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Nonlinear Systems

ẋ = Ax + Bu −→ ẋ = f (x, u) (1)

Analysis: We use the shorthand notation ẋ = f (x)
for d

dt x(t) = f (x(t)).

ẋ = f (x) f : Rn → Rn time-invariant (autonomous)
ẋ = f (t, x) f : R×Rn → Rn time-varying (non-autonomous)

Design:

ẋ = f (x, u) u to be designed as a function of x.

Equilibria

x = x∗ is an equilibrium for ẋ = f (x) if f (x∗) = 0.

Example: Linear system ẋ = Ax.

If A is nonsingular, x∗ = 0 is the unique equilibrium.

If A is singular, the nullspace defines a continuum of equilibria.

Example: Logistic growth model in population dynamics

ẋ = f (x) = r
(

1− x
K

)
︸ ︷︷ ︸
growth rate

x, r > 0, K > 0 (2)

x > 0 denotes the population and K is called the carrying capacity.
x

x

r

K

f (x)
For systems with a scalar state variable x ∈ R, stability can be deter-
mined from the sign of f (x) around the equilibrium. In this example
f (x) > 0 for x ∈ (0, K), and f (x) < 0 for x > K; therefore

x = 0 unstable equilibrium
x = K asymptotically stable.
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Linearization

Local stability properties of x∗ can be determined by linearizing the
vector field f (x) at x∗:

f (x∗ + x̃) = f (x∗)︸ ︷︷ ︸
= 0

+
∂ f
∂x

∣∣∣∣
x=x∗︸ ︷︷ ︸

, A

x̃ + higher order terms (3)

Thus, the linearized model is:

˙̃x = Ax̃. (4)

If <λi(A) < 0 for each eigenvalue λi of A, then x∗ is asymp. stable.

If <λi(A) > 0 for some eigenvalue λi of A, then x∗ is unstable.

Example: Logistic growth model above:

f ′(0) > 0
unstable

f ′(K) < 0
stable

f (x)

x

Caveats:

1. Only local properties can be determined from the linearization.

Example: The logistic growth model linearized at x = 0 (ẋ = rx)
would incorrectly predict unbounded growth of x(t). In reality,
x(t)→ K.

2. If <λi(A) ≤ 0 with equality for some i, then linearization is
inconclusive as a stability test. Higher order terms determine
stability.

Example: f (x) = x3 vs. f (x) = −x3

xx

f ′(0) = 0 in each case, but one is stable and the other is unstable.
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Second order example: Pendulum

θ

`

mg

mg sin θ

`mθ̈ = −k`θ̇ −mg sin θ (5)

Define x =

[
θ

θ̇

]
. State space: S1 ×R.

ẋ1 = x2

ẋ2 = − k
m

x2 −
g
`

sin x1

(6)

Equilibria: (0, 0) and (π, 0)

∂ f
∂x

=

[
0 1

− g
` cos x1 − k

`

]
=



 0 1

− g
` − k

`

 (stable) at x1 = 0 0 1
g
` − k

`

 (unstable) at x1 = π

Phase portrait: plot of x1(t) vs. x2(t) for 2nd order systems

0 π 2π x1

x2

0

Figure 1: Phase portrait of the pendu-
lum for the undamped case k = 0.

Essentially Nonlinear Phenomena

1. Finite Escape Time

Example: ẋ = x2

d
dt

x−1 = −x−2 ẋ = −1

⇒ 1
x(t)
− 1

x(0)
= −t

⇒ x(t) =
1

1
x(0) − t

(7)

t

x

x(0)

1
x(0)

For linear systems, x(t)→ ∞ cannot happen in finite time.
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2. Multiple Isolated Equilibria

Linear systems: either unique equilibrium or a continuum

Pendulum: two isolated equilibria (one stable, one unstable)

“Multi-stable” systems: two or more stable equilibria

Example: bistable switch

ẋ1 = −ax1 + x2 x1 : concentration of protein

ẋ2 =
x2

1
1+x2

1
− bx2 x2 : concentration of mRNA

(8)

a > 0, b > 0 are constants. State space: R≥0 ×R≥0.

This model describes a positive feedback where the protein en-

coded by a gene stimulates more transcription via the term x2
1

1+x2
1
.

Single equilibrium at the origin when ab > 0.5. If ab < 0.5, the line
where ẋ1 = 0 intersects the sigmoidal curve where ẋ2 = 0 at two
other points, giving rise to a total of three equilibria:

x1

x2

ẋ1 = 0
ẋ2 = 0

stable
(gene on)

stable
(gene off)

unstable
(saddle point)
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Essentially Nonlinear Phenomena Continued

1. Finite escape time

2. Multiple isolated equilibria

3. Limit cycles: Linear oscillators exhibit a continuum of periodic
orbits; e.g., every circle is a periodic orbit for ẋ = Ax where

A =

[
0 −β

β 0

]
(λ1,2 = ∓jβ).

In contrast, a limit cycle is an isolated periodic orbit and can occur
only in nonlinear systems.

limit cycleharmonic
oscillator

Example: van der Pol oscillator

Cv̇C = −iL + vC − v3
C

Li̇L = vC

iL

LC
+

−
vC

iR

vC

iR = −vC + v3
C

"negative resistance"∧∧

iL

vC

http://creativecommons.org/licenses/by-nc-sa/4.0/
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4. Chaos: Irregular oscillations, never exactly repeating.

Example: Lorenz system (derived by Ed Lorenz in 1963 as a sim-
plified model of convection rolls in the atmosphere):

ẋ = σ(y− x)

ẏ = rx− y− xz

ż = xy− bz.

Chaotic behavior with σ = 10, b = 8/3, r = 28:
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• For continuous-time, time-invariant systems, n ≥ 3 state vari-
ables required for chaos.
n = 1: x(t) monotone in t, no oscillations:

x

f (x)

n = 2: Poincaré-Bendixson Theorem (to be studied in Lecture 3)
guarantees regular behavior.

• Poincaré-Bendixson does not apply to time-varying systems and
n ≥ 2 is enough for chaos (Homework problem).

• For discrete-time systems, n = 1 is enough (we will see an
example in Lecture 5).

Planar (Second Order) Dynamical Systems
Chapter 2 in both Sastry and Khalil

Phase Portraits of Linear Systems: ẋ = Ax

• Distinct real eigenvalues

T−1 AT =

[
λ1 0
0 λ2

]
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In z = T−1x coordinates:

ż1 = λ1z1, ż2 = λ2z2.

The equilibrium is called a node when λ1 and λ2 have the same
sign (stable node when negative and unstable when positive). It is
called a saddle point when λ1 and λ2 have opposite signs.

z1z1z1

z2z2z2

λ1 < λ2 < 0 λ1 > λ2 > 0 λ2 < 0 < λ1

stable
node

unstable
node saddle

• Complex eigenvalues: λ1,2 = α∓ jβ

T−1 AT =

[
α −β

β α

]
ż1 = αz1 − βz2

ż2 = αz2 + βz1
→ polar coordinates →

ṙ = αr

θ̇ = β

z1z1z1

z2z2z2

stable
focus

unstable
focus center

α < 0 α > 0 α = 0

The phase portraits above assume β > 0 so that the direction of
rotation is counter-clockwise: θ̇ = β > 0.

Phase Portraits of Nonlinear Systems Near Hyperbolic Equilibria

hyperbolic equilibrium: linearization has no eigenvalues on the imagi-
nary axis

Phase portraits of nonlinear systems near hyperbolic equilibria are
qualitatively similar to the phase portraits of their linearization. Ac-
cording to the Hartman-Grobman Theorem (below) a “continuous
deformation” maps one phase portrait to the other.
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x∗
h

Hartman-Grobman Theorem: If x∗ is a hyperbolic equilibrium of
ẋ = f (x), x ∈ Rn, then there exists a homeomorphism2 z = h(x) defined 2 a continuous map with a continuous

inversein a neighborhood of x∗ that maps trajectories of ẋ = f (x) to those of

ż = Az where A , ∂ f
∂x

∣∣∣
x=x∗

.

The hyperbolicity condition can’t be removed:

Example:

ẋ1 = −x2 + ax1(x2
1 + x2

2)

ẋ2 = x1 + ax2(x1
1 + x2

2)
=⇒

ṙ = ar3

θ̇ = 1

x∗ = (0, 0) A =
∂ f
∂x

∣∣∣∣
x=x∗

=

[
0 −1
1 0

]

There is no continuous deformation that maps the phase portrait of
the linearization to that of the original nonlinear model:

(a > 0)
ẋ = Ax ẋ = f (x)

Periodic Orbits in the Plane

Bendixson’s Theorem: For a time-invariant planar system

ẋ1 = f1(x1, x2) ẋ2 = f2(x1, x2),

if ∇ · f (x) = ∂ f1
∂x1

+ ∂ f2
∂x2

is not identically zero and does not change
sign in a simply connected region D, then there are no periodic orbits
lying entirely in D.
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Proof: By contradiction. Suppose a periodic orbit J lies in D. Let S
denote the region enclosed by J and n(x) the normal vector to J at x.
Then f (x) · n(x) = 0 for all x ∈ J. By the Divergence Theorem:

J
S

• x

f (x) n(x)

∫
J

f (x) · n(x)d`︸ ︷︷ ︸
= 0

=
∫∫

S
∇ · f (x)dx︸ ︷︷ ︸
6= 0

.

Example: ẋ = Ax, x ∈ R2 can have periodic orbits only if

Trace(A) = 0, e.g.,

A =

[
0 −β

β 0

]
.

Example:

ẋ1 = x2

ẋ2 = −δx2 + x1 − x3
1 + x2

1x2 δ > 0

∇ · f (x) =
∂ f1

∂x1
+

∂ f2

∂x2
= x2

1 − δ

Therefore, no periodic orbit can lie entirely in the region x1 ≤ −
√

δ

where ∇ · f (x) ≥ 0, or −
√

δ ≤ x1 ≤
√

δ where ∇ · f (x) ≤ 0, or
x1 ≥

√
δ where ∇ · f (x) ≥ 0.

x1 = −
√

δ

x1 = −
√

δ

x1 =
√

δ

x1 =
√

δ

x1

x1

x2

x2

not possible:

possible:
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Invariant Sets

Notation: φ(t, x0) denotes a trajectory of ẋ = f (x) with initial condi-
tion x(0) = x0.

Definition: A set M ⊂ Rn is positively (negatively) invariant if, for
each x0 ∈ M, φ(t, x0) ∈ M for all t ≥ 0 (t ≤ 0).

n(x)

f (x)M

If f (x) · n(x) ≤ 0 on the boundary then M is positively invariant.

Example 1: A predator-prey model

ẋ = (a− by)x Prey (exponential growth when y = 0)

ẏ = (cx− d)y Predator (exponential decay when x = 0)

a, b, c, d,> 0

The nonnegative quadrant is invariant:

x

y

( d
c , a

b )

↗
saddle

Example 2:
ẋ1 = x1 + x2 − x1(x2

1 + x2
2)

ẋ2 = −2x1 + x2 − x2(x2
1 + x2

2)

Show that Br , {x|x2
1 + x2

2 ≤ r2} is positively invariant for sufficiently
large r.

http://creativecommons.org/licenses/by-nc-sa/4.0/
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f (x) · n(x) = x2
1 + x1x2 − x2

1(x2
1 + x2

2)− 2x1x2 + x2
2 − x2

2(x2
1 + x2

2)

= −x1x2 + (x2
1 + x2

2)− (x2
1 + x2

2)
2

x1

x2
n(x)=

[
x1
x2

]

f (x)

−x1x2 ≤
1
2

x2
1 +

1
2

x2
2 (completion of squares)

Therefore, f (x) · n(x) ≤ 3
2 r2 − r4 ≤ 0 if r2 ≥ 3

2 .

Periodic Orbits in the Plane Continued

Two criteria:

1. Bendixson (absence of periodic orbits)

2. Poincaré-Bendixson (existence of periodic orbits)

Poincaré-Bendixson Theorem: Suppose M is compact2 and positively 2 i.e., closed and bounded

invariant for the planar, time invariant system ẋ = f (x), x ∈ R2. If M
contains no equilibrium points, then it contains a periodic orbit.

Example 3: Harmonic Oscillator

A =

[
0 −1
1 0

]
ẋ1 = −x2

ẋ2 = x1.

x1

x2

For any R > r > 0, the ring {x : r2 ≤ x2
1 + x2

2 ≤ R2} is compact,
invariant and contains no equilibria ⇒ at least one periodic orbit.
(We know there are infinitely many in this case.)

The “no equilibrium” condition in the PB theorem can be relaxed as:

“If M contains one equilibrium which is an unstable focus or
unstable node”

Proof sketch: Since the equilibrium is an unstable focus or node, we
can encircle it with a small closed curve on which f (x) points out-
ward. Then the set obtained from M by carving out the interior of the
closed curve is positively invariant and contains no equilibrium.

M
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Example 2 above: Br is positively invariant for r ≥
√

3
2 but contains

the equilibrium x = 0.

∂ f
∂x

∣∣∣∣
x=0

=

[
1 1
−2 1

]
λ1,2 = 1∓ j

√
2 unstable focus.

Therefore, Br must contain a periodic orbit.

A more general form of the PB Theorem states that, for time invari-
ant, planar systems, bounded trajectories converge to equilibria,
periodic orbits, or unions of equilibria connected by trajectories.

Corollary: No chaos for time invariant planar systems.

Index Theory

Again, applicable only to planar systems.

Definition (index): The index of a closed curve is k if, when traversing
the curve in one direction, f (x) rotates by 2πk in the same direction.
The index of an equilibrium is defined to be the index of a small
curve around it that doesn’t enclose another equilibrium.

type of equilibrium or curve index

node, focus, center +1

saddle -1

any closed orbit +1

a closed curve not encircling any equilibria 0

The last claim (index = 0) follows from the following observations:
• Continuously deforming a closed curve without crossing equilibria
leaves its index unchanged.
• A curve not encircling equilibria can be shrunk to an arbitrarily
small one, so f (x) can be considered constant.
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Theorem: The index of a closed curve is equal to the sum of indices
of the equilibria inside.

Graphical proof: Shrinking curve c to c′ below without crossing equi-
libria does not change the index. The index of c′ is the sum of the
indices of the curves encircling the equilibria because the thin "pipes"
connecting these curves do not affect the index of c′.

c′

c

contributions from the two sides cancel out

The following corollary is useful for ruling out periodic orbits (like
Bendixson’s Theorem studied in the previous lecture):

Corollary: Inside any periodic orbit there must be at least one equi-
librium and the indices of the equilibria enclosed must add up to
+1.

Example (from last lecture):

ẋ1 = x2

ẋ2 = −δx2 + x1 − x3
1 + x2

1x2 δ > 0

Bendixson’s Criterion: No periodic orbit can lie entirely in one of the
regions x1 ≤ −

√
δ, −
√

δ ≤ x1 ≤
√

δ, or x1 ≥
√

δ.

Now apply the corollary above.

Equilibria: (0, 0), (∓1, 0). To find their indices evaluate the Jacobian:

∂ f
∂x

∣∣∣
x=(0,0)

=

[
0 1
1 −δ

]
λ2 + δλ −1︸︷︷︸

<0

= 0.

The eigenvalues are real and have opposite signs, therefore (0, 0) is a
saddle: index = −1.

∂ f
∂x

∣∣∣
x=(∓1,0)

=

[
0 1
−2 1− δ

]
λ2 + (δ− 1)λ +2︸︷︷︸

>0

= 0.

The eigenvalues are either real with the same sign (node) or complex
conjugates (focus or center), therefore (∓1, 0) each has index= +1.

Thus, the corollary above rules out the periodic orbit in the middle
plot below. It does not rule out the others, but does not prove their
existence either. Bendixson’s Criterion rules out neither of the three.
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x1 = −
√

δ

x1 = −
√

δ

x1 = −
√

δ

x1 =
√

δ

x1 =
√

δ

x1 =
√

δ

x1

x1

x1

x2

x2

x2

not possible
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Bifurcations

A bifurcation is an abrupt change in qualitative behavior as a parame-
ter is varied. Examples: equilibria or limit cycles appearing/disappearing,
becoming stable/unstable.

Fold Bifurcation

Also known as “saddle node” or “blue sky” bifurcation.

Example: ẋ = µ− x2

If µ > 0, two equilibria: x = ∓√µ. If µ < 0, no equilibria.

“bifurcation diagram”

µ

x

Transcritical Bifurcation

Example: ẋ = µx− x2

Equilibria: x = 0 and x = µ.
∂ f
∂x

= µ− 2x =

{
µ if x = 0
−µ if x = µ

µ < 0 : x = 0 is stable, x = µ is unstable

µ > 0 : x = 0 is unstable, x = µ is stable

µ

x

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Pitchfork Bifurcation

Example: ẋ = µx− x3

Equilibria: x = 0 for all µ, x = ∓√µ if µ > 0.

µ < 0 µ > 0
∂ f
∂x

∣∣∣
x=0

= µ stable unstable
∂ f
∂x

∣∣∣
x=∓√µ

= −2µ N/A stable

µ

x

"supercritical pitchfork”

Example: ẋ = µx + x3

Equilibria: x = 0 for all µ, x = ∓√−µ if µ < 0.

µ < 0 µ > 0
∂ f
∂x

∣∣∣
x=0

= µ stable unstable
∂ f
∂x

∣∣∣
x=∓√−µ

= −2µ unstable N/A

µ

x

"subcritical pitchfork”

Example: ẋ = µx + x3 − x5

µ

x

subcritical pitchfork
fold
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Hysteresis arising from a subcritical pitchfork bifurcation:

µ

Bifurcation and hysteresis in perception:

Figure 1: Observe the transition from
a man’s face to a sitting woman as
you trace the figures from left to right,
starting with the top row. When does
the opposite transition happen as
you trace back from the end to the
beginning? [Fisher, 1967]

Higher Order Systems

Fold, transcritical, and pitchfork are one-dimensional bifurcations,
as evident from the first order examples above. They occur in higher
order systems too, but are restricted to a one-dimensional manifold.

1D subspace: cT
1 x = · · · = cT

n−1x = 0

1D manifold: g1(x) = · · · = gn−1(x) = 0

Example 1: ẋ1 = µ− x2
1

ẋ2 = −x2

A fold bifurcation occurs on the invariant x2 = 0 subspace:

x1x1x1

x2x2x2µ > 0 : µ = 0 : µ < 0 :
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Example 2: bistable switch (Lecture 1)

ẋ1 = −ax1 + x2

ẋ2 =
x2

1
1 + x2

1
− bx2

A fold bifurcation occurs at µ , ab = 0.5:

x1

x2

x2 = 1
b

x2
1

1+x2
1

x2 = ax1

a > 0.5/b
a = 0.5/b

a < 0.5/b

Characteristic of one-dimensional bifurcations:

∂ f
∂x

∣∣∣∣
µ=µc , x=x∗(µc)

has an eigenvalue at zero

where x∗(µ) is the equilibrium point undergoing bifurcation and µc

is the critical value at which the bifurcation occurs.

