
Verification in the Age of Microservices
Aurojit Panda

UC Berkeley
Mooly Sagiv

Tel Aviv University
Scott Shenker

UC Berkeley and ICSI

ABSTRACT
Many large applications are now built using collections of
microservices, each of which is deployed in isolated con-
tainers and which interact with each other through the use
of remote procedure calls (RPCs). The use of microservices
improves scalability – each component of an application can
be scaled independently – and deployability. However, such
applications are inherently distributed and current tools do not
provide mechanisms to reason about and ensure their global
behavior. In this paper we argue that recent advances in for-
mal methods and software packet processing pave the path
towards building mechanisms that can ensure correctness for
such systems, both when they are being built and at runtime.
These techniques impose minimal runtime overheads and are
amenable to production deployments.

CCS CONCEPTS
• Computer systems organization → Reliability; • Net-
works → Middle boxes / network appliances;

ACM Reference format:
Aurojit Panda, Mooly Sagiv, and Scott Shenker. 2017. Verification
in the Age of Microservices. In Proceedings of HotOS ’17, Whistler
, BC, Canada, May 08-10, 2017, 7 pages.
https://doi.org/http://dx.doi.org/10.1145/3102980.3102986

1 INTRODUCTION
Web applications are increasingly built and deployed as sets
of isolated services which interact with each other through
remote procedure calls (RPCs). The advent of lightweight
virtualization techniques — e.g., containers — has enabled
the use of increasingly larger numbers of fine grained services
which are commonly referred to as microservices. Decou-
pling applications in this manner yields several benefits: it
simplifies scaling (each service can be scaled independently),

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotOS ’17, May 08-10, 2017, Whistler , BC, Canada
© 2017 Copyright held by the owner/author(s). Publication rights licensed to
Association for Computing Machinery.
ACM ISBN 978-1-4503-5068-6/17/05. . . $$15.00
https://doi.org/http://dx.doi.org/10.1145/3102980.3102986

provides greater flexibility in resource allocation and sched-
uling, allows greater code reuse, enables new fault tolerance
mechanisms, provides better modularity, and allows appli-
cation developers to take advantage of services from other
provides e.g., Amazon S3. As a result this architecture has
been widely adopted by both startups and large established
companies (e.g., Uber [27] and Netflix [28]), and is being
deployed at significant scale (e.g., Uber’s application is com-
posed of over 1000 microservices [27]).

As deployments grow in size and complexity, it has be-
come harder for operators to ensure the correctness for these
microservice-based applications. The properties of such appli-
cations depend on the behavior of each constituent microser-
vice and how they are configured to interact. Understanding
whether certain invariants are upheld during their operation
is nontrivial for small applications but downright daunting
for ones involving hundreds of microservices. For example,
consider a simple application with three services — a web-
server, an authentication service, and a database. Ensuring the
invariant that only authenticated users can update the database
requires accessing state at both the webserver (to determine
what request resulted in an update) and the authentication
service (to check if the requester was authenticated), in ad-
dition to accessing database state. Even if all microservices
provided mechanisms to access local state, naively checking
the invariant would require coordination — to get a consistent
snapshot of system state — whenever the invariant needed
to be tested, negatively impacting performance. Scaling such
techniques to large applications would be untenable.

In this paper we propose a system, ucheck, that checks
and enforces invariants in microservice based applications.
In ucheck invariants (§2.2) specify sequences of RPC calls
which indicate erroneous behavior — e.g., insertion calls to
the database before a corresponding authentication call. We
designed ucheck so that it requires no coordination, and
imposes minimal performance overheads, and as a result it is
amenable to being deployed in production.
ucheck is designed around modular microservice models

(§2.3) which specify the set of messages a microservice can
send, and how its local state changes in response to receiving
a message. Given these models our approach is simple: we
first use formal verification to check whether a given invariant
would hold based on the models (§3.1), and then we use
programmable virtual switches (vswitches, e.g., Bess [11] or
VPP [29]) to detect cases where a microservice’s behavior
deviates from what is specified by the model. This allows

https://doi.org/http://dx.doi.org/10.1145/3102980.3102986
https://doi.org/http://dx.doi.org/10.1145/3102980.3102986

HotOS ’17, May 08-10, 2017, Whistler , BC, Canada Aurojit Panda, Mooly Sagiv, and Scott Shenker

ucheck to detect potential invariant violation at runtime
without requiring coordination. However, because ucheck
does not access any microservice state, it cannot detect all
invariant violations – we discuss this in greater detail in §5.1
and also present possible mitigations.

