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To see the world in a grain of sand...
– William Blake

Abstract
We argue for breaking data-parallel jobs in compute clus-
ters into tiny tasks that each complete in hundreds of mil-
liseconds. Tiny tasks avoid the need for complex skew
mitigation techniques: by breaking a large job into mil-
lions of tiny tasks, work will be evenly spread over avail-
able resources by the scheduler. Furthermore, tiny tasks
alleviate long wait times seen in today’s clusters for inter-
active jobs: even large batch jobs can be split into small
tasks that finish quickly. We demonstrate a 5.2x improve-
ment in response times due to the use of smaller tasks.

In current data-parallel computing frameworks, high
task launch overheads and scalability limitations prevent
users from running short tasks. Recent research has ad-
dressed many of these bottlenecks; we discuss remaining
challenges and propose a task execution framework that
can efficiently support tiny tasks.

1 Introduction

Cluster computing has become widespread, leading to a
proliferation of research on improving performance for
data-parallel computations. Researchers have attempted
to tackle numerous problems that arise in this setting in-
cluding unfairness [3, 18, 19, 36], stragglers [3, 4], and
skew [1, 17, 20]. Reducing task granularity alleviates all
of these problems, yet surprisingly has not been explored
in this context. Historically, task launch overheads have
prevented the use of smaller tasks, but recent improve-
ments in distributed file systems and scheduling elimi-
nate scaling bottlenecks. Thus, we argue for breaking all
jobs into tiny tasks, which offers the following benefits:
Batch and interactive sharing: Current clusters are re-
quired to trade off utilization and responsiveness. If a
cluster is highly utilized, an interactive job may need
to wait for long-running batch tasks to complete before

it can be serviced; reserving slots for interactive jobs
avoids this problem but results in lower utilization. Tiny
tasks allow a cluster to be both responsive and highly uti-
lized, since small tasks ensure frequent opportunities for
new, interactive jobs to be launched.

Straggler mitigation: Prior work has shown that job
runtimes are largely determined by stragglers: tasks that
take much longer to complete than other tasks in the job.
Tiny tasks alleviate the straggler problem because work
is allocated to machines at a fine granularity, so work is
evenly spread over available resources by the task sched-
uler, and slower machines are assigned less work. Sim-
ulations based on a Facebook workload demonstrate that
by mitigating stragglers, tiny tasks can improve response
times by as much as a factor of 5.2.

Using smaller tasks offers performance improvements
even in today’s frameworks. However, we propose task
durations of at most hundreds of milliseconds across all
jobs, which cannot be supported without addressing nu-
merous challenges. First, small tasks require a highly
scalable scheduler that can make frequent scheduling de-
cisions. Second, task launch overheads must be small
enough so as not to counteract the benefits from using
small tasks. Third, tiny tasks must operate on corre-
spondingly tiny amounts of data, which requires a file
system that can handle a large number of small file
blocks. Finally, tiny tasks require modifications to cur-
rent programming models to allow all jobs to be split
into tiny tasks. We propose an architecture that addresses
these challenges using a distributed scheduler, and an ex-
ecution model that gives the execution framework con-
trol over I/O. Our proposed design supports 50 microsec-
ond task launches, and allows most applications to be ex-
pressed in terms of a set of tiny tasks.

We begin by quantifying the benefits of tiny tasks
in §2. We present a preliminary system design that ad-
dresses the challenges of supporting tiny tasks in §3, and
explore design alternatives and related work in §4.
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Figure 1: Tasks for a single job in a 4-slot cluster. With
tiny tasks, work is allocated to machines at fine time-
granularity, mitigating the effect of stragglers and allow-
ing the job to complete more quickly.
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Figure 2: Improvement from perfectly balancing the total
machine time for each job across its slots. Jobs that orig-
inally had more tasks see a more substantial improve-
ment because having a large number of tasks increases
the likelihood that the job includes stragglers.

2 Benefits of Tiny Tasks

Tiny tasks benefit datacenter workloads by reducing
scheduling quanta. Using a trace-driven simulation and
experiments with Spark [35], we demonstrate that tiny
tasks can improve job response times by as much as a
factor of 5.2.

2.1 Handling of Skew and Stragglers

Prior studies [4, 36] have noted that job response times
in data parallel workloads tend to be dominated by strag-
gler tasks that take much longer than other tasks in the
job to complete. These outliers occur for one of two
reasons. First, outliers may be caused by poorly per-
forming machines that cause tasks scheduled on them to
take longer; e.g., due to malfunctioning disks, contended
CPUs, or congested networks. Second, work may have
been unevenly divided across tasks, either due to parti-
tioning skew, where data was unevenly allocated to tasks,
or due to computational skew, where some data is more
expensive to process.

Tiny tasks transform both the slow resources and the
data skew problem into a scheduling problem. Rather
than needing to predict which resources are slow or stat-
ically partition data across tasks, a job is divided into
thousands or millions of sub-second tiny tasks, and each
task is scheduled as resources become available (shown
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Figure 3: Completion time for a Spark job that is split
into various numbers of tasks. The job is executed in a
cluster where 20% of machines take 20x longer to run
each task. Error bars depict standard deviation.

in Figure 1). In this manner, work is automatically dis-
tributed evenly over available resources, without requir-
ing complex skew mitigation techniques: if a machine
runs a computationally expensive task, it will simply be
assigned fewer total tasks. Similarly, slow resources will
automatically be assigned less of a job’s work, without
needing to predict which machines will perform poorly.