Example 1 above:

∂ f
∂x

∣∣∣∣
µ=0,x=0

=

[
0 0
0 −1

]
→ λ1,2 = 0 ,−1

Example 2 above:

∂ f
∂x

∣∣∣∣
µ= 1

2 ,x1=1,x2=a
=

[
−a 1

1
2 −b

]
→ λ1,2 = 0 ,−(a + b)

Hopf Bifurcation

Two-dimensional bifurcation unlike the one-dimensional types above.

Example: Supercritical Hopf bifurcation

ẋ1 = x1(µ− x2
1 − x2

2)− x2

ẋ2 = x2(µ− x2
1 − x2

2) + x1

In polar coordinates:

ṙ = µr− r3

θ̇ = 1
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Note that a positive equilibrium for the r subsystem means a limit
cycle in the (x1, x2) plane.

µ < 0: stable equilibrium at r = 0

µ > 0: unstable equilibrium at r = 0 and stable limit cycle at r =
√

µ

µ

x2

x1

The origin loses stability at µ = 0 and a stable limit cycle emerges.

Example: Subcritical Hopf bifurcation

ṙ = µr + r3 − r5

θ̇ = 1

µ

x2

x1

Phase portrait for −0.25 < µ < 0:

x1

x2

Characteristic of the Hopf bifurcation:

∂ f
∂x

∣∣∣∣
µ=µc , x=x∗(µc)

has complex conjugate eigenvalues

on the imaginary axis.
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Center Manifold Theory
Khalil (Section 8.1), Sastry (Section
7.6.1)ẋ = f (x) f (0) = 0 (1)

Suppose A ,
∂ f
∂x

∣∣∣∣
x=0

has k eigenvalues will zero real parts, and

m = n− k eigenvalues with negative real parts.

Define

[
y
z

]
= Tx such that

TAT−1 =

[
A1 0
0 A2

]

where the eigenvalues of A1 have zero real parts and the eigenvalues
of A2 have negative real parts.

Rewrite ẋ = f (x) in the new coordinates:

ẏ = A1y + g1(y, z)

ż = A2z + g2(y, z)
(2)

gi(0, 0) = 0, ∂gi
∂y (0, 0) = 0, ∂gi

∂z (0, 0) = 0, i = 1, 2.

Theorem 1: There exists an invariant manifold z = h(y) defined in a
neighborhood of the origin such that

h(0) = 0
∂h
∂y

(0) = 0.

y

z = h(y)

z

Reduced System: ẏ = A1y + g1(y, h(y)) y ∈ Rk

Theorem 2: If y = 0 is asymptotically stable (resp., unstable) for the
reduced system, then x = 0 is asymptotically stable (resp., unstable)
for the full system ẋ = f (x).

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Characterizing the Center Manifold

Define w , z− h(y) and note that it satisfies

ẇ = A2z + g2(y, z)− ∂h
∂y

(
A1y + g1(y, z)

)
.

The invariance of z = h(y) means that w = 0 implies ẇ = 0. Thus, the
expression above must vanish when we substitute z = h(y):

A2h(y) + g2(y, h(y))− ∂h
∂y

(
A1y + g1(y, h(y))

)
= 0.

To find h(y) solve this differential equation for h as a function on y.

If the exact solution is unavailable, an approximation is possible. For
scalar y, expand h(y) as

h(y) = h2y2 + · · ·+ hpyp + O(yp+1)

where h1 = h0 = 0 because h(0) = ∂h
∂y (0) = 0. The notation O(yp+1)

refers to the higher order terms of power p + 1 and above.

Example:
ẏ = yz

ż = −z + ay2 a 6= 0

This is of the form (2) with g1(y, z) = yz, g2(y, z) = ay2, A2 = −1.
Thus h(y) must satisfy

−h(y) + ay2 − ∂h
∂y

yh(y) = 0.

Try h(y) = h2y2 + O(y3):

0 = −h2y2 + O(y3) + ay2 − (2h2y + O(y2))y(h2
2 + O(y3))

= (a− h2)y2 + O(y3)

=⇒ h2 = a

Reduced System: ẏ = y(ay2 + O(y3)) = ay3 + O(y4).

If a < 0, the full systems is asymptotically stable. If a > 0 unstable.
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Discrete-Time Models and a Chaos Example

CT: ẋ(t) = f (x(t)) DT: xn+1 = f (xn) n = 0, 1, 2, . . .
f (x∗) = 0 f (x∗) = x∗ (“fixed point”)

Asymptotic stability criterion: Asymptotic stability criterion:

<λi(A) < 0 where A , ∂ f
∂x

∣∣∣
x=x∗

|λi(A)| < 1 where A , ∂ f
∂x

∣∣∣
x=x∗

f ′(x∗) < 0 for first order system | f ′(x∗)| < 1 for first order system

These criteria are inconclusive if the respective inequality is not strict,
but for first order systems we can determine stability graphically:

Cobweb Diagrams for First Order Discrete-Time Systems

Example: xn+1 = sin(xn) has unique fixed point at 0. Stability test
above inconclusive since f ′(0) = 1. However, the "cobweb" diagram
below illustrates the convergence of iterations to 0:

x0x1x2

x1
x2

y = x

y = f (x)

In discrete time, even first order systems can exhibit oscillations:

nx

f (x) xn

p q

p

q

p

q
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Detecting Cycles Analytically

f (p) = q f (q) = p =⇒ f ( f (p)) = p f ( f (q)) = q

For the existence of a period-2 cycle, the map f ( f (·)) must have two
fixed points in addition to the fixed points of f (·).

Period-3 cycles: fixed points of f ( f ( f (·))).

Chaos in a Discrete Time Logistic Growth Model

xn+1 = r(1− xn)xn (3)

Range of interest: 0 ≤ x ≤ 1 (xn > 1 ⇒ xn+1 < 0)

x

r/4

0 1

We will study the range 0 ≤ r ≤ 4 so that f (x) = r(1− x)x maps [0, 1]
onto itself.

Fixed points: x = r(1− x)x ⇒
{

x∗ = 0 and
x∗ = 1− 1

r if r > 1.

r ≤ 1: x∗ = 0 unique and stable fixed point

x
0 1

r > 1: x = 0 unstable because f ′(0) = r > 1

x
1− 1

r
0 1
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Note that a transcritical bifurcation occurred at r = 1, creating the
new equilibrium

x∗ = 1− 1
r

.

Evaluate its stability using f ′(x∗) = r(1− 2x∗) = 2− r.

r < 3 ⇒ | f ′(x∗)| < 1 (stable)

r > 3 ⇒ | f ′(x∗)| > 1 (unstable).

At r = 3, a period-2 cycle is born:

x = f ( f (x))

= r(1− f (x)) f (x)

= r(1− r(1− x)x)r(1− x)x

= r2x(1− x)(1− r + rx− rx2)

0 = r2x(1− x)(1− r + rx− rx2)− x

Factor out x and (x− 1 + 1
r ), find the roots of the quotient:

p, q =
r + 1∓

√
(r− 3)(r + 1)
2r

x
1− 1

r
0 1p q

f ( f (x))

y = x

This period-2 cycle is stable when r < 1 +
√

6 = 3.4494:

d
dx

f ( f (x))
∣∣∣∣
x=p

= f ′( f (p)) f ′(p) = f ′(p) f ′(q) = 4 + 2r− r2

|4 + 2r− r2| < 1 ⇒ 3 < r < 1 +
√

6 = 3.4494

At r = 3.4494, a period-4 cycle is born!

“period doubling bifurcations”

r
0 1 3 3.44
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r1 = 3 period-2 cycle born
r2 = 3.4494 period-4 cycle born
r3 = 3.544 period-8 cycle born
r4 = 3.564 period-16 cycle born

...
r∞ = 3.5699

After r > r∞, chaotic behavior for a window of r, followed by win-
dows of periodic behavior (e.g., period-3 cycle around r = 3.83).

Below is the cobweb diagram for r = 3.9 which is in the chaotic
regime:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
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Mathematical Background
Sastry, Chapter 3

ẋ = f (x) x(0) = x0 (1)

Do solutions exist? Are they unique?

• If f (·) is continuous (C0) then a solution exists, but C0 is not suffi-
cient for uniqueness.

Example: ẋ = x
1
3 with x(0) = 0

x(t) ≡ 0, x(t) =
(

2
3

t
) 3

2
are both solutions

x

x1/3

∞ slope
at x=0

• Sufficient condition for uniqueness: “Lipschitz continuity” (more
restrictive than C0)

| f (x)− f (y)| ≤ L|x− y| (2)

Definition: f (·) is locally Lipschitz if every point x0 has a neighbor-
hood where (2) holds for all x, y in this neighborhood and for all t for
some L.

Example: (·) 1
3 is NOT locally Lipschitz (due to ∞ slope)

(·)3 is locally Lipschitz:

x3 − y3 = (x2 + xy + y2)︸ ︷︷ ︸
in any nbhd
of x0, we can
find L to upper
bound this

(x− y)

=⇒ |x3 − y3| ≤ L|x− y|

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
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• If f (·) is continuously differentiable (C1), then it is locally Lips-
chitz.

Examples: x3, x2, ex, etc.

The converse is not true: local Lipschitz 6⇒ C1

Example:

x

sat(x)

−1

1
−1

1

Not differentiable at x = ∓1, but locally Lipschitz:

| sat(x)− sat(y)| ≤ |x− y| (L = 1).

L
C0

C1

x1/3

sat(x)

x2, x3, ...

Definition continued: f (·) is globally Lipschitz if (2) holds ∀x, y ∈ Rn

(i.e., the same L works everywhere).

Examples: sat(·) is globally Lipschitz. (·)3 is not globally Lipschitz:

x

→ slope getting steeper

• Suppose f (·) is C1. Then it is globally Lipschitz iff ∂ f
∂x is bounded.

L = sup
x
| f ′(x)|
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Preview of existence theorems:

1. f (·) is C0 =⇒ existence of solution x(t) on finite interval [0, t f ).

2. f (·) locally Lipschitz =⇒ existence and uniqueness on [0, t f ).

3. f (·) globally Lipschitz =⇒ existence and uniqueness on [0, ∞).

Examples:

• ẋ = x2 (locally Lipschitz) admits unique solution on [0, t f ), but
t f < ∞ from Lecture 1 (finite escape).

• ẋ = Ax globally Lipschitz, therefore no finite escape

|Ax− Ay| ≤ L|x− y| with L = ‖A‖

The rest of the lecture introduces concepts that are used in proving the
existence theorems mentioned above.

Normed Linear Spaces

Definition: X is a normed linear space if there exists a real-valued
norm | · | satisfying:

1. |x| ≥ 0 ∀x ∈ X, |x| = 0 iff x = 0.

2. |x + y| ≤ |x|+ |y| ∀x, y ∈ X (triangle inequality)

3. |αx| = |α| · |x| ∀α ∈ R and x ∈ X.

Definition: A sequence {xk} in X is said to be a Cauchy sequence if

|xk − xm| → 0 as k, m→ ∞. (3)

Every convergent sequence is Cauchy. The converse is not true.

Definition: X is a Banach space if every Cauchy sequence converges
to an element in X.

All Euclidean spaces are Banach spaces.

Example:

Cn[a, b]: the set of all continuous functions [a, b]→ Rn with norm:

|x|C = max
t∈[a,b]

|x(t)|

t
ba

x

1. |x|C ≥ 0 and |x|C = 0 iff x(t) ≡ 0.
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2. |x + y|C = max
t∈[a,b]

|x(t) + y(t)| ≤ max
t∈[a,b]

{|x(t)|+ |y(t)|} ≤ |x|C + |y|C

3. |α · x|C = max
t∈[a,b]

|α| · |x(t)| = |α| · |x|C

It can be shown that Cn[a, b] is a Banach space.

Fixed Point Theorems

T(x) = x (4)

Brouwer’s Theorem (Euclidean spaces):

If U is a closed bounded subset of a Euclidean space and T : U → U
is continuous, then T has a fixed point in U.

Schauder’s Theorem (Brouwer’s Thm→ Banach spaces):

If U is a closed bounded convex subset of a Banach space X and
T : U → U is completely continuous2, then T has a fixed point in U. 2 continuous and for any bounded set

B ⊆ U the closure of T(B) is compact
Contraction Mapping Theorem:

If U is a closed subset of a Banach space and T : U → U is such that

|T(x)− T(y)| ≤ ρ|x− y| ρ < 1 ∀x, y ∈ U

then T has a unique fixed point in U and the solutions of xn+1 =

T(xn) converge to this fixed point from any x0 ∈ U.

Example: The logistic map (Lecture 5)

T(x) = rx(1− x) (5)

with 0 ≤ r ≤ 4 maps U = [0, 1] to U. |T′(x)| ≤ r ∀x ∈ [0, 1], so the
contraction property holds with ρ = r.

x

r/4

0 1

If r < 1, the contraction mapping theorem predicts a unique fixed
point that attracts all solutions starting in [0, 1].
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x

Proof steps for the Contraction Mapping Thm:

1. Show that {xn} formed by xn+1 = T(xn) is a Cauchy sequence.
Since we are in a Banach space, this implies a limit x∗ exists.

2. Show that x∗ = T(x∗).

3. Show that x∗ is unique.

Details of each step:

1. |xn+1 − xn| = |T(xn)− T(xn−1)| ≤ ρ|xn − xn−1|
≤ ρ2|xn−1 − xn−2|

...

≤ ρn|x1 − x0|.

|xn+r − xn| ≤ |xn+r − xn+r−1|+ · · ·+ |xn+1 − xn|
≤ (ρn+r + · · ·+ ρn)|x1 − x0|
= ρn(1 + · · ·+ ρr)|x1 − x0|

≤ ρn 1
1− ρ

|x1 − x0|

Since ρn

1−ρ → 0 as n→ ∞, we have |xn+r − xn| → 0 as n→ ∞.

2. |x∗ − T(x∗)| = |x∗ − xn + T(xn−1)− T(x∗)|
≤ |x∗ − xn|+ |T(xn−1)− T(x∗)|
≤ |x∗ − xn|+ ρ|x∗ − xn−1|.

Since {xn} converges to x∗, we can make this upper bound ar-
bitrarily small by choosing n sufficiently large. This means that
|x∗ − T(x∗)| = 0, hence x∗ = T(x∗).

3. Suppose y∗ = T(y∗) y∗ 6= x∗.

|x∗ − y∗| = |T(x∗)− T(y∗)| ≤ ρ|x∗ − y∗| =⇒ x∗ = y∗.

Thus we have a contradiction.
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Existence and Uniqueness Theorems for ODEs
Khalil (Section 3.1), Sastry (Section 3.4)

ẋ = f (t, x) x(0) = x0 (1)

Theorem 1: f (t, x) locally Lipschitz in x and continuous in t

⇒ existence and uniqueness on some finite interval [0, δ].

Sketch of the proof: From the local Lipschitz assumption, we can
find r > 0 and L > 0 such that

| f (t, x)− f (t, y)| ≤ L|x− y| ∀x, y ∈ {x ∈ Rn : |x− x0| ≤ r}.

If x(t) is a solution, then:

x(t) = x0 +
∫ t

0
f (τ, x(τ))dτ︸ ︷︷ ︸

=: T(x)(t)

.

To apply the Contraction Mapping Theorem:

1. Choose δ small enough that T maps the following subset of
Cn[0, δ] to itself :

U = {x ∈ Cn[0, δ] : |x(t)− x0| ≤ r ∀t ∈ [0, δ]},

i.e.

|x(t)− x0| ≤ r ∀t ∈ [0, δ] ⇒ |T(x)(t)− x0| ≤ r ∀t ∈ [0, δ]. (2)

To find such a δ note that

T(x)(t)− x0 =
∫ t

0
f (τ, x(τ))dτ =

∫ t

0

(
f (τ, x(τ))− f (τ, x0) + f (τ, x0)

)
dτ

|T(x)(t)− x0| ≤
∫ δ

0
| f (τ, x(τ))− f (τ, x0)|dτ +

∫ δ

0
| f (τ, x0)|dτ

≤
∫ δ

0
L|x(τ)− x0|dτ +

∫ δ

0
hdτ where h is a bound on | f (τ, x0)|

≤ (Lr + h)δ.

Thus, by choosing δ ≤ r
Lr+h we ensure that the implication (2)

holds.

2. Show that T is a contraction in U, i.e., there exists ρ < 1 s.t.

x, y ∈ U =⇒ |T(x)− T(y)|C ≤ ρ|x− y|C.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
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Note that, for all t ∈ [0, δ],

|T(x)(t)− T(y)(t)| =
∫ t

0
| f (τ, x(τ))− f (τ, y(τ))|dτ

≤ L
∫ t

0
|x(τ)− y(τ)|dτ

≤ Lδ︸︷︷︸
=:ρ

max
τ∈[0,δ]

|x(τ)− y(τ)| = ρ|x− y|C.

Therefore,

|T(x)− T(y)|C = max
t∈[0,δ]

|T(x)(t)− T(y)(t)| ≤ ρ|x− y|C

and ρ < 1 if δ ≤ r
Lr+h as prescribed above.

Theorem 2: f (t, x) globally Lipschitz in x uniformly2 in t, and contin- 2 same L works for all t

uous in t =⇒ existence and uniqueness on [0, ∞).

Proof: Choose a δ that doesn’t depend on x0 and apply Theorem 1 re-
peatedly to cover [0, ∞). This is possible because L works everywhere
and we can pick r as large as we wish. Indeed, for any δ < 1

L , we can
choose r large enough that δ ≤ r

Lr+h .

Q: Why can’t we do this in Theorem 1?

A: δ depends on x0 (no universal L) and x0 changes at the next itera-
tion. We can’t use the same δ in every iteration:

t f0 δ1 δ2 δ3

• The theorems above are sufficient only, and can be conservative:

Example: ẋ = −x3 is not globally Lipschitz but

x(t) = sgn(x0)

√
x2

0
1 + 2tx2

0

is defined on [0, ∞).

Continuous Dependence on Initial Conditions and Parameters

Theorem 3: (Continuous dependence on initial conditions) Let
x(t), y(t) be two solutions of ẋ = f (t, x) starting from x0 and y0,
and remaining in a set with Lipschitz constant L on [0, τ]. Then, for
any ε > 0, there exists δ(ε, τ) > 0 such that

|x0 − y0| ≤ δ =⇒ |x(t)− y(t)| ≤ ε ∀t ∈ [0, τ].
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• This conclusion does not hold on infinite time intervals (even if f
is globally Lipschitz).

Example: bistable system

x(t)

y(t)

x0 y0
• •

If ε is smaller than the distance between the two stable equilibria, no
choice of δ guarantees |x(t)− y(t)| ≤ ε ∀t ≥ 0.

• Theorem 3 also shows continuous dependence on parameter µ in
f (t, x, µ) if we rewrite the system equations as:

ẋ = f (t, x, µ)

µ̇ = 0
X =

[
x
µ

]
Ẋ = F(t, X) ,

[
f (t, x, µ)

0

]
,

where µ appears as a state variable with initial condition µ(0) = µ.