Given the increasing scale and complexity of microservice-
based applications, we believe it is necessary to help operators
reason about and ensure the correctness of their applications –
ucheck represents a first step towards this goal.

2 APPLICATIONS AND INPUTS
We begin by providing an overview of microservice based
applications, and the invariants and models that are the inputs
to ucheck.

2.1 Microservice Based Application
ucheck is designed to be used with application built by
composing multiple microservices. Each microservice runs
in a single container, and each container can communicate
with others through a virtual network [15]. We assume that
each containers is connected to the virtual network through
a software virtual switch. Microservices interact with each
other by sending messages through the virtual network. We
assume these messages are sent using a RPC mechanism e.g.,
GRPC [10] or Thrift [26].

We use a simple web forum (Figure 1) as a running ex-
ample through the rest of this paper. We assume the web
forum is built using an authentication service, a key-value
store (kv-store) microservice and a frontend microservice.
The authentication service provides a single RPC endpoint,
authenticate, that can be used to check if a client’s
credential are correct. The key-value store provides RPC
endpoints that can be used to insert, modify, get and
delete key-value pairs. The frontend microservice receives
and processes three types of HTTP requests – authenticate
requests that a client can use to establish its identity, get re-
quests in response to which it gets values from the kv-store,
and post requests which can result in it inserting a value into
the kv-store.

2.2 Invariants
In this paper we focus on enforcing safety invariants, which
identify sequences of RPC calls (including predicates on in-
puts and outputs) and results that are prohibited. An invariant
is violated whenever such a sequence of calls is observed.
For example, an application developer might require that
posted messages are never deleted or modified. This can be
expressed as a (stronger) invariant requiring that no modify
or delete calls be made to the key-value store. Similarly, the
application developer might also require that users authenti-
cate before messages can be posted. This can be expressed as

vSwitch
ucheck enforcement

vSwitch
ucheck enforcement

get(key) -> value
insert(key, value) -> bool
modify(key, value) -> bool
delete(key) -> boolean

store: Dict[Key, Value]

KV-StoreFrontend

authenticated: Set[User]

http: authentication
http: get
http: post

Authentication

credentials: Set[Token]

authenticate(Token) ->
 bool

vSwitch
ucheck enforcement

Virtual Network

Figure 1: We use a web forum as a running example
throughout this paper. The webforum is comprised of
three microservices: a key-value store (kv-store), an au-
thentication service, and a frontend webservice. The fron-
tend webservice receives HTTP request (indicated by the
http: prefix) and makes RPC calls to the key-value
store (kv-store) and authentication service. In this fig-
ure we specify the local state and RPC endpoints for
each microservice. The web forum is correct if two in-
variants hold: (a) posted messages are never modified or
deleted, and (b) only authenticated users can post mes-
sages. All microservices interact by seending messages,
which must pass through a virtal switch. ucheck’s en-
forcement mechanism is implemented in the vswitch.

the invariant that the frontend sends no insert message to the
key-value store, before sending an authenticate message and
receiving a response indicating the client is authenticated. Ob-
serve that in general invariants can specify a sequence of RPC
calls across multiple microservices. As a result, enforcing an
invariant might require coordination across microservices –
which in the worse case requires communication between all
microservices in an application – adds unacceptable perfor-
mance overheads. As a result, our design does not directly
enforce invariants, and instead uses abstract models (§2.3)
and static verification (§3.1) to translate these to restrictions
on individual microservices which can be checked without
coordination.

