell \ldots=\xi \mathrm{x} / \mathrm{z} \ldots$ and $\delta \psi \ldots=-\mathrm{k} \xi^{\mathrm{x} / \mathrm{z}}$	both in Fig. 8.18b

Page \#	Corrections	Where
326	Eq. $8.12 \rightarrow 8.17$; Eq. $8.18 \rightarrow 8.18 \mathrm{a}$	1st para., 4th \& 5th lines
327	$\delta \psi=-\mathrm{kr} \rho / \mathrm{x} \rightarrow=-\mathrm{kr} / \mathrm{z}$	Fig. 8.20
328	statistically \rightarrow spatially ;	both on 2nd line below
328	point source \rightarrow Gaussian with	eq. $\left\|\mu_{\text {OP }}\right\|=\ldots 0.88$
330	(8.26) \rightarrow (8.27)	2nd para, 4th line
330	interface \rightarrow interference	last line
330	charged \rightarrow charge	footnote, 2nd line
331	magnification \rightarrow reduction	1st para., 4th line
331	(8.26) \rightarrow (8.27)	1st para., 4th line from bottom
332	8.24(a) $\rightarrow 8.25$ (a)	last para., 2nd from last line
333	8.24 (b) $\rightarrow 8.25$ (b)	last paragraph, 4th line
343	$\simeq \rightarrow=$	in Fig. 9.5
350	lower \rightarrow longer	1st line
361	The depth of focus of a lens, or depth of field of an imaging system, is the ...	1st line of Sec. 9.5
363	\ldots. . spread by an amount . . .	2nd para., 1st line
388	, A.G. Michette and C.J. Buckley, editors	add to reference 15
392	J. Microscopy $\overline{197}$, 185 (2000)	add to reference 86
396	Add " θ " to Fig. 10.1	half-angle left of wafer
397	$\mathrm{NA}_{\text {obj }}=\operatorname{Sin} \theta_{\mathrm{obj}} \rightarrow \mathrm{NA}=\operatorname{Sin} \theta$ at the wafer	2nd para, 1st line
398	focus \rightarrow field	above eq. 10.2
398	$\mathrm{NA} \rightarrow \mathrm{NA}_{\text {obj }}$	end of para. below eq. 10.3
400	$\mathrm{NA}_{\text {obj }}=0.6 \rightarrow \mathrm{NA}=0.6$	1st sentence
401	Fig. $9.34 \rightarrow$ Fig. 9.37	4th line from bottom of 2nd para.
403	Update Table 10.1 to 23 nm node	see new Table 10.1
418, 419	Update Tables A. 4 and A5: http://physics.nist.gov/cuu/Constants/index.html Display \odot table (pdf), then "extensive listings."	
419	$\epsilon_{0}{ }^{2} \rightarrow \epsilon_{0}$ (in Bohr radius)	in Table A. 5
423	$\mathrm{Ti} \rightarrow \mathrm{Tl}$	$\mathrm{z}=81$
425	$\mathrm{Yb}(70), \mathrm{K}_{\beta_{1}}=59,370 ; \mathrm{W}(74), \mathrm{K}_{\beta_{1}}=67,244 ; \operatorname{Po}(84), \mathrm{K}_{\beta_{1}}=89,800$ For elements $\operatorname{At}(85)$ through $\operatorname{Ra}(88)$ multiply $\times 10$ values for $\mathrm{K}_{\alpha_{1}}$, $K_{\alpha_{2}}$, and $K_{\beta_{1}}$. Also $\times 10$ for $\operatorname{Fr}(87) L_{\beta_{2}}$ and $\operatorname{Ac}(89) K_{\alpha_{2}}$ and $K_{\beta_{1}}$.	$\mathrm{K}_{1}=89,800$ s for $\mathrm{K}_{\alpha_{1}}$, Table B.2 and K_{1}.
429-436	Add μ (2 places for each element), as for Be	Upper left table for each element
439	$5 \mathrm{p} \rightarrow 5 \mathrm{~d}$	(W) below 5 s
439	$4 \mathrm{p} \rightarrow 4 \mathrm{~d}$	(Au) below 4 f
455	reference to equation E1-E4 should be F1-F4	3rd sentence from bottom

Errata: Updated Table 10.1

TABLE 10.1. The National Technology Roadmap for Semiconductors in tabular form, showing anticipated technological characteristics for selected parameters of high volume microprocessors and DRAM chips. The projections cover five generations of technology, denoted by half-pitch of periodic patterns ("nodes"). (Courtesy of the Semiconductor Industry Association, San Jose, CA; updated 2006.)

First year of volume production**	$\mathbf{2 0 0 7}$	$\mathbf{2 0 0 7}$ $\mathbf{2 0 1 0}$	$\mathbf{2 0 0 9}$ $\mathbf{2 0 1 3}$	$\mathbf{2 0 1 1}$ $\mathbf{2 0 1 6}$	$\mathbf{2 0 1 3}$ $\mathbf{2 0 1 9}$
Technology Generation (half pitch, 1:1, printed in resist)	65 nm	45 nm	32 nm	22 nm	16 nm
Isolated Lines (in resist) [Physical gate, metalized]	42 nm $[25 \mathrm{~nm}]$	30 nm $[18 \mathrm{~nm}]$	21 nm $[13 \mathrm{~nm}]$	15 nm $[9 \mathrm{~nm}]$	11 nm $[6 \mathrm{~nm}]$
Chip Frequency (chip to board)	4.9 GHz	9.5 GHz	19 GHz	35 GHz	60 GHz
Transistors per chip (HV) (3 \times for HP ; 8 \times for ASICs)	390 M	770 M	1.5 B	3.1 B	6.2 B
DRAM Memory (bits per chip)	2.2 G	4.3 G	8.6 G	17 G	34 G
Field Size (mm $\times \mathrm{mm}$)	26×33				
Wafer Size (diameter)	300 mm	300 mm	450 mm	450 mm	450 mm

*Leading high volume chip manufacturers strive to maintain a two year cycle.