Q: How do you reconcile bifurcations with continuous dependence
on parameters? We could pick two values of the bifurcation param-
eter arbitrarily close, but one below and one above the critical value,
thereby expecting a drastic difference in the solutions.

A: The two solutions are close in the short term (Theorem 3 holds on
finite time intervals); the drastic difference builds up over time.

Sensitivity to Parameters

Consider the system

ẋ = f (t, x, µ) x ∈ Rn, µ ∈ Rp (3)

where µ is a vector of p parameters, and let φ(t, x0, µ) denote the
trajectories starting at the initial condition x0.

To determine to what extent this trajectory depends on the parame-
ters we define the n× p sensitivity matrix:

S(t, x0, µ) :=
∂φ(t, x0, µ)

∂µ
=

[
∂φ(t, x0, µ)

∂µ1
· · · ∂φ(t, x0, µ)

∂µp

]
, (4)
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where each column is the sensitivity with respect to a particular
parameter.

To see how S(t, x0, µ) can be computed numerically, first note that
φ(t, x0, µ) satisfies the equation (3), that is,

∂φ(t, x0, µ)

∂t
= f (t, φ(t, x0, µ), µ).

Next, differentiate both sides with respect to µ:

∂2φ(t, x0, µ)

∂t∂µ
=

∂ f
∂x

(t, φ(t, x0, µ), µ)
∂φ(t, x0, µ)

∂µ
+

∂ f
∂µ

(t, φ(t, x0, µ), µ)

and use the definition of the sensitivity matrix to rewrite this as

∂S(t, x0, µ)

∂t
=

∂ f
∂x

(t, φ(t, x0, µ), µ)S(t, x0, µ) +
∂ f
∂µ

(t, φ(t, x0, µ), µ).

Thus, S can be computed by numerical integration of (3) simultane-
ously with

Ṡ =
∂ f
∂x

(t, x, µ)S +
∂ f
∂µ

(t, x, µ).

The initial condition for S is ∂x0
∂µ = 0, assuming that x0 is independent

of the parameters.

Example: For the harmonic oscillator

ẋ1 = −µx2

ẋ2 = µx1

we have
∂ f
∂x

=

[
0 −µ

µ 0

]
∂ f
∂µ

=

[
−x2

x1

]
.

Thus the sensitivity equation is

Ṡ =

[
0 −µ

µ 0

]
S +

[
−x2

x1

]
.

Logarithmic Sensitivity

To compare the sensitivity with respect to multiple parameters
µ1, . . . , µp it is preferable to use the logarithmic sensitivity

∂φ(t, x0, µ)

∂µi/µi
=

∂φ(t, x0, µ)

∂ ln µi

so that the denominator is dimensionless and represents the change
in the parameter µi relative to its nominal value. This means that
the ith column of the sensitivity matrix S in (4) must be multiplied
with the nominal parameter µi, i = 1, . . . , p, before these columns are
compared for the relative significance of the parameters.
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Application to Parameter Tuning and Identification

Sensitivity equations are useful for solving a class of optimization
problems of the form

minµ J(µ) =
∫ t1

t0
q(t, x(t), µ)dt

subject to ẋ = f (t, x, µ), x(t0) = x0.

For example, one may take q(t, x) = |h(x(t))− r(t)|2 to penalize the
error between the output y(t) = h(x(t)) of a control system and a
reference trajectory r(t) to be followed. In this example ẋ = f (t, x, µ)

represents the closed loop model with tunable control parameters µ.

In other applications ẋ = f (t, x, µ) may represent the model of a
physical process with unknown parameters, and q(t, x) = |h(x(t))−
r(t)|2 penalizes the error between the model prediction for a variable,
y(t) = h(x(t)), and the experimental observation r(t). Then the
optimization problem above aims to find parameters that best fit the
experimental data.

A typical optimization algorithm requires the gradient ∂J(µ)
∂µ , which

can be obtained with the help of the chain rule and the sensitivity
equations:

∂J(µ)
∂µ

=
∫ t1

t0

(
∂q
∂x

(t, x(t), µ)S(t, x0, µ) +
∂q
∂µ

(t, x(t), µ)

)
dt.
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Lyapunov Stability Theory
Khalil Chapter 4, Sastry Chapter 5

Consider a time invariant system

ẋ = f (x)

and assume equilibrium at x = 0, i.e. f (0) = 0. If the equilibrium of
interest is x∗ 6= 0, let x̃ = x− x∗:

˙̃x = f (x) = f (x̃ + x∗) , f̃ (x̃) =⇒ f̃ (0) = 0.

Definition: The equilibrium x = 0 is stable if for each ε > 0, there
exists δ > 0 such that

|x(0)| ≤ δ =⇒ |x(t)| ≤ ε ∀t ≥ 0. (1)

Bε

Bδ

It is unstable if not stable.

Asymptotically stable if stable and x(t) → 0 for all x(0) in a neigh-
borhood of x = 0.

Globally asymptotically stable if stable and x(t)→ 0 for every x(0).

Note that x(t) → 0 does not necessarily imply stability: one can
construct an example where trajectories converge to the origin, but
only after a large detour that violates the stability definition.

Bε

a homoclinic orbit

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
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Lyapunov’s Stability Theorem

Aleksandr Lyapunov (1857-1918)

1. Let D be an open, connected subset of Rn that includes x = 0. If
there exists a C1 function V : D → R such that

V(0) = 0 and V(x) > 0 ∀x ∈ D− {0} (positive definite)

and

V̇(x) := ∇V(x)T f (x) ≤ 0 ∀x ∈ D (negative semidefinite)

then x = 0 is stable.

2. If V̇(x) < 0 ∀x ∈ D− {0} (negative definite)

then x = 0 is asymptotically stable.

3. If, in addition, D = Rn and

|x| → ∞ =⇒ V(x)→ ∞ (radially unbounded)

then x = 0 is globally asymptotically stable.

Sketch of the proof:

The sets Ωc , {x : V(x) ≤ c} for constants c are called level sets of V
and are positively invariant because ∇V(x)T f (x) ≤ 0.

Stability follows from this property: choose a level set inside the ball
of radius ε, and a ball of radius δ inside this level set. Trajectories
starting in Bδ can’t leave Bε since they remain inside the level set.

Bε

level set inside Bε

Bδ inside level set
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Asymptotic stability:

Since V(x(t)) is decreasing and bounded below by 0, we conclude

V(x(t))→ c ≥ 0.

We will show c = 0 (i.e., x(t)→ 0) by contradiction. Suppose c 6= 0:

V(x) = V(x0)

V(x) = c 6= 0
x0•

Let
γ , max

{x: c≤V(x)≤V(x0)}
−V̇(x) > 0

where the maximum exists because it is evaluated over a bounded2 2 By positive definiteness of V, the level
sets {x : V(x) ≤ constant} are bounded
when the constant is sufficiently small.
Since we are proving local asymptotic
stability we can assume x0 is close
enough to the origin that the constant
V(x0) is sufficiently small.

set, and is positive because V̇(x) < 0 away from x = 0. Then,

V̇(x) ≤ −γ =⇒ V(x(t)) ≤ V(x0)− γt,

which implies V(x(t)) < 0 for t > V(x0)
γ – a contradiction because

V ≥ 0. Therefore, c = 0 which implies x(t)→ 0.

Global asymptotic stability:

Why do we need radial unboundedness?

Example:

V(x) =
x2

1
1 + x2

1
+ x2

2 (2)

Set x2 = 0, let x1 → ∞: V(x) → 1 (not radially unbounded). Then Ωc

is not a bounded set for c ≥ 1:

x1

x2

Therefore, x1(t) may grow unbounded while V(x(t)) is decreasing.
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Finding Lyapunov Functions

Example:
ẋ = −g(x) x ∈ R, xg(x) > 0 ∀x 6= 0 (3)

x

g(x)

V(x) = 1
2 x2 is positive definite and radially unbounded.

V̇(x) = −xg(x) is negative definite. Therefore x = 0 is globally
asymptotically stable.

If xg(x) > 0 only in (−b, c)− {0}, then take D = (−b, c)

x

g(x)

−b c
=⇒ x = 0 is locally asymptotically stable.

There are other equilibria where g(x) = 0, so we know global asymp-
totic stability is not possible.

Example:

ẋ1 = x2

ẋ2 = −ax2 − g(x1) a ≥ 0, xg(x) > 0 ∀x ∈ (−b, c)− {0}
(4)

The pendulum is a special case with
g(x) = sin(x).

The choice V(x) = 1
2 x2

1 +
1
2 x2

2 doesn’t work because V̇(x) is sign
indefinite (show this).

The function
V(x) =

∫ x1

0
g(y)dy +

1
2

x2
2

is positive definite on D = (−b, c)− {0} and

V̇(x) = g(x1)x2 − ax2
2 − x2g(x1) = −ax2

2

is negative semidefinite =⇒ stable.

If a = 0, no asymptotic stability because V̇(x) = 0 =⇒ V(x(t)) =

V(x(0)).

"conservative system"

If a > 0, (4) is asymptotically stable but the Lyapunov function above
doesn’t allow us to reach that conclusion. We need either another V
with negative definite V̇, or the Lasalle-Krasovskii Invariance Princi-
ple to be discussed in the next lecture.
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LaSalle-Krasovskii Invariance Principle

• Applicable to time-invariant systems.

• Allows us to conclude asymptotic stability from V̇(x) ≤ 0 if
additional conditions hold:

Suppose Ωc = {x : V(x) ≤ c} is bounded and V̇(x) ≤ 0 in Ωc. Define
S = {x ∈ Ωc : V̇(x) = 0} and let M be the largest invariant set in S.
Then, for every x(0) ∈ Ωc, x(t)→ M.

Corollary: If no solution other than x(t) ≡ 0 can stay identically in S
then M = {0} and we conclude asymptotic stability.

Example (from last lecture):

ẋ1 = x2

ẋ2 = −ax2 − g(x1) a > 0, xg(x) > 0 ∀x 6= 0
(1)

V(x) =
∫ x1

0
g(y)dy +

1
2

x2
2 =⇒ V̇(x) = −ax2

2

S = {x ∈ Ωc|x2 = 0}

If x(t) stays identically in S, then x2(t) ≡ 0 =⇒ ẋ2(t) ≡ 0 =⇒
g(x1(t)) ≡ 0 =⇒ x1(t) ≡ 0 =⇒ asymptotic stability from Corollary.

Example (linear system): Same system above with g(x1) = bx1:

ẋ1 = x2

ẋ2 = −ax2 − bx1 a > 0, b > 0
(2)

V(x) = b
2 x2

1 +
1
2 x2

2 =⇒ V̇(x) = −ax2
2 =⇒ Invariance Principle works

as in the example above.

Alternatively, construct another Lyapunov function with negative
definite V̇(x). Try V(x) = xT Px where P = PT > 0 is to be selected.

V̇(x) = xT Pẋ + Ṗx = xT(AT P + PA)x where A =

[
0 1
−b −a

]

Let P = 1
2

[
b ε

ε 1

]
, that is V(x) = b

2 x2
1 + εx1x2 +

1
2 x2

2.

Note that P > 0 if ε2 < b.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
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AT P+ PA =

[
−εb −εa/2
−εa/2 ε− a

] ≤ 0 if ε = 0

< 0 if 0 < ε < a and εb(a− ε) >
ε2a2

4︸ ︷︷ ︸
0<ε< ba

b+ a2
4

Linear Systems
Sastry (Sec. 5.7-5.8), Khalil (Sec. 4.3)

ẋ = Ax x ∈ Rn (3)

x = 0 is stable if <{λi(A)} ≤ 0 for all i = 1, · · · , n and eigenvalues on
the imaginary axis have Jordan blocks of order one.2 It is asymptoti- 2 i.e., if λ is an eigenvalue of multiplicity

q then λI − A must have rank n− q.cally stable if <{λi(A)} < 0 for all i, i.e., A is "Hurwitz."

Example:

A =

[
0 1
0 0

]
is unstable:

ẋ1 = x2

ẋ2 = 0

}
x1(t) = x1(0) + x2(0)t

A =

[
0 0
0 0

]
is stable.

Lyapunov Functions for Linear Systems

V(x) = xT Px P = PT > 0

V̇(x) = xT(AT P + PA)x
(4)

If ∃P = PT > 0 such that AT P + PA = −Q < 0, then A is Hurwitz.
The converse is also true:

Theorem: A is Hurwitz if and only if for any Q = QT > 0, there
exists P = PT > 0 such that

AT P + PA = −Q. (5)

Moreover, the solution P is unique. (5) is known as the Lyapunov Equation.
The Matlab command lyap(A’,Q)

returns the solution P.Proof:

(if) From (4) above, the Lyapunov function V(x) = xT Px proves
asymptotic stability which means A is Hurwitz.

(only if) Assume <{λi(A)} < 0 ∀i. Show ∃P = PT > 0 such that
AT P + PA = −Q.

Candidate:
P =

∫ ∞

0
eAT tQeAtdt. (6)
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• The integral exists because ‖eAt‖ ≤ κe−αt.

• P = PT

• P > 0 because xT Px =
∫ ∞

0
(eAtx)TQ(eAtx)︸ ︷︷ ︸

,φ(t,x)

dt ≥ 0 and

xT Px = 0 =⇒ φ(t, x) ≡ 0 =⇒ x = 0 because eAt is nonsingular.

• AT P + PA =
∫ ∞

0

(
ATeAT tQeAt + eAT tQeAt A

)
︸ ︷︷ ︸

=
d
dt

(
eAtQeAt

)
dt

= eAT tQeAt
∣∣∣∞
0
= 0−Q = −Q

Uniqueness:

Suppose there is another P̂ = P̂T > 0 satisfying P̂ 6= P, and AT P̂ +

P̂A = −Q.

=⇒ (P− P̂)A + AT(P− P̂) = 0

Define W(x) = xT(P− P̂)x.

d
dt

W(x(t)) = 0 =⇒W(x(t)) = W(x(0)) ∀t.

Since A is Hurwitz, x(t)→ 0 and W(x(t))→ 0.

Combining the two statements above, we conclude W(x(0)) = 0 for
any x(0). This is possible only if P− P̂ = 0 which contradicts P̂ 6= P.

Invariance Principle Applied to Linear Systems

AT P + PA = −Q ≤ 0 (7)

Can we conclude that A is Hurwitz if Q is only semidefinite?

Decompose Q as Q = CTC where C ∈ Rr×n, r is the rank of Q.

V̇(x) = −xTQx = −xTCTCx = −yTy

where y , Cx. The invariance principle guarantees asymptotic
stability if

y(t) = Cx(t) ≡ 0 =⇒ x(t) ≡ 0.

This implications is true if the pair (C, A) is observable.

Example (beginning of the lecture):

A =

[
0 1
−b a

]
Q =

[
0 0
0 a

]
=⇒ C = [0

√
a]

(C, A) is observable if b 6= 0.
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Lyapunov’s Linearization Method

ẋ = f (x) f (0) = 0

Define A = ∂ f (x)
∂x

∣∣∣
x=0

and decompose f (x) as

f (x) = Ax + g(x) where
|g(x)|
|x| → 0 as |x| → 0.

Theorem: The origin is asymptotically stable if <{λi(A)} < 0 for
each eigenvalue, and unstable if <{λi(A)} > 0 for some eigenvalue.

Note: We can conclude only local asymptotic stability from this lin-
earization. Inconclusive if A has eigenvalues on the imaginary axis.

Proof: Find P = PT > 0 such that AT P + PA = −Q < 0. Use V(x) =
xT Px as a Lyapunov function for the nonlinear system ẋ = Ax + g(x).

V̇(x) = xT P(Ax + g(x)) + (Ax + g(x))T Px

= xT(PA + AT P)x + 2xT Pg(x)

≤ −xTQx + 2|x|‖P‖|g(x)|

λmin(Q)|x|2 ≤ xTQx ≤ λmax(Q)|x|2

V̇(x) ≤ −λmin(Q)|x|2 + 2‖P‖|x||g(x)|

Since
|g(x)|
|x| → 0 as x → 0, for any γ > 0 we can find r > 0 such that

|x| ≤ r ⇒ |g(x)| ≤ γ|x|; see the illustration below for the case x ∈ R.

|x|
γ|x|

r

|g(x)|
γ′|x|

r′

Thus, |x| ≤ r(γ) ⇒ V̇(x) ≤ −λmin(Q)|x|2 + 2γ‖P‖|x|2.

Choose γ < λmin(Q)
2‖P‖ so that V̇ is negative definite in a ball of radius

r(γ) around the origin, and appeal to Lyapunov’s Stability Theorem
(Lecture 8) to conclude (local) asymptotic stability.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
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Region of Attraction

RA = {x : φ(t, x)→ 0} (1)

“Quantifies” local asymptotic stability. Global asymptotic stability:
RA = Rn.

Proposition: If x = 0 is asymptotically stable, then its region of at-
traction is an open, connected, invariant set. Moreover, the boundary
is formed by trajectories.

Example: van der Pol system in reverse time:

ẋ1 = −x2

ẋ2 = x1 − x2 + x3
2

(2)

The boundary is the (unstable) limit cycle. Trajectories starting within
the limit cycle converge to the origin.

∨∨

Example: bistable switch:

ẋ1 = −ax1 + x2

ẋ2 =
x2

1
1 + x2

1
− bx2

(3)

x1

x2

Estimating the Region of Attraction with a Lyapunov Function

Suppose V̇(x) < 0 in D − {0}. The level sets of V inside D are
invariant and trajectories starting in them converge to the origin.
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Therefore we can use the largest levet set of V that fits into D as an
(under)approximation of the region of attraction.

D ↗
{x : V(x) ≤ c} ⊂ RA

This estimate depends on the choice of Lyapunov function. A simple
(but often conservative) choice is: V(x) = xT Px where P is selected
for the linearization (see p.1).

Time-Varying Systems
Khalil (Sec. 4.5), Sastry (Sec. 5.2)

ẋ = f (t, x) f (t, 0) ≡ 0 (4)

To simplify the definitions of stability and asymptotic stability for
the equilibrium x = 0, we first define a class of functions known as
"comparison functions."

Comparison Functions

Definition: A continuous function α : [0, ∞) → [0, ∞) is class-K if
it is zero at zero and strictly increasing. It is class-K∞ if, in addition,
α(r)→ ∞ as r → ∞.

A continuous function β : [0, ∞)× [0, ∞)→ [0, ∞) is class-KL if:

1. β(·, s) is class-K for every fixed s,

2. β(r, ·) is decreasing and β(r, s)→ 0 as s→ ∞, for every fixed r.

Example: α(r) = tan−1(r) is class-K, α(r) = rc, c > 0 is class-K∞,
β(r, s) = rce−s is class-KL.

Proposition: If V(·) is positive definite, then we can find class-K
functions α1(·) and α2(·) such that

α1(|x|) ≤ V(x) ≤ α2(|x|). (5)

If V(·) is radially unbounded, we can choose α1(·) to be class-K∞.