2.3 Microservice Models
ucheck assumes that users provide it with a model for each
microservice. This model serves two purposes – first we rely
on formal verification to ensure that if all supplied models
were true the invariant would hold, and second we enforce that
the model itself is correct. A model must therefore provide
enough semantics about a services’ behavior to allow supplied
invariants to be verified and must also specify constraints on
RPC calls and results that can be used by our enforcement
mechanism. Prior work has show than modular reasoning
techniques such as rely-guarantee [14] reasoning are well
suited to verifying invariants in concurrent systems such as

Verification in the Age of Microservices HotOS ’17, May 08-10, 2017, Whistler , BC, Canada

the applications we consider in this paper. Furthermore, prior
work [9] has looked at decomposing rely-guarantee conditions
when verifying concurrent programs, allowing verification
to be performed on each function. Our architecture builds
on this work – our models are specified as four tuples each
of which contains a set of global preconditions (the next
message processed by the microservice), local preconditions
(local state at the microservice), local post condition (resulting
local condition from processing a message) and global post
condition (new messages generated by the microservice). We
use global preconditions and postconditions for enforcement
(§3.2). Note, that since we ignore local state, our enforcement
is necessarily approximate and we might miss cases where
invariants are violated. We discuss this limitation and possible
mitigations in §5.1.

As an example the model for the frontend service in the
web forum would include the following:

(1) When an authentication request is received from a
client (a global precondition), issue an authenticate
RPC for the authentication microservice (a global postcondi-
tion).

(2) When the authentication microservice response is pend-
ing and it indicates the authentication succeeded (a global
precondition), update the set of authenticated clients (a local
post condition) and send an indication to the client (a global
postcondition).

(3) When a post request is received (a global precondition)
and if the client has been authenticated (a local precondition)
then issue a insert request to the kv-store microservice.

Who writes the models? Writing and maintaining mod-
els is an important concern with systems such as ucheck.
This is especially true when models cannot be derived from
code, since any model written by a programmer is likely to be
wrong as code evolves. In this work we assume that models
are used by an application developer – who is combining
multiple microservices – to specify their beliefs about each
microservice. In the common case we therefore expect these
models to be supplied by the application developer, and we
rely on our enforcement mechanisms to catch a mismatch
between a microservice’s model and its actual behavior. Mod-
els can however come from other sources including – service
developers who might produce models as specification; third
parties e.g., auditors, who might use models to record condi-
tions that are required for security; and finally models might
be produces as a part of writing a service in frameworks such
as Verdi [30], IronFleet [12], and Yggdarsil [24]. We discuss
ucheck’s relation to these works in greater detail in §5.2.

3 PREVENTING INVARIANT
VIOLATIONS

3.1 Static Verification
ucheck relies on a combination of static verification and
enforcement to ensure correctness. We require developers to
verify each invariant given the supplied models, this serves the
dual purpose of ensuring that (a) the invariant would actually
hold given how services are thought to act, and (b) ensure that
the models (and hence the preconditions and postconditions)
are strong enough to prove the invariant. Beyond requiring the
use of models that can be decomposed into local and global
rely-guarantee constraints, ucheck imposes no restrictions
or requirements on the verification process. As a result ver-
ification can be performed by either manually generating a
proof and relying on Coq [18] or other theorem provers to
check the proof, or using traditional model checking tools
such as NuSMV [4].

We also note that the performance of our enforcement
mechanism’s worsens as the size of the model grows. One
might be able to use tools such as MAX-SAT solvers [17] or
CEGAR [7] to simplify models during this static verification
step. Investigating these techniques and their potential benefit
is left to future work.

3.2 Runtime Enforcement
While static verification ensures that invariants are upheld
assuming microservices behave as modelled, it cannot prevent
violations in cases where a microservice’s behavior diverges
from what is allowed by the model. This can happen for a
variety of reasons including errors in the input model, due
to bugs (such as buffer overruns or underruns) or malicious
attacks that change executing code, etc. Therefore, we rely on
runtime enforcement mechanisms that can detect and handle
cases where a microservice’s behavior diverges from what
has been modelled.

