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o Context:

e Proliferation of network verification tools.
e Build on assumption that the network state is immutable.

* Immutable = Data packets do not change behavior of network

* My point:

 Many network elements have mutable state
* Verifying mutable networks requires new techniques

* Two technical challenges: Modeling and Scaling



Outline

- Background on networks.

e Background on network verification.

* \erifying mutable networks.



Classical Networking
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 Networks provide end-to-end connectivity.
e Just contain host and switches.
» All Interesting processing at the hosts.
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Real Networks have Middleboxes!
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e Security (firewalls, 1DSs,...).
* Performance (caches, load balancers,...).
* New functionality (proxies,...).
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e Background on networks.
- Background on network verification.

* \erifying mutable networks.



Reachability Invariants

e Focus on reachabillity invariants

 Most important in practice, simple to state but already hard
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Reachability Invariants

e Focus on reachabillity invariants

 Most important in practice, simple to state but already hard
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S0
Can S2 receive packets from Mallory without a connection?
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Abstractions for Invariants

* Operators want to specify packet types using abstractions:

e “Infected”
e from “authenticated user”
e from a given application
 How these types are determined in a network varies

* [nvariants should not depend on these details
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Network Verification Today

e Switches: Forwarding rules in switches.

HSA, Veriflow, NetKA]T, etc.

 SDN Controller: Code generating these rules.
Vericon, FlowlLog, etc.

* Firewalls: Verify firewall configuration.

Fang, Margrave, etc.
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Existing Assumptions/Limitations

Switches
e | imited computational model (rule-based forwarding).

e Immutable, functionality only changes with new rules.
e | imited set of invariants enforced by networks.
Controllers

e All state and actions are centralized. (Globally ordered)
e Data plane itself is immutable.

Firewalls

e [reated as if they contain Immutable state.
e Assume a particular (simple) computational model.
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e Background on networks.

e Background on network verification.

- Verifying mutable networks.
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Verification of Mutable Networks

* Nalve approach

e \erity a program equivalent to the entire network.

e Feasiblility Is not clear

e Large, proprietary code bases (Bro ~102K lines of code).

e Scalability is crucial

e Networks contain several 1000 middleboxes or more.



Modeling Middleboxes
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Could be simple (remember packets)
or complex (update many hash tables).
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Always simple: forward or drop packets.
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Oracle: Specify data dependencies and outputs
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Oracle: Specify data dependencies and outputs

Dependencies
See all packets in connection (flow).

Outputs
|s packet infected.
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Oracle: Specify data dependencies and outputs
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Example

Oracle: Specify data dependencies and outputs

4 ) .
¥ Dependencies
Classity Packet|| see all packets in connection (flow).

l Outputs
Update Packet| | Is packet infected.
l it (infected) {
Update State infected_connections.add(packet.flow)
| |
J, if (packet.flow not in infected_connections) {
Forward Packet forward (packet);
\S —/ }

Forwarding Model: Specify Completely
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Scaling Verification

* Middleboxes are “flow-parallel”
e State is partitioned between “flows.”
* [his enables “compositional verification”

e 30,000 middlebox networks verified in 5 minutes



Compositional Verification
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Compositional Verification
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Invariants talk about pairs of hosts.
*\When tlow-parallel, need-only verity path.



Conclusion

e Real networks:
e Contain mutable middleboxes.

e Used to enforce rich connectivity invariants.

e Network verification needs to evolve to handle this.
e Several challenges

* Right level of abstraction for specifying middleboxes.
e Scalabllity, by leveraging compositional verification.
e Future: Tractability of verification.

Some pictures taken from the Noun Project



Backup



Does State Mutation Matter

e Do we even need to look at state evolution”
e Check invariant for all possible states.
e Approach used in tools like Margrave.
e # Of states is small (just whether connection established).
¢ False positives, some states may never occur.
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e Do we even need to look at state evolution”
e Check invariant for all possible states.
e Approach used in tools like Margrave.
e # Of states is small (just whether connection established).
¢ False positives, some states may never occur.
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conn(a — b) Connection started by a to b.
Requires a to send packet to b, and b to respond

Can a packet from 'a' reach 'b'?