Example: V(x) = xT Px P = PT > 0

α1(|x|) = λmin(P)|x|2 α2(|x|) = λmax(P)|x|2.
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Stability Definitions

Definition: x = 0 is stable if for every ε > 0 and t0, there exists δ > 0
such that

|x(t0)| ≤ δ(t0, ε) =⇒ |x(t)| ≤ ε ∀t ≥ t0.

If the same δ works for all t0, i.e. δ = δ(ε), then x = 0 is uniformly stable.

It is easier to define uniform stability and uniform asymptotic stabil-
ity using comparison functions:

• x = 0 is uniformly stable if there exists a class-K function α(·) and
a constant c > 0 such that

|x(t)| ≤ α(|x(t0)|)

for all t ≥ t0 and for every initial condition such that |x(t0)| ≤ c.

• uniformly asymptotically stable if there exists a class-KL β(·, ·) s.t.

|x(t)| ≤ β(|x(t0)|, t− t0)

for all t ≥ t0 and for every initial condition such that |x(t0)| ≤ c.

• globally uniformly asymptotically stable if c = ∞.

• uniformly exponentially stable if β(r, s) = kre−λs for some k, λ > 0:

|x(t)| ≤ k|x(t0)|e−λ(t−t0)

for all t ≥ t0 and for every initial condition such that |x(t0)| ≤ c.

Example: Consider the following system, defined for t > −1:

ẋ =
−x

1 + t
(6)

x(t) = x(t0)e
∫ t

t0
−1
1+s ds

= x(t0)elog(1+s)|t0t

= x(t0)elog 1+t0
1+t = x(t0)

1 + t0

1 + t

|x(t)| ≤ |x(t0)| =⇒ the origin is uniformly stable with α(r) = r.

The origin is also asymptotically stable, but not uniformly, because
the convergence rate depends on t0:

x(t) = x(t0)
1 + t0

1 + t0 + (t− t0)
=

x(t0)

1 + t−t0
1+t0

.

t− t0

increasing t0

x(t)
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Time-Varying Systems Continued

Uniform stability: There exists a class K function α(·) and a constant
c > 0, both independent of t0, such that

|x(t)| ≤ α(|x(t0)|) ∀t ≥ t0 when |x(t0)| ≤ c.

Uniform asymptotic stability: There exists a class KL function β(·, ·)
and a constant c > 0 such that

|x(t)| ≤ β(|x(t0)|, t− t0) ∀t ≥ t0 when |x(t0)| ≤ c.

Uniform exponential stability: There exist constants k, λ, c > 0 s.t.

|x(t)| ≤ k|x(t0)|e−λ(t−t0) ∀t ≥ t0 when |x(t0)| ≤ c,

that is β(r, s) = kre−λs.

k > 1 allows for overshoot:

tt0

k|x(t0)|e−λ(t−t0)
|x(t)|

|x(t0)|

k|x(t0)|

Example:

ẋ = −x3 ⇒ x(t) = sgn(x(t0))

√
x2

0
1 + 2(t− t0)x2

0

x = 0 is asymptotically stable but not exponentially stable.

Proposition: x = 0 is exponentially stable for ẋ = f (x), f (0) = 0, if

and only if A , ∂ f
∂x

∣∣∣
x=0

is Hurwitz, that is <λi(A) < 0 ∀i.

Although strict inequality in <λi(A) < 0 is not necessary for asymp-
totic stability (see example above where A = 0), it is necessary for
exponential stability.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
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Lyapunov’s Stability Theorem for Time-Varying Systems
Khalil, Section 4.5

1. If W1(x) ≤ V(t, x) ≤ W2(x) and V̇(t, x) , ∂V
∂t + ∂V

∂x f (t, x) ≤ 0 for
some positive definite functions W1(·), W2(·) on a domain D that
includes the origin, then x = 0 is uniformly stable.

x
W1(x)

W2(x)
V(t1, x)

V(t2, x)

2. If, further, V̇(t, x) ≤ −W3(x) ∀x ∈ D for some positive definite
W3(·), then x = 0 is uniformly asymptotically stable.

3. If D = Rn and W1(·) is radially unbounded, then x = 0 is globally
uniformly asymptotically stable.

4. If Wi(x) = ki|x|a, i = 1, 2, 3, for some constants k1, k2, k3, a > 0,
then x = 0 is uniformly exponentially stable.

Proof:

1. α1(|x|) ≤W1(x) ≤ V(t, x) ≤W2(x) ≤ α2(|x|)

V̇ ≤ 0⇒ V(x(t), t) ≤ V(x(t0), t0)

⇒ α1(|x(t)|) ≤ α2(|x(t0)|)
⇒ |x(t)| ≤ α(|x(t0)|) , (α−1

1 ◦ α2)(|x(t0)|).

Note: The inverse of a class-K function is well defined locally
(globally if K∞) and is class-K. The composition of two class-K
functions is also class-K.

2. V̇ ≤ −W3(x) ≤ −α3(|x|) ≤ −α3(α
−1
2 (V)) , −γ(V)

d
dt

V(t, x(t)) ≤ −γ(V(t, x(t)))

Let y(t) be the solution of ẏ = −γ(y), y(t0) = V(t0, x(t0)). Then,

V(t, x(t)) ≤ y(t).
y

−γ(y)
Since ẏ = −γ(y) is a first order differential equation and −γ(y) <
0 when y > 0, we conclude monotone convergence of y(t) to 0:

y(t) = β(y(t0), t− t0) =⇒ V(t, x(t)) ≤ β(V(t0, x(t0))︸ ︷︷ ︸
≤α2(|x(t0)|)

, t− t0)

⇒ α1(|x(t)|) ≤ β(α2(|x(t0)|), t− t0)

⇒ |x(t)| ≤ β̃(|x(t0)|, t− t0) , α−1
1 (β(α2(|x(t0)|), t− t0))
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3. If α1(·) is class K∞ then α−1
1 (·) exists globally above.

4. α3(|x|) = k3|x|a, α2(|x|) = k2|x|a

⇒ γ(V) = α3(α
−1
2 (V)) = k3

((
V
k2

) 1
a
)a

=
k3

k2
V

ẏ = − k3

k2
y ⇒ y(t) = y(t0)e−(k2/k2)(t−t0)

β(r, s) = re−(k3/k2)s ⇒ β̃(r, s) =
(

k2

k1
rae−(k3/k2)s

) 1
a
=

(
k2

k1

) 1
a

r−
k3a
k2

s.

Example:
ẋ = −g(t)x3 where g(t) ≥ 1 for all t

V(x) =
1
2

x2 ⇒ V̇(t, x) = −g(t)x4 ≤ −x4 , W3(x)

Globally uniformly asymptotically stable but not exponentially sta-
ble. Take g(t) ≡ 1 as a special case:

ẋ = −x3 ⇒ x(t) = sgn(x(t0))

√
x2

0
1 + 2(t− t0)x2

0

which converges slower than exponentially.

Example: ẋ = A(t)x. Take V(x) = xT P(t)x:

V̇(x) = xT Ṗ(t)x + ẋT P(t)x + xT P(t)ẋ

= xT(Ṗ + AT P + PA)︸ ︷︷ ︸
,−Q(t)

x

If k1 I ≤ P(t) ≤ k2 I and k3 I ≤ Q(t), k1, k2, k3 > 0, then

k1|x|2 ≤ V(t, x) ≤ k2|x|2 and V̇(t, x) ≤ −k3|x|2

⇒ global uniform exponential stability.

What if W3(·) is only semidefinite? Khalil, Section 8.3

Lasalle-Krasovskii Invariance Principle is not applicable to time-
varying systems. Instead, use the following (weaker) result:

Theorem: Suppose W1(x) ≤ V(t, x) ≤W2(x)

∂V
∂t

+
∂V
∂x

f (t, x) ≤ −W3(x),

where W1(·), W2(·) are positive definite and W3(·) is positive semidef-
inite. Suppose, further, W1(·) is radially unbounded, f (t, x) is locally
Lipschitz in x and bounded in t, and W3(·) is C1. Then

W3(x(t))→ 0 as t→ ∞.



ee c222/me c237 - spring’18 - lecture 11 notes 4

Note: This proves convergence to S = {x : W3(x) = 0} whereas the
Invariance Principle, when applicable, guarantees convergence to the
largest invariant set within S.

Example:

ẋ1 = −x1 + w(t)x2

ẋ2 = −w(t)x1

V(t, x) = 1
2 x2

1 +
1
2 x2

2 ⇒ V̇(t, x) = −x2
1. If w(t) is bounded in t then

the theorem above implies x1(t) → 0 as t → ∞, but no guarantee
about the convergence of x2(t) to zero.

By contrast, if w(t) ≡ w 6= 0, then we can use the Invariance Principle
and conclude x2(t)→ 0 (show this).

Barbalat’s Lemma (used in proving the theorem above):

If limt→∞

∫ t

0
φ(τ)dτ exists and is finite, and φ(·) is uniformly continu-

ous2 then φ(t)→ 0 as t→ ∞. 2 For every ε > 0 there exists δ > 0
such that ∀t1, t2 |t1 − t2| ≤ δ ⇒
|φ(t1) − φ(t2)| ≤ ε. Boundedness of
the derivative φ̇(t) implies uniform
continuity.

Uniform continuity in Barbalat’s Lemma can’t be relaxed:

Example: Let φ(t) be a sequence of pulses centered at k = 1, 2, 3, . . .
with amplitude = k, width = 1/k3, then∫ ∞

0
φ(t)dt =

∞

∑
k=1

1
k2 < ∞ but φ(t) 6→ 0.

· · ·

φ(t)

t
1 2 3 4

Proof of the theorem:

α1(|x|) ≤ V(t, x) ≤ α2(|x|) α1 ∈ K∞

⇒ |x(t)| ≤ α−1
1 (α2(|x(t0)|))

x(t) bounded⇒ ẋ(t) = f (t, x(t)) is bounded⇒ x(t) is uniformly
continuous.

V̇(t, x) ≤ −W3(x(t))

⇒ V(x(T))−V(x(t0), t0) ≤ −
∫ T

t0

W3(x(t))dt

⇒
∫ ∞

t0

W3(x(t))dt ≤ V(x(t0), t0) < ∞.

Since W3(·) is C1, it is uniformly continuous on the bounded domain
where x(t) resides. So, by Barbalat’s Lemma, W3(x(t))→ 0 as t→ ∞.
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Linear Time-Varying Systems
Khalil Section 4.6, Sastry Section 5.7

ẋ = A(t)x x(t) = Φ(t, t0)x(t0) (1)

• The state transition matrix Φ(t, t0) satisfies the equations:

∂

∂t
Φ(t, t0) = A(t)Φ(t, t0) (2)

∂

∂t0
Φ(t, t0) = −Φ(t, t0)A(t0) (3)

• No eigenvalue test for stability in the time-varying case:

A(t) =

[
−1 + 1.5 cos2 t 1− 1.5 sin t cos t
−1− 1.5 sin t cos t −1 + 1.5 sin2 t

]

eigenvalues: −0.25∓ i0.25
√

7 for all t, but unstable:

Φ(t, 0) =

[
e0.5t cos t e−t sin t

e−0.5t sin t e−t cos t

]

• For linear systems uniform asymptotic stability is equivalent to
uniform exponential stability:

Theorem2: x = 0 is uniformly asymptotically stable if and only if 2 Khalil Thm. 4.11, Sastry Thm. 5.33

‖Φ(t, t0)‖ ≤ ke−λ(t−t0) for some k > 0, λ > 0.

• Last lecture: V(t, x) = xT P(t)x proves uniform exp. stability if

(i) Ṗ(t) + AT(t)P(t) + P(t)A(t) = −Q(t)
(ii) 0 < k1 I ≤ P(t) ≤ k2 I
(iii) 0 < k3 I ≤ Q(t) for all t.

The converse is also true:

Theorem: Suppose x = 0 is uniformly exponentially stable, A(t) is
continuous and bounded, Q(t) is continuous and symmetric, and
there exist k3, k4 > 0 such that

0 < k3 I ≤ Q(t) ≤ k4 I for all t.

Then, there exists a symmetric P(t) satisfying (i)–(ii) above.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
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Proof:

Time-invariant: P =
∫ ∞

0
eATτQeAτdτ

Time-varying: P(t) =
∫ ∞

t
ΦT(τ, t)Q(τ)Φ(τ, t)dτ

Using the Leibniz rule, property (3), and Φ(t, t) = I we obtain:

Ṗ(t) =
∫ ∞

t

(
∂

∂t
ΦT(τ, t)Q(τ)Φ(τ, t) + ΦT(τ, t)Q(τ)

∂

∂t
Φ(τ, t)

)
dτ

−ΦT(t, t)Q(t)Φ(t, t)

=
∫ ∞

t

(
−AT(t)ΦT(τ, t)Q(τ)Φ(τ, t)−ΦT(τ, t)Q(τ)Φ(τ, t)A(t)

)
dτ

−ΦT(t, t)Q(t)Φ(t, t)

= −AT(t)P(t)− P(t)A(t)−Q(t).

Lyapunov-based Feedback Design Examples

Model Reference Adaptive Control

Illustrated on a first order system:

ẏ = a∗y + u (4)

where a∗ is unknown.

Reference model:

ẏm = −aym + r(t) a > 0, r(t) : reference signal. (5)

Goal: Design a controller that guarantees y(t)− ym(t) → 0 without
the knowledge of a∗.

If we knew a∗, we would choose:

u = −(a∗ + a)︸ ︷︷ ︸
=: k∗

y + r(t) ⇒ ẏ = −ay + r(t).

The tracking error e(t) := y(t)− ym(t) then satisfies:

ė = −ae ⇒ e(t)→ 0 exponentially.

Adaptive design when a∗ (therefore, k∗) is unknown:

u = −k(t)y + r(t)

where k̇(t) is to be designed. Then: ė = −ae− (k(t)− k∗)︸ ︷︷ ︸
=: k̃(t)

y.
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Use the Lyapunov function: V = 1
2 e2 + 1

2 k̃2:

V̇ = −ae2 − k̃ey + k̃ ˙̃k

= −ae2 + k̃( ˙̃k− ey).

Note ˙̃k = k̇ and choose k̇ = ey so that V̇ = −ae2.

This guarantees stability of (e, k̃) = (0, 0) and boundedness of
(e(t), k̃(t)) since the level sets of V = 1

2 e2 + 1
2 k̃2 are positively in-

variant. In addition, if r(t) is bounded, then ym(t) in (5) is bounded,
and so is y(t) = ym(t) + e(t). Then we can apply the Theorem from
Lecture 11, page 3, to the time-varying model

ė = −ae− y(t)k̃, ˙̃k = y(t)e,

and conclude from V̇ = −ae2 that e(t)→ 0.

Whether k̃(t) → 0 (k(t) → k∗) depends on further properties of the
reference signal r(·) that are beyond the scope of this lecture.

Backstepping
Khalil (Sec. 14.3), Sastry (Sec. 6.8)

Feedback stabilization: Given the system

ẋ = f (x) + g(x)u (6)

with input u, design a control law u = α(x) such that x = 0 is
asymptotically stable for the closed-loop system:

ẋ = f (x) + g(x)α(x).

Backstepping is a technique that simplifies this task for a class of
systems.

Suppose a stabilizing feedback u = α(X) is available for:

Ẋ = F(X) + G(X)u X ∈ Rn, u ∈ R

and suppose the closed-loop system admits a Lyapunov function
V(X) such that

∂V
∂X

(
F(X) + G(X)α(X)

)
≤ −W(X) < 0 ∀X 6= 0.

Can we modify α(X) to stabilize the augmented system below?

Ẋ = F(X) + G(X)x

ẋ = u.

Define the error variable z = x− α(X) and change variables:
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(X, x)→ (X, z):

Ẋ = F(X) + G(X)α(X) + G(X)z

ż = u− α̇(X, z)

where α̇(X, z) = ∂α
∂X

(
F(X) + G(X)α(X) + G(X)z

)
. Take the new

Lyapunov function:

V+(X, z) = V(X) +
1
2

z2.

V̇+ =
∂V
∂X

(
F(X) + G(X)α(X)

)
︸ ︷︷ ︸

≤ −W(X)

+
∂V
∂X

G(X)z + z(u− α̇)︸ ︷︷ ︸
= z
(

u− α̇ +
∂V
∂X

G(X)
)

Let: u = α̇− ∂V
∂X

G(X)− kz, k > 0.

Then, V̇+ ≤ −W(X)− kz2 ⇒ (X, z) = 0 is asymptotically stable.

Example: ẋ1 = x2
1 + x2

ẋ2 = u.
(7)

Treat x2 as “virtual” control input for the x1-subsystem:

α(x1) = −k1x1 − x2
1 k1 > 0

V1(x1) =
1
2

x2
1.

Apply backstepping:

z2 = x2 − α(x1) = x2 + k1x1 + x2
1

ż2 = u− α̇

u = α̇− ∂V1

∂x1
− k2z2, k2 > 0

= −(k1 + 2x1)(x2
1 + x2)︸ ︷︷ ︸

= α̇

− x1︸︷︷︸
=

∂V1

∂x1

− k2(x2 + k1x1 + x2
1)︸ ︷︷ ︸

= z2

.
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Backstepping
Khalil (Sec. 14.3), Sastry (Sec. 6.8)

Suppose a stabilizing feedback u = α(X), α(0) = 0, is available for:

Ẋ = F(X) + G(X)u X ∈ Rn, u ∈ R, F(0) = 0,

along with a Lyapunov function V such that

∂V
∂X

(
F(X) + G(X)α(X)

)
≤ −W(X) < 0 ∀X 6= 0.

Can we modify α(X) to stabilize the augmented system below?

Ẋ = F(X) + G(X)x

ẋ = u.

Define the error variable z = x− α(X) and change variables:

(X, x)→ (X, z):

Ẋ = F(X) + G(X)α(X) + G(X)z

ż = u− α̇(X, z)

where α̇(X, z) = ∂α
∂X

(
F(X) + G(X)α(X) + G(X)z

)
. Take the new

Lyapunov function:

V+(X, z) = V(X) +
1
2

z2.

V̇+ =
∂V
∂X

(
F(X) + G(X)α(X)

)
︸ ︷︷ ︸

≤ −W(X)

+
∂V
∂X

G(X)z + z(u− α̇)︸ ︷︷ ︸
= z
(

u− α̇ +
∂V
∂X

G(X)
)

Let: u = α̇− ∂V
∂X

G(X)− kz, k > 0.

Then, V̇+ ≤ −W(X)− kz2 ⇒ (X, z) = 0 is asymptotically stable.