Our enforcement mechanism is largely designed to run
at the virtual network layer. All microservices in an appli-
cation are connected through a virtual network, which is
generally implemented using one or more virtual switches
e.g., OVS [20] or the Linux Bridge [16]. Virtual switches have
visibility into all network traffic received or sent by a microser-
vice, based on our assumption this means they have access
to all RPC requests and response, along with user requests
(e.g., HTTP requests to the web forum front end). Finally
we observe that increasingly vswitches, e.g., Bess [11] and
VPP [29], provide mechanisms to perform complex process-
ing on network traffic. In both Bess and VPP operators specify
a packet processing pipeline – which consists of a sequence
of modules written in a regular programming language (C++)
– through which all traffic is sent. We implement ucheck’s

HotOS ’17, May 08-10, 2017, Whistler , BC, Canada Aurojit Panda, Mooly Sagiv, and Scott Shenker

runtime enforcement mechanism as one such module, that we
then ensure has visibility into traffic sent by all microservices.

The ucheck enforcement module must implement four
basic mechanisms – first, it must be able to distinguish be-
tween external communication (i.e., communication between
the application and external client, e.g., web browsers) and
internal communication (i.e., communication between mi-
croservices belonging to the same application); second, it
must be able to convert raw network traffic (i.e., bytes) into
semantically meaningful messages; third, it must be able to
associate each message with a particular application – this is
required since a single microservice might be shared by multi-
ple applications, and each application might assume different
models for the same microservice; and fourth, it must detect
situations where messages sent or received by a microser-
vice do not correspond to its model. We assume that we can
distinguishing between external and internal communication
by looking at the source and destination for each packet. To
ensure correct routing a container orchestration service (e.g.,
Kubernetes [3]) must configure the virtual network with in-
formation about the location and address of all microservices,
the ucheck module merely reuses this information to distin-
guish between external and internal traffic. We rely on TCP
byte stream reconstruction and the deserialization function-
ality implemented by the RPC library to convert raw bytes
into messages. TCP byte stream reconstruction is widely used
(in systems such as Bro [19]) and prior work has looked at
efficient and safe reconstruction techniques [13]. We assume
that all messages carry metadata associating them with an
application, this is required both by logging services (e.g.,
X-Trace [8]) and for billing in shared services.

We detect divergence between observed behavior and mod-
els for a microservice by comparing messages sent by the
microservice against what is allowed by its model (§2.3). To
do this we compute a static set of messages that can be plau-
sibly sent (or received) by the service – this is equivalent
to computing the set of all messages specified in the model.
Whenever a microservice sends (or receives) a message we
check to see if an equivalent can be found in the set of plau-
sible messages (which we represent as a compact predicate,
rather than as an actual set) – if so we allow it through and
raise an exception (indicating an invariant violation) other-
wise. Note that this enforcement mechanism checks a weaker
model than is provided by the user – for example if we con-
sider the frontend microservice (model in §2.3) we can see
that insert calls should only be generated in response to
post messages from authenticated client. However, our en-
forcement strategy would allow all insert calls through,
regardless of the causal sequence leading up to the call being
made. Such an approximation is necessary for two reasons:
(a) first we assume no access into a microservice’s private
data, and (b) inferring local state from previous messages can

require looking through a potentially unbounded sequence of
messages, which can severely slow down enforcement. Inves-
tigating techniques that allow us to make trade-offs between
performance and accuracy in enforcement is left to future
work. We discuss strategies for mitigating the effect of this
approximation later in §5.1. In addition to restricting mes-
sages to those that can be plausibly sent by a microservice
model, we also impose additional message restrictions based
on analyzing the entire application. In the example web forum
application, one such constraint is that the kv-store should
receive no modify or delete requests. Discovering such
additional constraints is a standard step in verifying invariants
using rely-guarantees.

Is this form of enforcement feasible? Our preliminary in-
vestigations seem to show yes – with 64-byte packets, Bess
can forward upwards of 15 million packet per second to a
container, this drops to approximately 2.5 million packets
per second when the Linux stack is used. Efficient key-value
stores (which we use to benchmark peak service performance)
such as Redis can only process between 100k and a 1 million
operations per second [21], where each request and response
fits within one packet. As a result we observe that the appli-
cation is the bottleneck, and additional network processing
should not drastically reduce performance. In our tests we
observed little or no performance degradation for Redis, even
when a 100 cycles of latency was imposed on each packet.
While 100 cycles might not be sufficient for all enforcement
tasks, we believe that these results indicate that in many cases
enforcement can be performed with no degradation in perfor-
mance.

