New Directions for
Network Verification

Aurojit Panda, Katerina Argyraki, Mooly Sagiv, Michael Schapira, Scott Shenker

Brief Summary of This Talk

o Context:

e Proliferation of network verification tools.
e Build on assumption that the network state is immutable.

* Immutable = Data packets do not change behavior of network

Brief Summary of This Talk

o Context:

e Proliferation of network verification tools.
e Build on assumption that the network state is immutable.

* Immutable = Data packets do not change behavior of network

* My point:

 Many network elements have mutable state
* Verifying mutable networks requires new techniques

* Two technical challenges: Modeling and Scaling

Outline

- Background on networks.

e Background on network verification.

* \erifying mutable networks.

Classical Networking

Ted Stevens was right
Alice S on
=)
3 ISwitch]
[| Switch]| Switch|
V' — N o
Mallory Trent

 Networks provide end-to-end connectivity.
e Just contain host and switches.
» All Interesting processing at the hosts.

Real Networks have Middleboxes!

Alice

ﬁ

O

ISwitch|
=4 A
D Switch| |Switch I
—— N

o y///4
Mallory Trent

Real Networks have Middleboxes!

Alice
=
2 (Firewall) Switch|
= A
D | Switch| | Switch|
Mallory Trent

e Security (firewalls, 1DSs,...).

Real Networks have Middleboxes!

Alice

=
2 (Firewall) Switch|
=
[] 'Switch|
' — N
Mallory

e Security (firewalls, 1DSs,...).
* Performance (caches, load balancers,...).

Real Networks have Middleboxes!

Alice

=
° (Firewall]

=

ISwitch|

| Switch (Switch %
‘: | | | Proxy HCaChe)—o 22
Mallory Trent

e Security (firewalls, 1DSs,...).
* Performance (caches, load balancers,...).
* New functionality (proxies,...).

Outline

e Background on networks.
- Background on network verification.

* \erifying mutable networks.

Reachability Invariants

e Focus on reachabillity invariants

 Most important in practice, simple to state but already hard
/___\

o) /4
o) e
/(o) w7/
Firewall D

ST

D (Balancer

=N . /\
Mallory Firewall S
o) w7/
o) w7/

(o) V/// 4
(o) V///4

Reachability Invariants

e Focus on reachabillity invariants

 Most important in practice, simple to state but already hard
/___\

o V//// 4
o) V////4

Firewall R
ST
D (Balancer
AN —
"
Mallory FlrewalD\o 7

(o) V////4
(o) V////4

(o) V/// 4

S0
Can S2 receive packets of type T from Mallory?

Reachability Invariants

e Focus on reachabillity invariants

 Most important in practice, simple to state but already hard
/___\

o V//// 4
o) V////4

Firewall R
ST
D (Balancer
AN —
"
Mallory FlrewalD\o 7

(o) V////4
(o) V////4

(o) V/// 4

S0
Can S2 receive “infected” packets from Mallory?

Reachability Invariants

e Focus on reachabillity invariants

 Most important in practice, simple to state but already hard
/___\

o V//// 4
o) V////4

Firewall D
ST
D (Balancer
AN —
"
Mallory FlrewalD\o 7

(o) V////4
(o) V////4

(o) V/// 4

S0
Can S2 receive packets from Mallory without a connection?

Abstractions for Invariants

* Operators want to specify packet types using abstractions:

Abstractions for Invariants

* Operators want to specify packet types using abstractions:

e “Infected”

Abstractions for Invariants

* Operators want to specify packet types using abstractions:
e “infected”

e from “authenticated user”

Abstractions for Invariants

* Operators want to specify packet types using abstractions:
e “infected”
e from “authenticated user”

e from a given application

Abstractions for Invariants

* Operators want to specify packet types using abstractions:
e “Infected”

e from “authenticated user”

e from a given application

 How these types are determined in a network varies

Abstractions for Invariants

* Operators want to specify packet types using abstractions:

e “Infected”
e from “authenticated user”
e from a given application
 How these types are determined in a network varies

* [nvariants should not depend on these details

Network Verification Today

e Switches: Forwarding rules in switches.

HSA, Veriflow, NetKAI, etc.

Network Verification Today

e Switches: Forwarding rules in switches.

HSA, Veriflow, NetKAI, etc.
 SDN Controller: Code generating these rules.

Vericon, FlowlLog, etc.

Network Verification Today

e Switches: Forwarding rules in switches.

HSA, Veriflow, NetKA]T, etc.

 SDN Controller: Code generating these rules.
Vericon, FlowlLog, etc.

* Firewalls: Verify firewall configuration.

Fang, Margrave, etc.

Existing Assumptions/Limitations

Existing Assumptions/Limitations

Existing Assumptions/Limitations

Switches
e | imited computational model (rule-based forwarding).

e Immutable, functionality only changes with new rules.
e | imited set of invariants enforced by networks.
Controllers

e All state and actions are centralized. (Globally ordered)
e Data plane itself is immutable.

Firewalls

e [reated as if they contain Immutable state.
e Assume a particular (simple) computational model.