Example 1: ẋ1 = x2
1 + x2

ẋ2 = u.
(1)

Treat x2 as “virtual” control input for the x1-subsystem:

α(x1) = −k1x1 − x2
1 k1 > 0

V1(x1) =
1
2

x2
1.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
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Apply backstepping:

z2 = x2 − α(x1) = x2 + k1x1 + x2
1

ż2 = u− α̇

u = α̇− ∂V1

∂x1
− k2z2, k2 > 0

= −(k1 + 2x1)(x2
1 + x2)︸ ︷︷ ︸

= α̇

− x1︸︷︷︸
=

∂V1

∂x1

− k2(x2 + k1x1 + x2
1)︸ ︷︷ ︸

= z2

.

• Above we discussed backstepping over a pure integrator. The main
idea generalizes trivially to:

Ẋ = F(X) + G(X)x

ẋ = f (X, x) + g(X, x)u

where X ∈ Rn, x ∈ R, and g(X, x) 6= 0 for all (X, x) ∈ Rn+1.

With the preliminary feedback

u =
1

g(X, x)
(− f (X, x) + v) (2)

the x-subsystem becomes a pure integrator: ẋ = v. Substituting the
backstepping control law from above:

v = α̇− ∂V
∂X

G(X)− kz, z , x− α(X), k > 0

into (2), we get:

u =
1

g(X, x)

(
− f (X, x) + α̇− ∂V

∂X
G(X)− kz

)
.

• Backstepping can be applied recursively to systems of the form:2 2 Systems of this form are called “strict
feedback systems.”

ẋ1 = f1(x1) + g1(x1)x2

ẋ2 = f2(x1, x2) + g2(x1, x2)x3

ẋ3 = f3(x1, x2, x3) + g3(x1, x2, x3)x4

...

ẋn = fn(x) + gn(x)u

(3)

where gi(x1, . . . , xi) 6= 0 for all x ∈ Rn, i = 1, 2, · · · , n.

Example 2: ẋ1 = (x1x2 − 1)x3
1 + (x1x2 + x2

3 − 1)x1

ẋ2 = x3

ẋ3 = u.

(4)
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Not in strict feedback form because x3 appears too soon. In fact,
this system is not globally stabilizable because the set x1x2 ≥ 2 is
positively invariant regardless of u:

n(x) =

 x2

x1

0



x1

x2

To see this, note that

n(x) · f (x, u) = [(x1x2 − 1)x3
1 + (x1x2 + x2

3 − 1)x1]x2 + x3x1

and substitute x1x2 = 2 :

=
(

x3
1 + (1 + x2

3)x1

)
x2 + x3x1

=
(

x2
1 + (1 + x2

3)
)

x1x2 + x3x1

= 2x2
1 + 2(1 + x2

3) + x3x1

= 2x2
1 + x3x1 + 2x2

3︸ ︷︷ ︸
≥0

+ 2 > 0.

• The condition gi(x1, . . . , xi) 6= 0 in (3) can be relaxed in some cases:

Example 3: ẋ1 = x2
1x2

ẋ2 = u
(5)

Treat x2 as virtual control and let α1(x1) = −x1 which stabilizes the

x1-subsystem, as verified with Lyapunov function V1(x1) =
1
2 x2

1.
Then z2 := x2 − α1(x1) satisfies ż2 = u− α̇1, and

u = α̇1 −
∂V1

∂x1
x2

1 − k2z2 = −x2
1x2 − x3

1 − k2(x2 + x1)

achieves global asymptotic stability:

V =
1
2

x2
1 +

1
2

z2
2 ⇒ V̇ = −x1

4 − k2z2
2.

Note that we can’t conclude exponential stability due to the quartic
term x4

1 above (recall the Lyapunov sufficient condition for expo-
nential stability in Lecture 11, p.2). In fact, the linearization of the
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closed-loop system proves the lack of exponential stability:[
0 0
0 −k2

]
→ λ1,2 = 0,−k2.

Design example: Active suspension Krstić et al., Nonlinear and Adaptive
Control Design, Section 2.2.2.

Q xa
xs

ca ka

Mb

car body

Mb ẍs = −ka(xs − xa)− ca(ẋs − ẋa)

ẋa =
1
A

Q A: effective piston surface

Flow: Q̇ = −c f Q + k f u u: current applied to the

solenoid valve (control input)

Define state variables: x1 = xs, x2 = ẋs, x3 = xa, x4 = Q:

ẋ1 = x2

ẋ2 = − ka

Mb
(x1 − x3)−

ca

Mb
(x2 −

1
A

x4)

ẋ3 =
1
A

x4

ẋ4 = −c f x4 + k f u.

(6)

This system is not in strict feedback form due to the x4 term in ẋ2. To
overcome this problem define:

x̄3 ,
ka

Mb
x3 +

ca

Mb A
x4

ξ , x3

and change variables to (x1, x2, x̄3, ξ):

ẋ1 = x2

ẋ2 = − ka

Mb
x1 −

ca

Mb
x2 + x̄3

˙̄x3 =
ka − cac f

Mb A
x4 +

cak f

Mb A
u.
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Two steps of backstepping starting with the virtual control law: The stiff nonlinearity k1x3
1 prevents

large excursions of x1.

α1(x1) = −c1x1 − k1x3
1

will stabilize the (x1, x2, x̄3) subsystem. Full (x1, x2, x̄3, ξ) system:

(x1, x2, x̄3)
subsystem

x̄3
ξ̇=− ka

Mb A ξ + 1
A x̄3

The ξ-subsystem is an asymptotically stable linear system driven by
x̄3; therefore the full system is stabilized.
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Input-to-State Stability
Khalil, Section 4.9

ẋ = f (x, u) u: exogenous input

For linear systems, asymp. stability of the zero-input model ẋ = Ax
implies a bounded-input bounded-state property for ẋ = Ax + Bu:

x(t) = eAtx0 +
∫ t

0
eA(t−τ)Bu(τ)dτ

=⇒ |x(t)| ≤ ‖eAt‖|x0|+
∫ t

0
‖eA(t−τ)‖‖B‖|u(τ)|dτ

≤ κe−αt|x0|+ ‖B‖ sup
0≤τ≤t

|u(τ)|
∫ t

0
κe−α(t−τ)dτ

≤ κe−αt|x0|︸ ︷︷ ︸
effect of

initial condition

+
κ

α
‖B‖ sup

0≤τ≤t
|u(τ)|.︸ ︷︷ ︸

effect of input

For nonlinear systems ẋ = f (x, u), asymp. stability of the origin for
the zero-input model ẋ = f (x, 0) does not guarantee boundedness of
states under bounded inputs.

Example 1: ẋ = −x + xu

u(t) ≡ constant > 1 =⇒ exponential growth of x(t).

A precise formulation of the bounded-input bounded-state property
for nonlinear systems:

Definition: The system ẋ = f (x, u), f (0, 0) = 0 is said to be
input-to-state stable (ISS) if:

|x(t)| ≤ β(|x(0)|, t) + γ

(
sup

0≤τ≤t
|u(τ)|

)

for some class-KL function β and class-K function γ, called an ISS
gain function.

Example: For the linear system above, γ(s) = κ
α‖B‖s.

Implications of ISS

1. ẋ = f (x, u) ISS =⇒ ẋ = f (x, 0) globally asymptotically stable

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
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Proof:

Substitute u(t) ≡ 0 in the definition above: |x(t)| ≤ β(|x(0)|, t).

2. u(t)→ 0 as t→ ∞ ⇒ x(t)→ 0 as t→ ∞.

Proof:

Need to show that for any ε > 0, there exists T such that

|x(t)| ≤ ε ∀t ≥ T.

Since u(t) → 0, we can find T1 such that γ(|u(t)|) ≤ ε/2 for all
t ≥ T1. Choose t0 = T1 and apply ISS definition:

|x(t)| ≤ β(|x(T1)|, t− T1) + ε/2 ∀t ≥ T1.

Choose T2 such that

β(|x(T1)|, T2) ≤ ε/2.

Then, |x(t)| ≤ ε for all t ≥ T1 + T2 , T.

A Lyapunov Characterization of ISS

The system ẋ = f (x, u) is ISS if there exist class-K∞ functions αi, i =
1, 2, 3, 4, and a C1 function V such that

α1(|x|) ≤ V(x) ≤ α2(|x|)
∂V
∂x

f (x, u) ≤ −α3(|x|) + α4(|u|).

V is called an “ISS Lyapunov function.”

Sketch of the proof:

Let ū , supτ≥0 |u(τ)|. Then:

|x| ≥ r , α−1
3 (α4(ū)) ⇒ ∂V

∂x
f (x, u(t)) ≤ 0 ∀t ≥ 0.

This implies that the level set {x : V(x) ≤ α2(r)} is invariant and
attractive. Thus, all trajectories converge to this level set which is
enclosed in the outer ball |x| ≤ R , α−1

1 (α2(r)).

V(x) = α2(r)

r

R = α−1
1 (α2(r)) = α−1

1 (α2(α
−1
3 (α4(ū))))
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Example 2: ẋ = −xr + xsu, r: odd integer, is ISS if r > s. Take:

V(x) =
1
2

x2

V̇(x) = −xr+1 + xs+1u.

Young’s inequality (recall from homework):

yz ≤ λp

p
|y|p + 1

qλq |z|
q

for any λ > 0, and p > 1, q > 1 satisfying (p− 1)(q− 1) = 1. Apply
to:

xs+1u ≤ λp

p
|x|(s+1)p +

1
qλq |u|

q

and choose

p =
r + 1
s + 1

q = 1 +
1

p− 1
and λ such that

λp

p
=

1
2

⇒ xs+1u ≤ 1
2
|x|r+1 +

1
qλq |u|

q

⇒ V̇(x) ≤ −|x|r+1 +
1
2
|x|r+1 +

1
qλq |u|

q

≤ −1
2
|x|r+1︸ ︷︷ ︸

−α3(|x|)

+
1

qλq |u|
q.︸ ︷︷ ︸

−α4(|u|)

Note:

• ẋ = −x + xu (r = s = 1) is not ISS as shown in Example 1.

• ẋ = −x + x2u (r = 1, s = 2) is not ISS: it exhibits finite time escape
for u(t) ≡ constant 6= 0, even with an exponentially decaying u(t).

• ẋ = −x3 + u (r = 3, s = 0) is ISS.

Example 3:

ẋ1 = −x1 + x2
2

ẋ2 = −x2 + u.

Let V(x) = 1
2 x2

1 +
a
4 x4

2, a > 0 to be determined.2 2 Why not quadratic V?

V̇(x) = −x2
1 + x1x2

2 + a(−x4
2 + x3

2u)

Apply the Young Inequalities:

x1x2
2 ≤

1
2

x2
1 +

1
2

x4
2

x3
2u ≤ λ4/3

4/3
x4

2 +
1

4λ4 u4
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Choose λ such that λ4/3

4/3 = 1
2 .

V̇(x) ≤ −1
2

x2
1 +

1
2

x4
2 + a

(
−1

2
x4

2 +
1

4λ4 u4
)

Let a = 2:
V̇(x) ≤ −1

2
x2

1 −
1
2

x4
2︸ ︷︷ ︸

≤−α3(|x|)

+
1

2λ4 u4︸ ︷︷ ︸
=α4(|u|)

for an appropriate choice of α3. Thus, the system is ISS.

Stability of Series Interconnections

ẋ1 = f1(x1, x2) x1 ∈ Rn1

ẋ2 = f2(x2) x2 ∈ Rn2
(1)

ẋ2 = f2(x2) ẋ1 = f1(x1, x2)
x2

Suppose x2 = 0 is globally asymptotically stable for ẋ2 = f2(x2)

and x1 = 0 is globally asymptotically stable for ẋ1 = f1(x1, 0). Is
(x1, x2) = 0 globally asymptotically stable for the interconnection?

Answer: No.

Example 4: ẋ1 = −x1 + x2
1x2

ẋ2 = −x2

exhibits finite time escape.

Proposition: Consider the series interconnection:

ẋ1 = f1(x1, x2)

ẋ2 = f2(x2, u).

If the x1 subsystem is ISS with x2 viewed as an input, and the x2

subsystem is ISS with input u, then the interconnection is ISS.

Example 3 revisited:

ẋ1 = −x1 + x2
2 is ISS with respect to x2

ẋ2 = −x2 + u is ISS with input u

⇒ the interconnection is ISS — an alternative to the proof in Ex. 3.

Corollary: (x1, x2) = 0 is globally asymptotically stable when u ≡ 0. GAS ISS ≡ GAS

Note that Example 4 fails the ISS condition for the x1 subsystem.
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Example: Active suspension design example in Lecture 13:

(x1, x2, x̄3)
subsystem

x̄3
ξ̇=− ka

Mb A ξ + 1
A x̄3

The (x1, x2, x̄3)-subsystem globally asymptotically stabilized by back-
stepping. The ξ-subsystem is an asymptotically stable linear system,
therefore ISS with respect to the input x̄3.
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Reachable Sets and Safety Certification

Reachable sets with unit peak inputs

RT , {x(T) | ẋ = f (x, u), x(0) = 0, |u| ≤ 1} (1)

The set of points that can be reached from x(0) = 0 with inputs not
exceeding unit magnitude. Difficult to find exactly, but methods exist
to find overapproximations.

ISS gives a very conservative bound:

|x(T)| ≤ β(|x(0)|, T)︸ ︷︷ ︸
=0

+ γ

(
sup

0≤t≤T
|u(t)|︸ ︷︷ ︸
≤1

)
≤ γ(1).

A less conservative estimate with level sets:

Find positive definite V(·) and a constant c > 0 such that

|u| ≤ 1 and V(x) ≥ c ⇒ ∇V(x) · f (x, u) ≤ 0.

Then, the level set Ωc , {x : V(x) ≤ c} contains the reachable set:

RT ⊂ Ωc ∀T ≥ 0.

Example: Linear system ẋ = Ax + Bu. Use V(x) = xT Px. If there
exists P = PT > 0 such that

uTu ≤ 1 and xT Px ≥ 1 ⇒ xT(AT P + PA)x + xT PBu + uT BT Px ≤ 0

then the ellipsoid {x : xT Px ≤ 1} is an overapproximation of RT .

Rewrite the above implication as:
[

x
u

]T [
0 0
0 −1

] [
x
u

]
+ 1 ≥ 0

 ∧

[

x
u

]T [
P 0
0 0

] [
x
u

]
− 1 ≥ 0


=⇒

[
x
u

]T [
AT P + PA PB

BT P 0

] [
x
u

]
≤ 0.

Note that this statement is verified if we can find α ≥ 0, β ≥ 0 such

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
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that, for all x and u,[
x
u

]T [
AT P + PA PB

BT P 0

] [
x
u

]
+ α

[ x
u

]T [
P 0
0 0

] [
x
u

]
− 1


+β

[ x
u

]T [
0 0
0 −I

] [
x
u

]
+ 1

 ≤ 0 (2)

or, equivalently:[
x
u

]T [
AT P + PA + αP PB

BT P −βI

] [
x
u

]
≤ α− β.

This inequality holds for all x and u if and only if[
AT P + PA + αP PB

BT P −βI

]
≤ 0 (3)

β− α ≤ 0. (4)

Let β = α which is the best choice to satisfy (3) without violating (4):[
AT P + PA + αP PB

BT P −αI

]
≤ 0. (5)

Summary: procedure to overapproximate the reachable set

Look for P = PT > 0 and α > 0 satisfying the matrix inequality
(5). This in not a linear matrix inequality (LMI) in α and P, but it is
an LMI in P if α is fixed. The resulting ellipsoid {x : xT Px ≤ 1} is a
superset of RT .

Additional objectives can be incorporated, such as minimizing the
volume of the ellipsoid, which is proportional to

√
det P−1:

minimize log(det P−1) which is convex in P.

S-procedure

The principle used to obtain (2) is known as the S-procedure in con-
trol theory. To show that:

q0(ξ) ≥ 0 whenever qi(ξ) ≥ 0 i = 1, 2, . . . , p

look for τ1, τ2, . . . , τp ≥ 0 such that

q0(ξ)−
p

∑
i=1

τiqi(ξ) ≥ 0.

In (2), qi(·), i = 0, 1, 2, are quadratic functions of ξ =

[
x
u

]
.
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Reachable sets with unit energy inputs

RT , {x(T) | ẋ = f (x, u), x(0) = 0,
∫ T

0
uT(t)u(t)dt ≤ 1} (6)

For an overapproximation, find positive definite V(·) such that

∇V(x) · f (x, u) ≤ uTu.

d
dt

V(x(t)) ≤ uTu ⇒ V(x(T))−V(x(0)) ≤
∫ T

0
uT(t)u(t)dt ≤ 1

⇒ V(x(T)) ≤ 1.

Therefore, x ∈ RT implies V(x) ≤ 1, i.e., the level set contains the
reachable set:

RT ⊂ {x : V(x) ≤ 1}.

Example:
ẋ = Ax + Bu V(x) = xT Px.

Find P = PT > 0 such that

xT(AT P + PA)x + xT PBu + uT BT Px ≤ uTu

or, written more compactly:[
x
u

]T [
AT P + PA PB

BT P 0

] [
x
u

]
≤
[

x
u

]T [
0 0
0 I

] [
x
u

]
.

This means [
AT P + PA PB

BT P −I

]
≤ 0

which is a LMI in P.

Safety Certification

Given an “unsafe” set U, show that

RT ∩U = ∅.

The level set overapproximations above can be used to prove safety:

RT

U

↘
{x|V(x) ≤ 1}
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Look for a V with the additional property that x ∈ U ⇒ V(x) > 1.
Such functions V are sometimes called “barrier functions.”

Example: Suppose the unsafe set is the half-space:

U = {x : aTx > 1}.

Let V(x) = xT Px. From the S-procedure, if there exists τ > 0 such
that

(xT Px− 1)− τ(aTx− 1) ≥ 0, (7)

then x ∈ U ⇒ V(x) > 1.

Exercise: Show that (7) is equivalent to: P ≥ aaT .

Thus, the LMIs in the previous examples can be augmented with this
additional constraint to certify safety.
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Sum of Squares Programming

Establishing nonnegativity of functions is critical in nonlinear system
analysis, e.g., a Lyapunov function V for ẋ = f (x) must satisfy

V(x) > 0 ∀x 6= 0 (1)

−∇V(x)T f (x) ≥ 0 ∀x. (2)

For f (x) = Ax and V(x) = xT Px, the conditions above are simple
matrix inequalities:

P > 0, −AT P− PA ≥ 0.

How can we check nonnegativity when f and V are more general
polynomials?

Sum of Squares (SOS) Polynomials

A monomial is a product of powers of variables (e.g., m(x) = x2
1x2)

and its degree is the sum of its exponents (e.g., 3 for m(x) = x2
1x2).

A polynomial is a finite linear combination of monomials and its de-
gree is the maximum degree of these monomials.

Example 1: The polynomial

q(x1, x2) = x2
1 − 2x1x2

2 + 2x4
1 + 2x3

1x2 − x2
1x2

2 + 6x4
2 (3)

has degree 4.

Definition: A polynomial p is a sum of squares (SOS) if there exist
polynomials g1, · · · , gr such that

p =
r

∑
i=1

g2
i . (4)

A SOS polynomial p(x) is nonnegative for all x. The converse is not
true: there exist nonnegative polynomials that are not SOS.