How to respond to invariant violations? When an invari-
ant violation is detected, ucheck drops the request and logs
the incident. Not that safely dropping a request requires that
we reset the TCP connection between a pair of microservices,
and we assume that the RPC layer is resilient to such dis-
connections. Furthermore, our module can be configured to
make an RPC request whenever a violation is received, and
this mechanism can be used when debugging an invariant
violation, as described next.

Why implement at the network layer? An alternative
approach we could have adopted would be to implement this
enforcement mechanism in the RPC library. However, in this
scenario any memory corruption – due to bugs or exploits –
can impact enforcement. On the other hand virtual switches
are generally isolated from the microservices, and do not run
this risk.

Challenges due to encryption: Our enforcement mech-
anism assumes access to message contents, an assumption
which is violated when encrypted channels, e.g., ones built
using TLS, are used. This is a limitation of our approach,

Verification in the Age of Microservices HotOS ’17, May 08-10, 2017, Whistler , BC, Canada

and while it can be addressed by placing ucheck’s mech-
anisms at a higher layer this fundamentally changes the de-
sign presented here. We note however that at present most
microservices do not make use of such encrypted channels,
and in general the overheads associated with encryption and
decryption make it challenging to use such channels in sys-
tems consisting of many small services, and as a result we
do not believe this poses a tremendous barrier to production
deployments of ucheck. More generally, analyzing system
behavior when control or data flow is encrypted remains an
open problem, both in the case of microservices and single
machine applications.
ucheck’s impact on placement: Our enforcement mech-

anism requires no coordination between microservices and
we do not require microservices to be connected to the same
vSwitch instance (as long as they are connected to a vSwitch).
As a result we impose no restrictions on container placement,
or resource allocation.

4 DEBUGGING VIOLATIONS
How should application writers respond to invariant viola-
tions? While tools such as X-Trace [8], Dapper [23], etc. can
be used to analyze logs and discover causal relations (which
are roughly analogous to stack traces in sequential code) in
microservice applications, this is often insufficient to debug
problems. We observe that we can use our enforcement mech-
anism, along with the additional metadata used by X-Trace
and Dapper to provide live debugging support that is roughly
analogous to that provided by tools like GDB and LLDB. In
this section we present mechanisms that allow application
to step through distributed RPC calls and to set breakpoints.
Other debugging mechanisms can be implemented similarly.

Breakpoints: A common way to use a debugger is to set
a breakpoint, which is triggered when certain conditions are
met and pauses a particular thread of execution. A break-
point might pause program execution when control reaches
a certain line of code (i.e., the program counter reaches a
specified value), on variable access, on exceptions, etc. In
sequential programs breakpoints are implemented by adding
instructions that are run whenever these conditions are met,
e.g., a breakpoint might be inserted by replacing instructions
at particular location with an interrupt exception. We use a
similar strategy to implement breakpoints in ucheck. We
extend the ucheck enforcement module (§3.2) to accept a
series of rules in addition to plausible messages – each rule is
a predicate that identifies a set of messages. The enforcement
module raises an exception whenever a message matches a
rule. When a debugger is connected, the enforcement module
notifies it of any exceptions (through an RPC call) – this no-
tification includes the message that triggered the exception.
Given this mechanism, ucheck can insert breakpoints by

adding appropriate rules to all vswitches, and reporting to the
user whenever an exception is triggered.