Outline

e Background on networks.

e Background on network verification.

- Verifying mutable networks.

Verification of Mutable Networks

* Nalve approach

e \erity a program equivalent to the entire network.

Verification of Mutable Networks

* Nalve approach

e \erity a program equivalent to the entire network.

e Feasiblility Is not clear

e Large, proprietary code bases (Bro ~102K lines of code).

Verification of Mutable Networks

* Nalve approach

e \erity a program equivalent to the entire network.

e Feasiblility Is not clear

e Large, proprietary code bases (Bro ~102K lines of code).

e Scalability is crucial

e Networks contain several 1000 middleboxes or more.

Modeling Middleboxes

N

Modeling Middleboxes

-

N

A 4
Classify Packet

Determines what application sent a packet, etc.
Complex, proprietary processing.

Modeling Middleboxes

-

N

A 4
Classify_ Packet

l

Update Packet

Updating payload is complex (compression, etc.)
Updating header is simple (fixed format).

Modeling Middleboxes

-

N

A 4
Classify_ Packet

l

Update Packet

l

Update State

Could be simple (remember packets)
or complex (update many hash tables).

Modeling Middleboxes

-

N

A 4
Classify_ Packet

l

Update Packet

l

Update State

|

Forward Packet

\J

—/

Always simple: forward or drop packets.

Modeling Middleboxes

Oracle: Specify data dependencies and outputs

-

N

A 4
Classify_ Packet

l

Update Packet

l

Update State

A 4

Forwaro

Packet

\2

—/

Modeling Middleboxes

- O\racle: Specify data dependencies and outputs

A 4
Classify_ Packet

l

Update Packet

l

Update State

A 4

Forward Packet
_ —/

Forwarding Model: Specify Completely

Example

- O\racle: Specify data dependencies and outputs

A 4
Classify_ Packet

l

Update Packet

l

Update State

|

Forward Packet
_ —/

Forwarding Model: Specify Completely

-

N

A 4
Classify_ Packet

l

Update Packet

l

Update State

|

Forward Packet

\J

—/

Example

Oracle: Specify data dependencies and outputs

Dependencies
See all packets in connection (flow).

Outputs
|s packet infected.

Forwarding Model: Specify Completely

Example

Oracle: Specify data dependencies and outputs

4) .
¥ Dependencies
Classity Packet|| see all packets in connection (flow).

l Outputs
Update Packet| | Is packet infected.
l it (infected) {
Update State infected_connections.add(packet.flow)

J, J
Forward Packet
_ —/

Forwarding Model: Specify Completely

Example

Oracle: Specify data dependencies and outputs

4) .
¥ Dependencies
Classity Packet|| see all packets in connection (flow).

l Outputs
Update Packet| | Is packet infected.
l it (infected) {
Update State infected_connections.add(packet.flow)
| |
J, if (packet.flow not in infected_connections) {
Forward Packet forward (packet);
\S —/ }

Forwarding Model: Specify Completely

Scaling Verification

Scaling Verification

* Middleboxes are “flow-parallel”

Scaling Verification

* Middleboxes are “flow-parallel”

e State is partitioned between “flows.”

Scaling Verification

* Middleboxes are “flow-parallel”
e State is partitioned between “flows.”

* [his enables “compositional verification”

Scaling Verification

* Middleboxes are “flow-parallel”
e State is partitioned between “flows.”
* [his enables “compositional verification”

e 30,000 middlebox networks verified in 5 minutes

Compositional Verification

mbox)_ —
MO OoX =
Mbox)—

-:.- L
mbox =
mbox JHE=2

MDOX (mbox N

mboxJ e

mbox /T \

\ [=

y////4

y////4

Compositional Verification

mbox)_ —
MO OoX =
Mbox)—

.=.- L
mbox =
mbox JHE=2

MDOX (mbox N

mboxJ e

mbox /T \

\ [=

y////4

y////4

Invariants talk about pairs of hosts.
*\When tlow-parallel, need-only verity path.

Conclusion

e Real networks:
e Contain mutable middleboxes.

e Used to enforce rich connectivity invariants.

e Network verification needs to evolve to handle this.
e Several challenges

* Right level of abstraction for specifying middleboxes.
e Scalabllity, by leveraging compositional verification.
e Future: Tractability of verification.

Some pictures taken from the Noun Project

Backup

Does State Mutation Matter

e Do we even need to look at state evolution”
e Check invariant for all possible states.
e Approach used in tools like Margrave.
e # Of states is small (just whether connection established).
¢ False positives, some states may never occur.

Does State Mutation Matter

e Do we even need to look at state evolution”
e Check invariant for all possible states.
e Approach used in tools like Margrave.
e # Of states is small (just whether connection established).
¢ False positives, some states may never occur.

= =
. (FirevvalD (Firewall) S

\—/) b—a — a—b <= <=
a $conn(a — b) ¢conn(b —a) D

conn(a — b) Connection started by a to b.
Requires a to send packet to b, and b to respond

Can a packet from 'a' reach 'b'?