The polynomial q(x1, x2) in (3) is SOS because it can be rewritten as:

(x1 − x2
2)

2 +
1
2

(
2x2

1 + x1x2 − 3x2
2

)2
+

1
2

(
3x1x2 + x2

2

)2
. (5)

You can verify the equivalence of (3) and (5) by multiplying out terms
in (5) and matching them to those in (3).

How a SOS decomposition like (5) can be obtained is discussed next.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
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SOS Decomposition

Let z(x) be the vector of all monomials of degree ≤ d in n variables2: 2 The length of this vector is l[n,d] :=(
n + d

d

)
.z(x) , [1, x1, x2, . . . , xn, x2

1, x1x2, . . . , xd
n]

T .

Then any polynomial with degree ≤ 2d can be rewritten as

p(x) = z(x)TQ z(x) (6)

where Q is a symmetric matrix.

Example 2: Let p(x1, x2) = 2x2
1x2

2 which has degree 4. With n = 2
and d = 2,

z(x) = [1, x1, x2, x2
1, x1x2, x2

2]
T , (7)

and (6) holds with either

Q1 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 2 0
0 0 0 0 0 0


or Q2 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 1 0 0


.

Thus, the choice of Q is not unique.

Theorem: A polynomial p with degree ≤ 2d is SOS if and only if
there exists Q = QT ≥ 0 satisfying (6).

Proof: (only if) If p is SOS then, by definition, p = ∑r
i=1 g2

i for some
polynomials gi, i = 1, · · · , r. Write gi as:

gi(x) = Ciz(x) (8)

where Ci is a row vector of coefficients. Then g2
i = zTCT

i Ciz and

p =
r

∑
i=1

g2
i = zT

(
r

∑
i=1

CT
i Ci

)
︸ ︷︷ ︸

Q ≥ 0

z.

(if) Given Q = QT≥ 0 satisfying (6), decompose Q as Q = CTC
where C has as many rows as the rank of Q, say r. Then,

Q = CTC =
r

∑
i=1

CT
i Ci

where Ci is the ith row. If we define gi as in (8), then zTQz = ∑r
i=1 g2

i .
�

Since Q is not unique, not all Q satisfying (6) will certify SOS. In Ex-
ample 2 above, Q1 ≥ 0 but Q2 is indefinite. We need to characterize
the set of all Q satisfying (6) and search for a Q ≥ 0 in this set.
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Parameterization of all matrices Q satisfying (6):

Find a particular solution Q0 such that

p(x) = z(x)TQ0z(x),

and find a basis of symmetric matrices Nj, j = 1, 2, · · · , K, such that3
3 There are K =

l[n,d](l[n,d]+1)
2 − l[n,2d] such

matrices.

z(x)T Njz(x) = 0 for all x. (9)

Then we can parameterize the set of all Q satisfying (6) as

Q = Q0 +
K

∑
j=1

λjNj λj ∈ R,

and p is SOS if and only if there exist λ1, · · · , λK such that Q ≥ 0.

For n = d = 2, z(x) is as defined in (7) and a basis as in (9) is:

N1 =



0 0 0 0 0 −1
0 0 0 0 0 0
0 0 2 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−1 0 0 0 0 0


N2 =



0 0 0 0 −1 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
−1 0 0 0 0 0

0 0 0 0 0 0



N3 =



0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 1 0
0 0 0 0 0 0
0 0 1 0 0 0
0 −1 0 0 0 0


N4 =



0 0 0 −1 0 0
0 2 0 0 0 0
0 0 0 0 0 0
−1 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0



N5 =



0 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 0


N6 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 2 0
0 0 0 −1 0 0


.

Example 1 revisited: For q(x1, x2) in (3), a suitable choice for Q0 is

Q0 =



0 0 0 0 0 0
0 1 0 0 0 −1
0 0 0 0 0 0
0 0 0 2 1 0
0 0 0 1 −1 0
0 −1 0 0 0 6


.
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Note that Q0 6≥ 0, but Q0 + 6N6 ≥ 0. Moreover, Q0 + 6N6 can be
decomposed as 0 1 0 0 0 −1

0 0 0 2 1 −3
0 0 0 0 3 1


T  1 0 0

0 1
2 0

0 0 1
2


 0 1 0 0 0 −1

0 0 0 2 1 −3
0 0 0 0 3 1


which explains how the SOS form (5) was obtained.

Synthesizing SOS Polynomials

With the method above we can numerically check whether a given
polynomial function V satisfies (1)-(2). However, in practice, it is
more important to be able to search for a V satisfying (1)-(2). This is
accomplished by synthesizing V as a weighted sum of basis polyno-
mials with weights left as decision variables.

This leads to the following SOS synthesis problem:

Given basis polynomials pi, i = 0, 1, · · · , m, each with degree ≤ 2d, find
parameters a1, · · · , am such that p0 + a1 p1 + · · ·+ am pm is SOS.

To solve this problem, find a matrix Qi satisfying pi = zTQiz for each
i = 0, 1, · · · , m. Then search for a1, · · · , am and λ1, · · · , λK satisfying

Q0 +
m

∑
i=1

aiQi +
K

∑
j=1

λjNj ≥ 0. (10)

This is a linear matrix inequality (LMI) and can be solved numeri-
cally with standard semidefinite program (SDP) solvers.

There are also software packages4 that follow the procedures above 4 e.g., SOSOPT

to automatically convert SOS programs to LMIs, such as (10).

http://www.aem.umn.edu/~AerospaceControl/


EE C222/ME C237 - Spring’18 - Lecture 17 Notes1
1 Licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike
4.0 International License.Murat Arcak

March 21 2018

Review of Sum of Squares (SOS) Polynomials

Checking whether a polynomial is SOS

A polynomial p with degree ≤ 2d is a sum of squares if and only if
there exists Q = QT ≥ 0 s.t.

p(x) = z(x)TQ z(x) (1)

where z(x) is the vector of all monomials of degree ≤ d:

z(x) , [1, x1, x2, . . . , xn, x2
1, x1x2, . . . , xd

n]
T .

Find a particular solution Q0 such that

p(x) = z(x)TQ0z(x),

and find a basis of symmetric matrices Nj, j = 1, 2, · · · , K, such that

z(x)T Njz(x) = 0 for all x. (2)

Then p is SOS if and only if there exist reals λ1, · · · , λK such that

Q = Q0 +
K

∑
j=1

λjNj ≥ 0. (3)

This is a linear matrix inequality (LMI) and can be solved numeri-
cally with standard semidefinite program (SDP) solvers.

Synthesizing SOS Polynomials

Given pi, i = 0, 1, · · · , m, each with degree ≤ 2d, find reals a1, · · · , am

s.t. p0 + a1 p1 + · · ·+ am pm is SOS.

Find a particular Qi satisfying pi = zTQiz for each i = 0, 1, · · · , m.
Then search for a1, · · · , am and λ1, · · · , λK satisfying the LMI

Q0 +
m

∑
i=1

aiQi +
K

∑
j=1

λjNj ≥ 0. (4)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
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Applications

Searching for a Lyapunov Function

Given ẋ = f (x), f (0) = 0, where f is a vector of polynomials, search
for a Lyapunov function of the form

V(x) = p0(x) + a1 p1(x) + · · ·+ am pm(x) (5)

where pi, i = 0, 1, · · · , m are basis polynomials selected ahead of
time, and ai, i = 1, · · · , m are weights to be determined.

To ensure V is positive definite, pick a positive definite polynomial `
(e.g., `(x) = εxTx for some small ε) and impose the constraint:

V(x)− `(x) is SOS. (6)

To ensure ∇V(x)T f (x) is negative semidef., impose the constraint:

−∇V(x)T f (x) is SOS. (7)

Constraints (6) and (7) can be brought to the LMI form (4) and feasi-
ble ai, i = 1, · · · , m can be determined numerically (if they exist).

Overapproximating Reachable Sets

Recall from Lecture 15 that

RT ,
{

x(T) | ẋ = f (x, u), x(0) = 0,
∫ T

0
uT(t)u(t)dt ≤ 1

}
(8)

defines the reachable set from x(0) = 0 under unit energy inputs and,
if we can find a positive definite V such that

∇V(x)T f (x, u) ≤ uTu, (9)

then we can overapproximate RT by:

RT ⊂ {x : V(x) ≤ 1}.

This follows because, from (9),

d
dt

V(x(t)) ≤ uTu ⇒ V(x(T))−V(x(0)) ≤
∫ T

0
uT(t)u(t)dt ≤ 1

⇒ V(x(T)) ≤ 1.

If f (x, u) is a vector of polynomials in x and u, we can search for a
polynomial V of the form (5), and encode (9) with the constraint:

−∇V(x)T f (x, u) + uTu is SOS in x and u. (10)

This can then be combined with (6) and brought to the LMI form (4).
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Certifying Safety

RT

U

↘
{x|V(x) ≤ 1}

If unsafe set U does not intersect the overapproximation above, then
it can’t intersect the actual reachable set. Thus, we can certify safety
by proving the implication:

x ∈ U ⇒ V(x) ≥ 1 + ε (11)

for some ε > 0.

Suppose the unsafe set can be expressed as

U = {x : qi(x) ≥ 0, i = 1, · · · , p}

where qi are polynomials. Then we can encode (11) with the con-
straints:

V(x)− (1 + ε)−
p

∑
i=1

si(x)qi(x) is SOS (12)

si(x), i = 1, · · · , p are SOS. (13)

We can parameterize the search space for si as we did for V in (5),
and combine (6), (10), (12)-(13) into a LMI.

Above we implicitly used a generalization of the S-procedure from
Lecture 15. Specifically, to prove that

q0(x) ≥ 0 whenever qi(x) ≥ 0, i = 1, 2, . . . , p

we look for nonnegative functions s1, s2, . . . , sp (rather than constants
as in Lecture 15) such that

q0(x)−
p

∑
i=1

si(x)qi(x) ≥ 0.

Underapproximating the Region of Attraction

Given system ẋ = f (x) with asymptotically stable equilibrium at the
origin x = 0, the region of attraction, denoted RA, is the set of initial
conditions from which the trajectories converge to the origin.

Recall from Lecture 10 that, if V is positive definite and

∇V(x)T f (x) < 0 whenever x 6= 0 and V(x) ≤ γ, (14)

then Ωγ , {x : V(x) ≤ γ} ⊂ RA.

Let ` be a positive definite polynomial. If there exists a SOS polyno-
mial s such that

−[`(x) +∇V(x)T f (x)]− s(x)[γ−V(x)] is SOS, (15)
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then V(x) ≤ γ implies ∇V(x)T f (x) ≤ −`(x) as stipulated in (14).

To obtain a LMI from (15), one option is to fix the Lyapunov func-
tion2 V and to parameterize the search space for s. We can further 2 choose, e.g., a quadratic Lyapunov

function for the linearized model at
x = 0

maximize γ subject to (15) by incrementing γ until the the resulting
LMI is infeasible.

Alternatively s can be fixed and V parameterized. If we parameter-
ize both s and V, however, (15) is no longer affine in the parameters
because the term s(x)V(x) contains the products of these parameters.

Below is a procedure that alternates between first fixing V, varying
s, and next fixing s, varying V. When a new V is obtained, however,
the shape of the level set changes and it may be ambiguous whether
the new one is bigger. To remove this ambiguity we define a "shape
function" p and use its level sets to judge the size of the region of
attraction estimate.

Step 1: Let V0(x) be an initial choice for a Lyapunov function, e.g., a
quadratic function for the linearized model at the origin. Find

γ∗ := max γ s.t. ∇V0(x)T f (x) < 0 whenever x 6= 0 and V0(x) ≤ γ.

To satisfy the constraint look for a SOS multiplier s1(x) that satisfies

−[`(x) +∇V0(x)T f (x)]− s1(x)[γ−V0(x)] is SOS

where ` is positive definite, e.g., `(x) := ε(x2
1 + x2

2) for some ε > 0.

Step 2: Let p(x) be some fixed, positive definite convex polynomial
(e.g., p(x) = x2

1 + x2
2), and let V0(x) and γ∗ be as in Step 1. Find

β∗ := max β s.t. V0(x) ≤ γ∗ whenever p(x) ≤ β.

To satisfy the constraint look for a SOS multiplier s2(x) such that

[γ∗ −V0(x)]− s2(x)[β− p(x)] is SOS.

This means that {x : p(x) ≤ β} is contained in {x : V0(x) ≤ γ∗}.

Step 3: Given γ∗, s1(x) from Step 1 and p(x), s2(x) from Step 2,
search for V(x) to solve:

max
β>0

4th-order V(x)

β

subject to V(x)− `(x) is SOS

− [`(x) +∇V(x)T f (x)]− s1(x)[γ∗ −V(x)] is SOS

[γ∗ −V(x)]− s2(x)[β− p(x)] is SOS.
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The first constraint ensures V is positive definite. The second im-
plies that the level set {x : V(x) ≤ γ∗} is invariant, hence a valid
approximation for the region of attraction. The third constraint and
the maximization of β ensure that V is selected such that the level set
{x : V(x) ≤ γ∗} is as large as possible, as measured by function p.

To proceed, replace V0(x) in Step 1 with the function V(x) from
Step 3, and repeat the steps above for several iterations, until the
change in β∗ in Step 2 is sufficiently small. The final approximation
of the ROA is the set where V(x) ≤ γ∗.
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Feedback Linearization
Sastry, Chapter 9; Khalil, Chapter 13

Today: Relative degree, input-output linearization, zero dynamics

Consider the single-input single-output (SISO) nonlinear system:

ẋ = f (x) + g(x)u

y = h(x).
(1)

Relative degree (informal definition): Number of times we need to
take the time derivative of the output to see the input:

ẏ =
∂h
∂x

f (x)︸ ︷︷ ︸
=: L f h(x)

+
∂h
∂x

g(x)︸ ︷︷ ︸
=: Lgh(x)

u

L f h is called the Lie derivative of h along
the vector field f

If Lgh(x) 6= 0 in an open set containing the equilibrium, then the rela-
tive degree is equal to 1. If Lgh(x) ≡ 0, continue taking derivatives:

ÿ = L f L f h(x)︸ ︷︷ ︸
=: L2

f h(x)

+ LgL f h(x)u.

If LgL f h(x) 6= 0, then relative degree is 2. If LgL f h(x) ≡ 0, continue.

Definition: The system (1) has relative degree r if, in a neighbourhood
of the equilibrium,

LgLi−1
f h(x) = 0 i = 1, 2, . . . , r− 1

LgLr−1
f h(x) 6= 0.

(2)

Examples:

1. ẋ1 = x2

ẋ2 = −x3
1 + u

y = x1

(3)

has relative degree = 2.

2. SISO linear system:

ẋ = Ax + Bu y = Cx

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
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Lgh(x) = CB, LgL f h(x) = CAB, . . . , LgLr−1
f = CAr−1B.

CB 6= 0 ⇒ relative degree = 1

CB = 0, CAB 6= 0 ⇒ relative degree = 2

CB = · · · = CAr−2B = 0, CAr−1B 6= 0 ⇒ relative degree = r

The parameters CAi−1B i = 1, 2, 3, . . . are called Markov parameters
and are invariant under similarity transformations.

3. ẋ1 = x2 + x3
3 y = x1

ẋ2 = x3 ẏ = ẋ1 = x2 + x3
3

ẋ3 = u ÿ = ẋ2 + 3x2
3 ẋ3 = x3 + 3x2

3u

LgL f h(x) = 3x2
3 = 0 when x3 = 0, and 6= 0 elsewhere. Thus, this

system does not have a well-defined relative degree around x = 0.

Input-Output Linearization

If a system has a well-defined relative degree then it is input-output
linearizable:

y(r) = Lr
f h(x) + LgLr−1

f h(x)︸ ︷︷ ︸
6=0

u

Apply preliminary feedback:

u =
1

LgLr−1
f h(x)

(
− Lr

f h(x) + v

)
(4)

where v is a new input to be designed. Then, y(r) = v is a linear
system in the form of an integrator chain:

ζ̇1 = ζ2

ζ̇2 = ζ3

...

ζ̇r = v

where ζ1 =: y = h(x), ζ2 =: ẏ = L f h(x), . . . , ζr =: y(r−1) = Lr−1
f h(x).

To ensure y(t)→ 0 as t→ ∞, apply the feedback:

v = −k1ζ1 − k2ζ2 − · · · − krζr

= −k1h(x)− k2L f h(x)− · · · − krLr−1
f h(x)

(5)

where k1, . . . , kr are such that sr + krsr−1 + · · ·+ k2s + k1 has all roots
in the open left half-plane.
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Does the controller (4)-(5) achieve asymptotic stability of x = 0?

Not necessarily! It renders the (n− r)-dimensional manifold:

h(x) = L f h(x) = · · · = Lr−1
f h(x) = 0

invariant and attractive. The dynamics restricted to this manifold are
called zero dynamics and determine whether or not x = 0 is stable.

If the origin of the zero dynamics is asymptotically stable, the system
is called minimum phase. If unstable, it is called nonminimum phase.

Example: n = 3, r = 1

h(x) = 0

minimum phase nonminimum phase

Finding the Zero Dynamics

Set y = ẏ = · · · = y(r−1) = 0 and substitute (4) with v = 0, that is:

u∗ =
−Lr

f h(x)

LgLr−1
f h(x)

.

The remaining dynamical equations describe the zero dynamics.

Example: ẋ1 = x2

ẋ2 = αx3 + u

ẋ3 = βx3 − u

y = x1

(6)

This system has relative degree 2. With x1 = x2 = 0 and u∗ = −αx3,
the remaining dynamical equation is

ẋ3 = (α + β)x3.

Thus this system is minimum phase if α + β < 0.

For a linear SISO system, relative degree is the difference between
the degrees of the denominator and the numerator of the transfer
function, and zeros are the roots of the numerator. The definitions of
relative degree and zero dynamics above generalize these concepts to
nonlinear systems. As an example, the transfer function for (6) is

s− (α + β)

s2(s− β)
,

which has relative degree two and a zero at s = α + β as expected.
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Example: Cart/Pole

θ `

y : output

u

m

M

ÿ =
1

M
m + sin2 θ

(
u
m

+ θ̇2` sin θ − g sin θ cos θ

)

θ̈ =
1

`(M
m + sin2 θ)

(
− u

m
cos θ − θ̇2` cos θ sin θ +

M + m
m

g sin θ

) (7)

Relative degree = 2.

To find the zero dynamics, substitute y = ẏ = 0, and

u∗ = −m(θ̇2` sin θ − g sin θ cos θ)

in the θ̈ equation:

θ̈ =
g
`

sin θ.

Same as the dynamics of the pole when the cart is held still:

m

θ `

Nonminimum phase because θ = 0 is unstable for the zero dynamics.
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Feedback Linearization (continued)

Nonlinear Changes of Variables

T : Rn → Rn is called a diffeomorphism if its inverse T−1 exists, and
both T and T−1 are continuously differentiable (C1).