Stepping: After a breakpoint is reached (i.e., the program
has been broken into) it is often useful to execute individual
statements and observe program state after each statement is
executed. In the context of distributed applications we would
like to allow developers to step through the processing of a
single external request, while allowing other requests to be
processed unmodified. Such functionality is useful for two
reasons: (a) it allows the debugger to be used in production
and (b) many distributed systems depend on keep-alives (or
heartbeats) to detect failures, and delaying these messages
can change application behavior. The key challenge in imple-
menting stepping at a per request level lies in associating each
message (RPC call) with the external request that resulted
in the call. We address this by requiring that application add
enough metadata to map each message to a particular request.
Such metadata is required by X-Trace and Dapper, and our
debugger can easily reuse this metadata.

Combining the ability to set distributed breakpoints, and
stepping with the ability to reconstruct causal behavior using
X-Trace or Dapper therefore allows ucheck to function as a
debugger. Note however that the ucheck debugger can only
operate at the level of RPC messages, visibility into the state
within a microservice requires the use of GDB or another
traditional debugger.

5 DISCUSSION
5.1 Approximate Enforcement
Our enforcement mechanism is approximate, and can some-
times fail to report invariant violations. This is because our
mechanism as described in §3.2 does not have access to the
local state of any microservice. There can be mitigated in
three ways (a) by providing mechanisms that can be used
by the enforcement mechanism to access local state; (b) by
having the access state use local postconditions to maintain a
view of local state and (c) by augmenting messages to include
enough information about the service’s state. We reject the
first mitigation strategy since it can negatively impact both the
correctness and performance of an application, since such ac-
cess requires synchronization between each microservice and
ucheck’s enforcement module. The second mitigation sim-
ilarly imposes severe performance penalties, in particular it
can require up to twice as much computation. The last mitiga-
tion seems the most promising: many existing and commonly
used protocols (e.g., Kerberos) already require embedding
enough information in every RPC request to allow ucheck
to check whether some local condition is met (e.g., in Ker-
beros [25] whether a requester is authenticated) in every RPC
request. Such checks impose limited additional overheads and
require no additional synchronization. The challenge with this

HotOS ’17, May 08-10, 2017, Whistler , BC, Canada Aurojit Panda, Mooly Sagiv, and Scott Shenker

approach is of course in ensuring that only a limited amount
of local information is needed. We believe this is the case for
many common invariants, but can make no guarantees about
the size of this additional metadata in the general case. In
the future we also plan to investigate whether it is feasible
to determine the minimum amount of metadata required for
accurate enforcement during verification. If such informa-
tion can be derived during verification, we could potentially
add such metadata either by modifying each microservice or
through mechanisms implemented in the virtual network.

5.2 Provable Correctness vs Enforcement
Recently IronFleet [24], Verdi [30], and others have suggested
techniques for writing provably correct distributed systems.
This can be done in several ways, in the case of IronFleet
this is done by having programmers provide both a TLA+
specification and code, and the verifying both that the TLA+
specification upholds all invariants and that the code meets the
specification, while Verdi does this by requiring developers to
provide mechanically checkable proofs of correctness (written
in Coq) and generating code corresponding to this proof. Both
of these works are motivated by the observation that correctly
implementing distributed systems is hard, which is similar
to our motivation. One might ask whether our techniques
are useful when deploying systems whose implementation is
provably correct?

We believe this is in fact the case – in particular adding
new invariants to either IronFleet or Verdi might require gen-
erating new proofs, and hence changing the system. ucheck
by contrast allows new invariants to be added, checked and
enforced without requiring any changes to running services.
Furthermore both Verdi and IronFleet rely on a few underly-
ing assumptions about the network and system they run on,
and ucheck can also be used to ensure that those assump-
tions hold for a deployment.

6 RELATED WORK
In §5.2 we have compared ucheck to distributed program-
ming systems that provide provable correctness. Other work
on testing and debugging distributed systems has focused on
two aspects:

Randomized testing Quickcheck [5, 6], DeMI [22], etc.
investigated using randomized testing (e.g., fuzz testing) to
discover invariant violations. These techniques require visi-
bility into the local state of all processes, and are most useful
during development. These tools are thus complimentary to
ucheck– they help in the development process rather than
in the deployment process.