Examples:

1. ξ = Tx is a diffeomorphism if T is a nonsingular matrix

2. ξ = sin x is a local diffeomorphism around x = 0, but not global

x

ξ

3. ξ = x3 is not a diffeomorphism because T−1(·) is not C1 at ξ = 0

x

ξ

slope = 0

How to check if ξ = T(x) is a local diffeomorphism?

Implicit Function Theorem

Suppose f : Rn ×Rm → Rn is C1 and there exists x0 ∈ Rn, ξ0 ∈ Rm

such that
f (x0, ξ0) = 0.

If ∂ f
∂x (x0, ξ0) is nonsingular, then in a neighborhood of (x0, ξ0),

f (x, ξ) = 0

has a unique solution x = g(ξ) where g is C1 at ξ = ξ0.

Corollary: Let f (x, ξ) = T(x)− ξ. If ∂T
∂x is nonsingular at x0, then T(·)

is a local diffeomorphism around x0.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
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A "Normal Form" that Explicitly Displays the Zero Dynamics

Theorem: If ẋ = f (x) + g(x)u, y = h(x) has a well-defined relative

degree r ≤ n, then there exist a diffeomorphism T : x →
[

z
ζ

]
,

z ∈ Rn−r, ζ ∈ Rr, that transforms the system to the form:

ż = f0(z, ζ)

ζ̇1 = ζ2

...

ζ̇r = b(z, ζ) + a(z, ζ)u, y = ζ1.

(1)

In particular, ż = f0(z, 0) represents the zero dynamics. �

To obtain this form, let ζ = [h(x) L f h(x) . . . Lr−1
f h(x)]T , and

find n− r independent variables z such that ż does not contain u.

Note that the terms b(z, ζ) and a(z, ζ) correspond to Lr
f (x) and

LgLr−1
f h(x) in the original coordinates.

Example: ẋ1 = x2

ẋ2 = αx3 + u

ẋ3 = βx3 − u

y = x1.

Let ζ1 = x1, ζ2 = x2, and note that z = x2 + x3 is independent of
ζ1, ζ2, and ż does not contain u. Thus, the normal form is:

ż = (α + β)x3 = (α + β)z− (α + β)ζ2

ζ̇1 = ζ2

ζ̇2 = αx3 + u = αz− αζ2 + u.

I/O Linearizing Controller in the new coordinates (1):

u =
1

a(z, ζ)

(
− b(z, ζ) + v

)
(2)

v = −k1ζ1 · · · − krζr (3)

where k1, · · · , kr are such that all roots of sr + krsr−1 + · · ·+ k2s + k1

have negative real parts.

Theorem: If z = 0 is locally exponentially stable for the zero dynam-
ics ż = f0(z, 0), then (2)–(3) locally exponentially stabilizes x = 0.

Proof: Closed-loop system:

ż = f0(z, ζ)

ζ̇ = Aζ
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where

A =


0 1 0 . . .
0 0 1 . . .

. . .
1

−k1 −k2 −k3 . . . −kr


is Hurwitz. The Jacobian linearization at (z, ζ) = 0 is:

J =

[
∂ f0
∂z (0, 0) ∂ f0

∂ζ (0, 0)
0 A

]

where ∂ f0
∂z (0, 0) is Hurwitz since ż = f0(z, 0) is exponentially stable

by the proposition in Lecture 11, page 1. Since A is also Hurwitz, all
eigenvalues of J have negative real parts ⇒ exponential stability.

Global asymptotic stability can be guaranteed with additional as-
sumptions on the zero dynamics, such as ISS of

ż = f0(z, ζ)

with respect to the input ξ:

ż = f0(z, ζ)ζ̇ = Aζ
ζ

Example: ż = −z + z2ζ, ζ̇ = −kζ Note: the z subsystem is not ISS

(z, ζ) = 0 is locally exponentially stable, but not globally: solutions
escape in finite time for large z(0).

I/O Linearizing Controller for Tracking

For the output y(t) to track a reference signal2 yd(t), replace (3) with: 2 assumed to be r times differentiable

v = −k1(ζ1 − yd(t))− k2(ζ2 − ẏd(t)) · · · − kr(ζr − y(r−1)
d (t)) + y(r)d (t)

Let e1 , ζ1 − yd(t), e2 , ζ2 − ẏd(t), . . . , er , ζr − y(r−1)
d (t). Then:

ė1 = e2

ė2 = e3

...

ėr = v− y(r)d (t) = −k1e1 − · · · − krer


ė = Ae.

Thus e(t)→ 0, that is y(t)− yd(t)→ 0.
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If yd(t) and its derivatives are bounded, then ζ(t) is bounded. If the
zero dynamics ż = f0(z, ζ) is ISS with respect to ζ, then z(t) is also
bounded. Thus, all internal signals are bounded.
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Full-State Feedback Linearization

The system ẋ = f (x) + g(x)u, x ∈ Rn, u ∈ R, is (full state) feedback
linearizable if a function h : Rn 7→ R exists such that the relative
degree from u to y = h(x) is n.

Since r = n, the normal form in Lecture 19 has no zero dynamics and

x →


ζ1

ζ2
...

ζn

 =


h(x)

L f h(x)
...

Ln−1
f h(x)


is a diffeomorphism that transforms the system to the form:

ζ̇1 = ζ2

ζ̇2 = ζ3

...

ζ̇n = Ln
f h(x) + LgLn−1

f h(x)u.

Then, the feedback linearizing controller

u =
1

LgLn−1
f h(x)

(
− Ln

f h(x) + v

)
, v = −k1ζ1 · · · − knζn,

yields the closed-loop system:

ζ̇ = Aζ where A =


0 1 0 . . .
0 0 1 . . .

. . .
1

−k1 −k2 −k3 . . . −kn

 .

Example: ẋ1 = x2 + 2x2
1

ẋ2 = x3 + u

ẋ3 = x1 − x3

The choice y = x3 gives relative degree r = n = 3.

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Let ζ1 = x3, ζ2 = ẋ3 = x1− x3, ζ3 = ẍ3 = ẋ1− ẋ3 = x2 + 2x2
1− x1 + x3.

ζ̇1 = ζ2

ζ̇2 = ζ3

ζ̇3 = (4x1 − 1)(x2 + 2x2
1) + x1 + u.

Feedback linearizing controller:

u = −(4x1 − 1)(x2 + 2x2
1)− x1 − k1ζ1 − k2ζ2 − k3ζ3.

Summary so far:

I/O Linearization: • suitable for tracking
• output y is an intrinsic physical variable

Full state linearization: • set point stabilization
• output is not intrinsic, selected to enable

a linearizing change of variables.

Remaining question:

• When is a system feedback linearizable, i.e., how do we know
whether a relative degree r = n output exists?

Basic Definitions from Differential Geometry

Definition: The Lie bracket of two vector fields f and g is a new vec-
tor field defined as:

[ f , g](x) =
∂g
∂x

f (x)− ∂ f
∂x

g(x).

Note:

1. [ f , g] = −[g, f ],

2. [ f , f ] = 0,

3. If f , g are constant then [ f , g] = 0.

Notation for repeated applications:

[ f , [ f , g]] = ad2
f g, [ f , [ f , [ f , g]]] = ad3

f g, · · ·

ad0
f g(x) , g(x), adk

f g , [ f , adk−1
f g] k = 1, 2, 3, . . .

Definition: Given vector fields f1, . . . , fk, a distribution ∆ is defined as
∆(x) = span{ f1(x), . . . , fk(x)}.

f ∈ ∆ means that there exist scalar functions αi(x) such that

f (x) = α1(x) f1(x) + · · ·+ αk(x) fk(x).
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Definition: ∆ is said to be nonsingular if f1(x), . . . , fk(x) are linearly
independent for all x.

Definition: ∆ is said to be involutive if

g1 ∈ ∆, g2 ∈ ∆ =⇒ [g1, g2] ∈ ∆

that is, ∆ is closed under the Lie bracket operation.

Proposition: ∆ = span{ f1, . . . , fk} is involutive if and only if

[ fi, f j] ∈ ∆ 1 ≤ i, j ≤ k.

Example 1: ∆ = span{ f1, . . . , fk} where f1, . . . , fk are constant vec-
tors

Example 2: a single vector field f (x) is involutive since [ f , f ] = 0 ∈
∆

Definition: A nonsingular k-dimensional distribution

∆(x) = span{ f1(x), . . . , fk(x)} x ∈ Rn

is said to be completely integrable if there exist n− k functions

φ1(x), . . . , φn−k(x)

such that

∂φi
∂x

f j(x) = 0 i = 1, . . . , n− k, j = 1, . . . , k

and dΦi(x) :=
∂φi
∂x

, i = 1, . . . , n− k, are linearly independent.

Example 3: If f1, . . . , fk are linearly independent constant vectors,
then we can find n− k independent row vectors T1, . . . , Tn−k s.t.

Ti[ f1 . . . fk] = 0.

Therefore, ∆ = span{ f1, . . . , fk} is completely integrable and

φi(x) = Tix, i = 1, . . . , n− k.

Frobenius Theorem: A nonsingular distribution is completely inte-
grable if and only if it is involutive.

Example 3 above is a special case since ∆ is involutive by Example 1.

Back to (Full State) Feedback Linearization

Recall: ẋ = f (x) + g(x)u, x ∈ Rn, u ∈ R is feedback linearizable if we
can find an output y = h(x) such that relative degree r = n.
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How do we determine if a relative degree r = n output exists?

Lgh(x) = LgL f h(x) = · · · = LgLn−2
f h(x) = 0 in a nbhd of x0 (1)

LgLn−1
f h(x0) 6= 0. (2)

Proposition:2 (1)-(2) are equivalent to: 2 follows from (5) below with j = 0

Lgh(x) = Lad f gh(x) = · · · = Ladn−2
f gh(x) = 0 in a nbhd of x0 (3)

Ladn−1
f gh(x0) 6= 0. (4)

The advantage of (3) over (1) is that it has the form:

∂h
∂x

[g(x) ad f g(x) . . . adn−2
f g(x)] = 0

which is amenable to the Frobenius Theorem.

Theorem: ẋ = f (x) + g(x)u is feedback linearizable around x0 if and
only if the following two conditions hold:

C1) [g(x0) ad f g(x0) . . . adn−1
f g(x0)] has rank n

C2) ∆(x) = span{g(x), ad f g(x), . . . , adn−2
f g(x)} is involutive in a

neighborhood of x0.

Proof: (if) Given C1 and C2 show that there exists h(x) satisfying
(3)-(4).

∆(x) is nonsingular by C1 and involutive by C2. Thus, by the Frobe-
nius Theorem, there exists h(x) satisfying (3) and dh(x) 6= 0.

To prove (4) suppose, to the contrary, Ladn−1
f

h(x0) = 0. This implies

dh(x0)[g(x0) ad f g(x0) . . . adn−1
f g(x0)]︸ ︷︷ ︸

nonsingular by C1

= 0.

Thus dh(x0) = 0, a contradiction.

(only if) Given that y = h(x) with r = n exists, that is (3)-(4) hold,
show that C1 and C2 are true.

We will use the following fact3 which holds when r = n: 3 see, e.g., Khalil, Lemma C.8

Ladi
f gLj

f h(x) =

0 if i + j ≤ n− 2

(−1)n−1−jLgLn−1
f h(x) 6= 0 if i + j = n− 1.

(5)

Define the matrix

M =


dh

dL f h
...

dLn−1
f h


[

g − ad f g ad2
f g . . . (−1)n−1 adn−1

f g
]

(6)
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and note that the (k, `) entry is:

Mk` = dLk−1
f h(x)(−1)`−1 ad`−1

f g(x)

= (−1)`−1Lad`−1
f gLk−1

f h(x).

Then, from (5):


0 0 · · · ?

0 �
...

... ?
...

? · · · · · · ?


Mk` =

0 `+ k ≤ n

6= 0 `+ k = n + 1.

Since the diagonal entries are nonzero, M has rank n and thus the
factor [

g − ad f g ad2
f g . . . (−1)n−1 adn−1

f g
]

in (6) must have rank n as well. Thus C1 follows.

This also implies ∆(x) is nonsingular; thus, by the Frobenius Thm,

complete integrability ≡ involutivity.

∆(x) is completely integrable since h(x) satisfying (3) exists by as-
sumption; thus, we conclude involutivity (C2).

Example: ẋ1 = x2 + 2x2
1

ẋ2 = x3 + u

ẋ3 = x1 − x3

Feedback linearizability was shown on page 1 by inspection: y = x3

gives relative degree = 3. Verify with the theorem above:

f (x) =

 x2 + 2x2
1

x3

x1 − x3

 g(x) =

 0
1
0


[ f , g](x) =

 −1
0
0

 [ f , [ f , g]](x) =

 4x1

0
1


Conditions of the theorem:

1.

 0 −1 4x1

1 0 0
0 0 1

 full rank

2. ∆ = span


 0

1
0

 ,

 −1
0
0


 involutive

∂h
∂x

 0 −1
1 0
0 0

 satisfied by h(x) = x3.
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Feedback Linearization Continued

Recall “strict feedback systems" discussed in Lecture 13:

ẋ1 = f1(x1) + g1(x1)x2

ẋ2 = f2(x1, x2) + g2(x1, x2)x3

ẋ3 = f3(x1, x2, x3) + g3(x1, x2, x3)x4

...

ẋn = fn(x) + gn(x)u.

(1)

Such systems are feedback linearizable when gi(x1, . . . , xi) 6= 0 near
the origin, i = 1, 2, · · · , n, because the relative degree is n with the
choice of output y = h(x) = x1:

y(n) = Ln
f h(x) + g1(x1)g2(x1, x2) · · · gn(x)︸ ︷︷ ︸

LgLn−1
f h(x) 6= 0

u.

Feedback linearizability is lost when gi(0) = 0 for some i; however,
backstepping may be applicable as the following example illustrates:

Example 1:

ẋ1 = x2
1x2

ẋ2 = u.

Treat x2 as virtual control and let α1(x1) = −x1 which stabilizes the
x1-subsystem, as verified with Lyapunov function V1(x1) =

1
2 x2

1.
Then z2 := x2 − α1(x1) satisfies ż2 = u− α̇1, and

u = α̇1 −
∂V1

∂x1
x2

1 − k2z2 = −x2
1x2 − x3

1 − k2(x2 + x1)

achieves global asymptotic stability:

V =
1
2

x2
1 +

1
2

z2
2 ⇒ V̇ = −x1

4 − k2z2
2.

In contrast the system is not feedback linearizable, because condition
(C1) in the theorem for feedback linearizability (Lecture 20, p.4) fails.
To see this note that

f (x) =

[
x2

1x2

0

]
, g(x) =

[
0
1

]
, ad f g(x) = [ f , g](x) =

[
−x2

1
0

]
,

http://creativecommons.org/licenses/by-nc-sa/4.0/
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thus, with n = 2 and x0 = 0,

[g(x0) ad f g(x0) . . . adn−1
f g(x0)] =

[
0 0
1 0

]
,

which is rank deficient.

Multi-Input Multi-Output Systems

Consider now a MIMO system with m inputs and m outputs:

ẋ = f (x) +
m

∑
i=1

gi(x)ui (2)

yi = hi(x), i = 1, · · · , m.

Let ri denote the number of times we need to differentiate yi to hit at
least one input. Then,

y(r1)
1
...

y(rm)
m

=


Lr1
f h1(x)

...
Lrm

f hm(x)


︸ ︷︷ ︸
=: B(x)

+


Lg1 Lr1−1

f h1(x) · · · Lgm Lr1−1
f h1(x)

...
...

Lg1 Lrm−1
f hm(x) · · · Lgm Lrm−1

f hm(x)


︸ ︷︷ ︸

=: A(x)


u1
...

um

 .

If A(x) is nonsingular, then the feedback law

u = A(x)−1(−B(x) + v)

input/output linearizes the system, creating m decoupled chains of
integrators:

y(ri)
i = vi, i = 1, . . . , m.

We say that the system has vector relative degree {r1, · · · , rm} if the
matrix A(x) defined above is nonsingular.

Example 2: The kinematic model of a unicycle, depicted below, isẋ1

ẋ2

ẋ3

 =

cos x3

sin x3

0

 u1 +

0
0
1

 u2,

where u1 is the speed and u2 is the angular velocity.

(x1, x2)

θ = x3

u1
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Let y1 = x1 and y2 = x2, and note that[
ẏ1

ẏ2

]
=

[
cos x3 0
sin x3 0

]
︸ ︷︷ ︸
=: A(x)

[
u1

u2

]
.

Since A(x) is singular, the system does not have a well-defined vector
relative degree. �

The notion of zero dynamics and the normal form can be extended to
MIMO systems2. If the system has vector relative degree {r1, · · · , rm}, 2 see, e.g., Sastry, Section 9.3

then r := r1 + · · ·+ rm ≤ n and

ζ := [h1(x) L f h1(x) · · · Lr1−1
f h1(x) · · · hm(x) L f hm(x) · · · Lrm−1

f hm(x)]T

defines a partial set of coordinates. As in normal form discussed in
Lecture 19, one can find n− r additional functions z1(x), · · · , zn−r(x)
so that x 7→ (z, ζ) is a complete coordinate transformation.

Full-state feedback linearization amounts to finding m output func-
tions h1, · · · , hm such that the system has vector relative degree
{r1, · · · , rm} with r1 + · · · + rm = n. Necessary and sufficient con-
ditions for the existence of such functions, analogous to those in
Lecture 20 for SISO systems, are available3. 3 see, e.g., Sastry, Proposition 9.16

Example 3: Consider the following model of a planar vertical take-off
and landing (PVTOL) aircraft4 4 Sastry, Section 10.4.2

ẍ = − sin(θ)u1 + µ cos(θ)u2

z̈ = cos(θ)u1 + µ sin(θ)u2 − 1

θ̈ = u2,

where µ is a constant that accounts for the coupling between the
rolling moment and translational acceleration, and −1 in the second
equation is the gravitational acceleration, normalized to unity by
appropriately scaling the variables.

x

θ

u1

z
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If we take x and z as the two outputs we get[
ẍ
z̈

]
=

[
0
−1

]
+

[
− sin θ µ cos θ

cos θ µ sin θ

]
︸ ︷︷ ︸

A(θ)

[
u1

u2

]

where A(θ) is invertible when µ 6= 0:

A−1(θ) =

[
− sin θ cos θ
1
µ cos θ 1

µ sin θ

]
.

Thus the systems has vector relative degree {2, 2} when µ 6= 0, and
the input/output linearizing controller is[

u1

u2

]
=

[
− sin θ cos θ
1
µ cos θ 1

µ sin θ

]([
0
1

]
+

[
v1

v2

])
.

The zero dynamics is obtained by substituting u∗2 = 1
µ sin θ, needed

to maintain z at a constant value and ż at zero, in the dynamical
equation for θ:

θ̈ =
1
µ

sin θ.

The system is nonminimum phase for µ > 0, since θ = 0 is unstable.