Reconstructing errors using logs ShiViz [2], X-Trace [8],
Dapper [23], etc. allow developers to combine multiple con-
current logs into a single causal log. Developers can then use
this causal log to identify and debug bugs. These tools focus

on post facto analysis while ucheck can detect invariant
violations in real time. ucheck makes use of these systems
for debugging (§4) and prior work has shown that log analysis
might be better suited at identifying liveness issues including
performance bugs [1].

7 CONCLUSION
Microservice based applications represent an increasingly
common class of non-trivial distributed systems built from
heterogeneous components. Checking and enforcing correct-
ness for such systems is both crucial and hard. In this paper
we demonstrated that by leveraging advances in formal meth-
ods and software packet processing one can provide efficient
mechanisms that ensure correctness.

ACKNOWLEDGMENTS
We would like to thank Shivaram Venkatraman for the many
insightful discussions that helped improve this paper. Chris
Rossbach, and Katerina Argyraki provided invaluable com-
ments on the initial drafts of this paper. This work was sup-
ported in part by a grant from Intel Corporation, and by the
European Research Council under the EU’s Seventh Frame-
work Program (FP7/2007–2013) through ERC Grant 321174-
VSSC.

REFERENCES
[1] AGUILERA, M. K., MOGUL, J. C., WIENER, J. L., REYNOLDS, P.,

AND MUTHITACHAROEN, A. Performance debugging for distributed
systems of black boxes. In SOSP (2003).

[2] BESCHASTNIKH, I., WANG, P., BRUN, Y., AND ERNST, M. D. De-
bugging distributed systems. ACM Queue 14 (2016), 50.

[3] BURNS, B., GRANT, B., OPPENHEIMER, D., BREWER, E., AND

WILKES, J. Borg, omega, and kubernetes. Commun. ACM 59 (2016),
50–57.

[4] CIMATTI, A., CLARKE, E. M., GIUNCHIGLIA, F., AND ROVERI, M.
NUSMV: A New Symbolic Model Checker. STTT 2 (2000), 410–425.

[5] CLAESSEN, K., AND HUGHES, J. Quickcheck: a lightweight tool for
random testing of haskell programs. In ICFP (2000).

[6] CLAESSEN, K., PALKA, M. H., SMALLBONE, N., HUGHES, J.,
SVENSSON, H., ARTS, T., AND WIGER, U. T. Finding race con-
ditions in erlang with quickcheck and pulse. In ICFP (2009).

[7] CLARKE, E., GRUMBERG, O., JHA, S., LU, Y., AND VEITH, H.
Counterexample-guided abstraction refinement for symbolic model
checking. J. ACM 50, 5 (Sept. 2003).

[8] FONSECA, R., PORTER, G., KATZ, R. H., SHENKER, S., AND STO-
ICA, I. X-trace: A pervasive network tracing framework. In NSDI
(2007).

[9] GAVRAN, I., NIKSIC, F., KANADE, A., MAJUMDAR, R., AND

VAFEIADIS, V. Rely/guarantee reasoning for asynchronous programs.
In CONCUR (2015).

[10] GRPC: A high performance, open-source, universal RPC framework.
https://grpc.io, retrieved 01/21/2017.

[11] HAN, S., JANG, K., PANDA, A., PALKAR, S., HAN, D., AND RAT-
NASAMY, S. Softnic: A software nic to augment hardware. In Technical
Report UCB/EECS-2015-155. EECS Department, University of Cali-
fornia, Berkeley, 2015.

https://grpc.io

Verification in the Age of Microservices HotOS ’17, May 08-10, 2017, Whistler , BC, Canada

[12] HAWBLITZEL, C., HOWELL, J., KAPRITSOS, M., LORCH, J. R.,
PARNO, B., ROBERTS, M. L., SETTY, S. T. V., AND ZILL, B. Iron-
fleet: proving practical distributed systems correct. In SOSP (2015).

[13] JAMSHED, M. A., MOON, Y., KIM, D., HAN, D., AND PARK, K.
mOS: A Reusable Networking Stack for Flow Monitoring Middleboxes.
In NSDI (2017).

[14] JONES, C. B. Specification and design of (parallel) programs. In IFIP
Congress (1983).