Drift-Free Systems

Suppose f (x) = 0 for all x in (2). Such system are called drift-free and
encompass linear systems of the form

ẋ = Bu, x ∈ Rn, u ∈ Rm.

Assuming the columns of the n × m matrix B are linearly indepen-
dent, we can find n−m row vectors Ti, i = 1, · · · , n−m, such that

TiB = 0.

This means that φi(x) := Tix satisfies

d
dt

φi(x(t)) = 0 ⇒ φi(x(t)) = φi(x(0)) (3)

regardless of the control inputs. Since there are n − m such con-
straints, controllability is not possible in drift-free linear systems with
fewer control inputs than the state dimension (m < n).

The Frobenius Theorem (Lecture 20) implies that constraints of the
form (3), called holonomic constraints, also exist for nonlinear drift-free
systems

ẋ =
m

∑
i=1

gi(x)ui (4)
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when the distribution ∆ = span{g1, · · · , gm} is nonsingular and
involutive.

When ∆ is non-involutive, however, controllability may be possible
with m < n – another essentially nonlinear phenomenon.

Indeed, Chow’s Theorem states that (4) is controllable if the involutive
closure5 of ∆ = span{g1, · · · , gm} has dimension n. This condition 5 the smallest involutive distribution

that containts ∆means that the Lie brackets of g1, · · · , gm span new dimensions that
are not already spanned by these basis vector fields. Drift-free sys-
tems satisfying Chow’s Theorem are called nonholonomic.

Example 4: Recall the unicycle model discussed in Example 2, where

g1(x) =

cos x3

sin x3

0

 , g2 =

0
0
1

 , and [g1, g2](x) =

− sin x3

cos x3

0

 .

∆ = span{g1, g2} is non-involutive, as [g1, g2] generates a new di-
rection. Taken together, g1, g2, and [g1, g2] span the entire three-
dimensional space at each point x; therefore, the system is control-
lable by Chow’s Theorem. This conclusion sheds light on how paral-
lel parking is possible despite lack of sideways actuation. �

To present an interpretation of the Lie bracket [g1, g2], we let Φgi
t (x0)

denote the solution of the system ẋ = gi(x) at time t from initial
condition x0. Then it can be shown that

Φ−g2
t (Φ−g1

t (Φg2
t (Φg1

t (x0)))) = t2[g1, g2](x0) +O(t3),

which suggests that motion in the direction of the Lie bracket [g1, g2]

can be generated by alternating actuation of the two inputs u1 and u2

with positive and negative signs, as one does in parallel parking.
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Finite Time Convergence

Systems with Lipschitz continuous dynamics converge to equilib-
rium points no faster than exponentially (Homework 10, Problem 1).
Finite-time convergence is thus possible only with non-Lipschitz or
discontinuous dynamics, as illustrated in the following examples.

Example 1: Consider the system ẋ = −x1/3, where the right-
hand side is not Lipschitz. We rearrange the differential equation
as x−1/3 ẋ = 3

2
d
dt x2/3 = −1 for x 6= 0, and obtain the solution

x(t)2/3 = x(0)2/3 − 2t
3

which holds until x(t) reaches 0 at t = 3
2 x(0)2/3.

Example 2: Consider the system ẋ = −sgn(x) where

sgn(x) :=


1 if x > 0
0 if x = 0
−1 if x < 0.

The solution is x(t) = x(0)− t when x(0) > 0 and x(t) = x(0) + t
when x(0) < 0, until x(t) reaches zero at t = |x(0)| in each case.

The following proposition allows us to conclude finite time conver-
gence from a Lyapunov function.

Proposition: Consider the system ẋ = f (t, x), f (t, 0) = 0 ∀t. If there
exists a positive definite, continuously differentiable and radially
unbounded function V : Rn 7→ R, and constants c > 0 and α ∈ (0, 1)
such that, for all t and x,

V̇(x) := ∇V(x)T f (t, x) ≤ −cV(x)α

then all trajectories converge to the origin in finite time.

The proof follows by defining w(t) := V(x(t)), which satisfies the
differential inequality ẇ(t) ≤ −cw(t)α. Finite time convergence of
w(t) and, thus of x(t), can then be argued by rearranging and solving
the differential equation ˙̄w = −cw̄α, w̄(0) = w(0), as in Example 1

above, and noting that w(t) ≤ w̄(t).

As an illustration, in Example 2 above V = 1
2 x2 yields

V̇ = −x sgn(x) = −|x| = −
√

2V,

which satisfies the proposition above with c =
√

2 and α = 1/2.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
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Example 3: Consider the control system

ẋ = u + δ(x), x ∈ R, u ∈ R,

where δ(x) is unknown, but an upper bound ρ(x) is available:

|δ(x)| ≤ ρ(x).

To stabilize the origin despite the unknown δ(x) we can apply

u = −(ρ(x) + ρ0)sgn(x),

where ρ0 > 0 is a constant. Then V = 1
2 x2 gives

V̇ = −(ρ(x) + ρ0)|x|+ xδ(x)

≤ −(ρ(x) + ρ0)|x|+ |x||δ(x)|
= −ρ0|x| − (ρ(x)− |δ(x)|)|x|
≤ −ρ0|x| = −ρ0

√
2V.

This implies that, in addition to dominating the uncertain term δ(x),
we achieve finite time stability of x = 0.

Sliding Mode Control

Example 3 demonstrated the ability of a discontinuous controller to
dominate uncertain terms. Sliding mode control extends this idea to
higher order systems, as illustrated in the following example.

Example 4: Consider the second order system

ẋ1 = x2

ẋ2 = h(x) + g(x)u
(1)

where g(x) ≥ g0 > 0 ∀x. If we can drive the trajectories to the surface

s := x2 + a1x1 = 0,

where a1 > 0 is a design parameter, then x1 is governed by ẋ1 =

−a1x1 on this surface and converges to zero along with x2 = −a1x1.
To ensure s(t)→ 0 note that

ṡ = a1x2 + h(x) + g(x)u, (2)

and let ρ be a function such that

|a1x2 + h(x)|
g(x)

≤ ρ(x). (3)
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Then apply the controller

u = −(ρ(x) + ρ0)sgn(s), ρ0 > 0, (4)

and note that V = 1
2 s2 satisfies

V̇ = s[a1x2 + h(x)− g(x)(ρ(x) + ρ0)sgn(s)]

≤ |a1x2 + h(x)||s| − g(x)(ρ(x) + ρ0)|s|
≤ (|a1x2 + h(x)| − g(x)ρ(x))︸ ︷︷ ︸

≤ 0 by (3)

|s| − g0ρ0|s|.

Thus, V̇ ≤ −g0ρ0|s| = −
√

2g0ρ0V1/2, and the proposition on page 1

implies s(t)→ 0 in finite time.

An advantage of the controller (4) is that it does not require exact
knowledge of h and g; it relies only on the upper bound (3).

The closed-loop system evolves in two phases. In the reaching phase
the controller forces the trajectories to the surface s = 0 in finite time.
In the sliding phase the trajectories slide on this surface to the origin.

s = 0

reaching phase

sliding
phase

s < 0
s > 0

x1

x2

chattering

In practice delays in switching lead to "chattering" around the sliding
surface, as illustrated in the figure above (right).

To mitigate chattering one idea is to divide the control into a continu-
ous part for the nominal dynamical model and a discontinuous part
for the remaining uncertain terms. With this approach the magnitude
of the discontinuity is reduced and, thus, chattering is less severe.

Example 4 revisited: Let ĥ and ĝ > 0 denote nominal models for h
and g. Define

δ(x) := h(x)− ĥ(x).

and rewrite (2) as

ṡ = a1x2 + ĥ(x) + δ(x) + g(x)u.

Then we can attempt to cancel the first two, known terms with

u = − a1x2 + ĥ(x)
ĝ(x)

+ v, (5)



ee c222/me c237 - spring’18 - lecture 22 notes 4

where v is left to be designed. Because the cancelation is inexact
when ĝ 6= g, this results in

ṡ =
(

1− g(x)
ĝ(x)

)
(a1x2 + ĥ(x)) + δ(x)︸ ︷︷ ︸
=: ∆(x)

+g(x)v,

and the task for v is to dominate the combined uncertain term ∆(x).
This is accomplished with the choice

v = −(r(x) + r0)sgn(s), r0 > 0, (6)

where r is a function satisfying

|∆(x)|
g(x)

≤ r(x). (7)

The finite time convergence of s(t) to zero follows from a Lyapunov
analysis similar to that in Example 4 above.

The advantage of the control (5)-(6) is that the continuous part (5) ac-
counts for the nominal term ĥ, save for the inexact cancelation when
ĝ 6= g. Thus, the magnitude of r in the discontinuous term (6) can be
significantly smaller than ρ in (4), leading to reduced chattering.

Example 5: For a specific illustration of the control design (5)-(6),
consider the model

ẋ1 = x2

ẋ2 = θx2
1 + u,

where θ is an uncertain parameter in the interval [0.9, 1.1]. This
model is of the form (1) with h(x) = θx2

1 and g(x) = 1. We let
ĥ(x) = x2

1, and ĝ = g = 1, since the latter is perfectly known. Thus

δ(x) := h(x)− ĥ(x) = (θ − 1)x2
1

where |θ − 1| ≤ 0.1, and we can take r(x) = 0.1x2
1 to satisfy (7). The

controller (5)-(6) is then

u = −a1x2 − x2
1 − (0.1x2

1 + r0)sgn(a1x1 + x2), a1 > 0, r0 > 0.

Note that the magnitude of the sgn function is diminished relative to
the purely discontinuous controller (4) where ρ must satisfy (3), e.g.,

ρ(x) = a1|x2|+ 1.1x2
1.
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Sliding Mode Control Continued

We generalize the sliding mode control examples of the last lecture to
the class of systems

η̇ = fa(η, ω)

ω̇ = fb(η, ω) + δ(η, ω) + G(η, ω)u,
(1)

where ω ∈ Rp, u ∈ Rp, η ∈ Rn−p. The uncertain terms are δ(η, ω)

and the p× p matrix G(η, ω), assumed to be diagonal with entries

gi(η, ω) ≥ g0 > 0, i = 1, · · · , p.

Let φ(η) be a virtual control law for ω that stabilizes the origin of the
η-subsystem, η̇ = fa(η, φ(η)). To drive the trajectories to the sliding
surface ω = φ(η), we note that s := ω− φ(η) ∈ Rp satisfies

ṡ = fb(η, ω)− ∂φ(η)

∂η
fa(η, ω) + δ(η, ω) + G(η, ω)u,

and let

u = −Ĝ−1(η, ω)

[
fb(η, ω)− ∂φ(η)

∂η
fa(η, ω)

]
+ v

where Ĝ(η, ω) is a nominal model for G(η, ω), and v is to be de-
signed. Then,

ṡ = (I − GĜ)

[
fb(η, ω)− ∂φ(η)

∂η
fa(η, ω)

]
+ δ(η, ω)︸ ︷︷ ︸

=: ∆(η, ω)

+G(η, ω)v,

which means that the ith entry of s satisfies

ṡi = ∆i(η, ω) + gi(η, ω)vi, i = 1, · · · , p.

We let
vi = −(ρi(η, ω) + ρ0)sgn(si), ρ0 > 0, (2)

where ρi(η, ω) is a function such that

|∆i(η, ω)|
gi(η, ω)

≤ ρi(η, ω).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
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Then the Lyapunov function Vi =
1
2 s2

i satisfies V̇i ≤ −
√

2ρ0g0V1/2,
which guarantees finite time convergence of si to 0, as discussed in
Lecture 22.

Thus the trajectories reach the sliding surface ω = φ(η) in finite time
and, if the subsystem η̇ = fa(η, φ(η) + s) is ISS with respect to s, then
η remains bounded during the reaching phase and converges to zero
asymptotically during the sliding phase.

Continuous Approximation of Sliding Mode Control

To avoid the chattering phenomenon discussed in the previous lec-
ture, we can employ the continuous function

σε(x) :=

{
x/ε when x ∈ [−ε, ε]

sgn(x) otherwise,

which approximates sgn(·) when ε > 0 is a small constant.
x

σε(x)

ε
−ε

1

−1

If we implement (2) above with σε(si) instead of sgn(si), the Lya-
punov analysis is unchanged when |si| ≥ ε, where the two functions
are identical. Thus, |si| ≥ ε implies V̇i ≤ −

√
2ρ0g0V1/2 < 0, from

which we conclude that si reaches the interval [−ε, ε] in finite time
and remains in it thereafter. Likewise, if η̇ = fa(η, φ(η) + s) is ISS
with respect to s, then η converges to a residual set around η = 0
whose size shrinks as ε→ 0.

Therefore, the continuous approximation eliminates chattering, but
guarantees convergence to a small set around the origin rather than
to the origin.

Example: For the system

ẋ1 = x1x2

ẋ2 = θx2
1 + u, |θ| ≤ 2,

the virtual control φ(x1) = −x2
1 and the variable s := x2 − φ(x1) =

x2 + x2
1 result in

ẋ1 = −x3
1 + x1s,

which is ISS with respect to s. To drive s to zero we note that

ṡ = 2x2
1x2 + θx2

1 + u

and apply the control
u = −2x2

1x2 + v,

which guarantees global asymptotic stability of the origin (x1, x2) =

(0, 0) with the discontinuous feedback v = −(2x2
1 + ρ0)sgn(s).

If we apply the continuous approximation v = −(2x2
1 + ρ0)σε(s) we

achieve convergence to a set which shrinks to the origin as ε→ 0.
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Tracking Control

Consider a model represented in the normal form for input-output
linearization:

ż = f0(z, ζ)

ζ̇1 = ζ2

...

ζ̇r−1 = ζr

ζ̇r = b(z, ζ) + a(z, ζ)u

y = ζ1,

where a(z, ζ) and b(z, ζ) are imperfectly known, but

a(z, ζ) ≥ g0 > 0

with some positive constant g0. In addition we assume the zero dy-
namics subsystem ż = f0(z, ζ) is ISS with respect to ζ.

This system is of the general form (1) with η = [zT , ζ1, · · · , ζr−1]
T and

ω = ζr, and we can design a virtual control

ζr = −kr−1ζr−1 − · · · − k1ζ1 (3)

with coefficients kr1 , · · · k1 such that
ζ̇1
...
...

ζ̇r−1

 =


0 1 · · · 0
... 0

. . .
...

. . . 1
−k1 · · · · · · −kr−1


︸ ︷︷ ︸

=: A0


ζ1
...
...

ζr−1

 (4)

is asymptotically stable.

The dynamics restricted to the sliding surface (3) consist of the sub-
system (4) driving the ISS zero dynamics; therefore the trajectories
converge to the origin. Finite time convergence to the surface is
achieved with the standard design approach discussed on page 1.

When the goal is to ensure that the output ζ1 tracks the desired tra-
jectory yd(t), we define the tracking error variables

e1 := ζ1 − yd(t), e2 := ζ2 − ẏd(t), · · · , er := ζr − y(r−1)
d (t)
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and rewrite the system equations as

ż = f0(z, e1 + yd(t), . . . , er + y(r−1)
d (t))

ė1 = e2
...

ėr−1 = er

ėr = b(z, ζ)− y(r)d (t) + a(z, ζ)u.

As the sliding surface we select

s := er + kr−1er−1 + · · ·+ k1e1 = 0, (5)

where kr−1, · · · k1 are such that the matrix A0 defined in (4) has all
eigenvalues with negative real parts. Thus, e(t) → 0 on the sliding
surface and z(t) remains bounded by the ISS assumption, and by the
boundedness of yd(t) and its derivatives.

For the reaching phase we note that

ṡ = ėr + kr−1 ėr−1 + · · ·+ k1 ė1

= b(z, ζ)− y(r)d (t) + kr−1er + · · ·+ k1e2 + a(z, ζ)u,

and select

u = − 1
â(z, ζ)

[
b̂(z, ζ)− y(r)d (t) + kr−1er + · · ·+ k1e2

]
+ v. (6)

This yields

ṡ =
(

1− a(z, ζ)

â(z, ζ)

)
[ · · · ] + (b(z, ζ)− b̂(z, ζ))︸ ︷︷ ︸
=: ∆(z, ζ, t)

+a(z, ζ)v

where [ · · · ] is the square bracketed term in (6), and ∆(z, ζ, t) de-
pends on t due to the derivatives of yd(t) occuring in this expression.

We then choose ρ(z, ζ, t) such that

|∆(z, ζ, t)|
a(z, ζ)

≤ ρ(z, ζ, t)

and complete the design (6) with

v = −(ρ(z, ζ, t) + ρ0)sgn(s), ρ0 > 0. (7)

Note that, if we set yd(t) ≡ 0, the tracking controller (6)-(7) reduces to
a stabilizing controller for the origin (z, ζ) = 0.

Example: Consider the system

ẋ1 = x2 + sin x1

ẋ2 = θ1x2
1 + (1 + θ2)u |θ1| ≤ 2, |θ2| ≤ 0.5,

y = x1.

(8)
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To design a tracking controller we first bring the system to the nor-
mal form with the new variables ζ1 = x1 and ζ2 = x2 + sin x1:

ζ̇1 = ζ2

ζ̇2 = (x2 + sin x1) cos x1 + θ1x2
1 + (1 + θ2)u.

(9)

Then we define the error variables e1 = ζ1− yd(t) and e2 = ζ2− ẏd(t),
which are governed by

ė1 = e2

ė2 = (x2 + sin x1) cos x1 − ÿd(t) + θ1x2
1 + (1 + θ2)u,

and select the sliding surface

s := e2 + k1e1 = 0, k1 > 0.

Thus,

ṡ = (x2 + sin x1) cos x1 − ÿd(t) + k1e2 + θ1x2
1 + (1 + θ2)u

and the feedback

u = −(x2 + sin x1) cos x1 + ÿd(t)− k1e2 + v

v = −(ρ(x, t) + ρ0) ρ0 > 0

results in

ṡ = θ2(−(x2 + sin x1) cos x1 + ÿd(t)− k1e2) + θ1x2
1︸ ︷︷ ︸

=: ∆(x1, x2, t)

+(1 + θ2)v.

Using the bounds |θ1| ≤ 2, |θ2| ≤ 0.5 we get

|∆(x1, x2, t)|
1 + θ2

≤
0.5|(x2 + sin x1) cos x1 − ÿd(t) + k1e2|+ 2x2

1
0.5

= |(x2 + sin x1) cos x1 − ÿd(t) + k1e2|+ 4x2
1

and, substituting e2 = ζ2 − ẏd(t) = x2 + sin x1 − ẏd(t), we select

ρ(x, t) = |(x2 + sin x1) cos x1 − ÿd(t) + k1(x2 + sin x1 − ẏd(t)|+ 4x2
1.

It is important to note that sliding mode control can address only
limited forms of uncertainty. In the example (8) the uncertain terms
appear in the same equation as the control input; that is, they are
“matched" to the input. The first equation in (8) contains no uncer-
tainty, which allowed us to bring the system to the normal form (9).
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