[15] KOPONEN, T., AMIDON, K., BALLAND, P., CASADO, M., CHANDA,
A., FULTON, B., GANICHEV, I., GROSS, J., INGRAM, P., JACKSON,
E. J., LAMBETH, A., LENGLET, R., LI, S.-H., PADMANABHAN, A.,
PETTIT, J., PFAFF, B., RAMANATHAN, R., SHENKER, S., SHIEH,
A., STRIBLING, J., THAKKAR, P., WENDLANDT, D., YIP, A., AND

ZHANG, R. Network virtualization in multi-tenant datacenters. In
NSDI (2014).

[16] LINUX FOUNDATION. networking:bridge. https://wiki.linuxfoundation.
org/networking/bridge, retrieved 01/22/2017.

[17] MARTINS, R., MANQUINHO, V. M., AND LYNCE, I. Community-
based partitioning for maxsat solving. In SAT (2013).

[18] THE COQ DEVELOPMENT TEAM. The Coq proof assistant reference
manual. LogiCal Project, 2004. Version 8.0.

[19] PAXSON, V. Bro: A system for detecting network intruders in real-time.
Computer Networks 31 (1998), 2435–2463.

[20] PFAFF, B., PETTIT, J., KOPONEN, T., JACKSON, E. J., ZHOU, A.,
RAJAHALME, J., GROSS, J., WANG, A., STRINGER, J., SHELAR, P.,
AMIDON, K., AND CASADO, M. The design and implementation of
open vswitch. In NSDI (2015).

[21] REDIS.IO. How fast is Redis? https://redis.io/topics/benchmarks, re-
trieved 01/22/2017.

[22] SCOTT, C., PANDA, A., BRAJKOVIC, V., NECULA, G., KRISHNA-
MURTHY, A., AND SHENKER, S. Minimizing Faulty Executions of
Distributed Systems. In NSDI (2016).

[23] SIGELMAN, B. H., BARROSO, L. A., BURROWS, M., STEPHENSON,
P., PLAKAL, M., BEAVER, D., JASPAN, S., AND SHANBHAG, C.
Dapper, a large-scale distributed systems tracing infrastructure. Tech.
rep., Google, Inc., 2010.

[24] SIGURBJARNARSON, H., BORNHOLT, J., TORLAK, E., AND WANG,
X. Push-button verification of file systems via crash refinement. In
OSDI (2016).

[25] STEINER, J. G., NEUMAN, C., AND SCHILLER, J. I. Kerberos: An au-
thentication service for open network systems. In USENIX Conference
(1988).

[26] Apache Thrift. https://thrift.apache.org/, retrieved 01/21/2017.
[27] TODD HOFF. Lessons Learned From Scaling Uber To 2000 Engineers,

1000 Services, And 8000 Git Repositories. https://goo.gl/1MRvoT,
retrieved 01/21/2017.

[28] TONY MAURO. Adopting Microservices at Netflix: Lessons for Archi-
tectural Design. https://goo.gl/DyrtvI, retrieved 01/21/2017.

[29] What is VPP? https://wiki.fd.io/view/VPP/What_is_VPP%3F, retreived
01/21/2017.

[30] WILCOX, J. R., WOOS, D., PANCHEKHA, P., TATLOCK, Z., WANG,
X., ERNST, M. D., AND ANDERSON, T. E. Verdi: a framework for
implementing and formally verifying distributed systems. In PLDI
(2015).

https://wiki.linuxfoundation.org/networking/bridge
https://wiki.linuxfoundation.org/networking/bridge
https://redis.io/topics/benchmarks
https://thrift.apache.org/
https://goo.gl/1MRvoT
https://goo.gl/DyrtvI
https://wiki.fd.io/view/VPP/What_is_VPP%3F

	Abstract
	1 Introduction
	2 Applications and Inputs
	2.1 Microservice Based Application
	2.2 Invariants
	2.3 Microservice Models

	3 Preventing Invariant Violations
	3.1 Static Verification
	3.2 Runtime Enforcement

	4 Debugging Violations
	5 Discussion
	5.1 Approximate Enforcement
	5.2 Provable Correctness vs Enforcement

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