We use a 54,976 job Facebook trace [8] to quantify
how much job response time would improve if work were
perfectly partitioned across machines. For each job in the
trace, we ask how long the job would have taken if the
total time for all tasks in the job were perfectly divided
over the slots used by the job. Figure 2 compares this
bin packed completion time to the job’s original comple-
tion time. Evenly balancing work improves performance
by 2.2x and 5.2x at the median and 95th percentile, re-
spectively, for jobs that originally had 100 or more tasks.
This experiment provides a conservative bound on the
speedup for two reasons. First, jobs may have been using
fewer than their fair share of slots in the original trace,
simply because there were not enough tasks to occupy
more slots; in this case, tiny tasks will further improve
performance by increasing parallelism. Second, if a task
is running on a slow machine, it may take less total time
when broken into tiny tasks, because some of the tiny
tasks will be run on faster machines. This experiment
underestimates the possible improvements from evenly
balancing work but ignores task launch overheads, which
we address in the next experiment.

To demonstrate that using tiny tasks improves perfor-
mance in the presence of slow machines, we modified
some machines in a cluster to run more slowly, and then
ran a Spark [35] job using different numbers of tasks. We
used 50 m1.medium EC2 instances, 10 of which were
modified to take 20x longer to run each task. Figure 3
demonstrates that using a larger number of tasks im-
proves response time by 8x compared to using the same
number of tasks as machines in the cluster, because the
slow machines are assigned fewer tasks. Beyond 2000
tasks, task launch overheads cause increased response
time; we discuss how to decrease overheads in §3.3.



`0
1
2
3

Sl
ot
s

Time

(a) Today’s tasks

0
1
2
3

Sl
ot
s

Time

(b) Tiny tasks

Figure 4: A high priority dark job arrives (at the dashed
line) in a cluster where all slots are in use by a low pri-
ority light job. With today’s tasks, tasks for the high-
priority job must wait for long-running tasks from the
light job to complete before being launched. With tiny
tasks, resource allocation is fine-grained, so resources
will quickly be allocated to the higher priority job.

2.2 Improved Sharing

Today, sharing a cluster between interactive and batch
jobs involves trading off responsiveness and utilization.
If a cluster is highly utilized, an interactive job may need
to wait for long-running batch tasks to complete before
it can be serviced; reserving slots for interactive jobs
avoids this problem but results in lower utilization. Us-
ing tiny tasks for all jobs avoids this trade off: the cluster
can run at high utilization, while simultaneously guaran-
teeing that interactive jobs will only need to wait for a
short time before being serviced. Figure 4 depicts a sim-
ple example with only two jobs, and demonstrates that
with tiny tasks, a newly arriving job can quickly obtain
resources, even in the presence of batch jobs.

3 Architecting for Tiny Tasks

While existing frameworks can benefit from the use of
smaller tasks (as shown in Figure 3), supporting tiny
tasks for all jobs in a large cluster requires addressing nu-
merous challenges. A cluster supporting tiny tasks must
provide low task launch overheads and use a highly scal-
able scheduler that can handle hundreds of thousands of
scheduling decisions per second. Tiny tasks operate on
small blocks of data, and hence require a scalable file
system. To ensure that tasks can complete quickly, we
propose giving the framework more control over I/O. Fi-
nally, ensuring that all jobs can be broken into tiny tasks
requires some improvements to the programming model;
e.g., support for framework-managed temporary storage.
In this section, we discuss a preliminary architecture to
address each of these challenges and the lower bound
that each challenge places on response time; we aim for
tasks that are as small as possible. We find that tasks that
complete in hundreds of milliseconds are practical in the
short-term, and that we can drive task launch overhead
down to further reduce task runtime in the future.

3.1 Execution Model

We propose a task execution model that supports data-
parallel computations expressed using a variety of pop-
ular programming frameworks (e.g., MapReduce [13],
Spark [35], DryadLINQ [32]). A job is composed of a
number of tasks, each representing an atomic and idem-
potent unit of execution. A task consists of a set of named
inputs and code that operates on these inputs, and each
task runs on a single machine. We assume a coopera-
tive scheduling model; i.e., tasks explicitly release re-
sources on completion (in contrast to preemptive models,
discussed in §4.1).

3.2 Scalable Storage Systems

In the short term, we expect the time needed to read input
data to be the limiting factor in driving down task dura-
tions. Previous work has shown that 8MB random disk
reads can achieve approximately 88% of the through-
put of sequential reads, and that smaller random reads
cause significant performance degradation due to disk
seeks [23]. Thus, as long as input data is stored on disk,
we require that tasks read at least 8MB of input data.
Data-parallel workloads are commonly I/O bound, so we
expect task runtime to be dominated by time taken to
read input data; thus, assuming 100MB/s disk through-
put, 8MB input data sizes should result in task durations
of hundreds of milliseconds.

Using small data blocks requires a move away from
traditional distributed file systems like HDFS, where
scalability limitations prevent the use of small blocks.
While HDFS does allow tasks to read only part of a
block, having multiple tiny tasks that operate on the same
file block limits parallelism. Recent work on distributed
filesystems, e.g., Flat Data Center Storage (FDS) [23],
addresses these scalability concerns by distributing meta-
data across multiple servers. As discussed in §3.4, a
framework built for tiny tasks can improve on FDS per-
formance by more closely integrating the file system and
the task scheduler.

3.3 Low-Latency Scheduling

Supporting tiny tasks requires a low-latency, high
throughput task scheduler. Handling 100ms tasks in a
cluster with 160,000 cores (e.g., 10,000 16-core ma-
chines), requires a scheduler that can, on average, make
1.6 million scheduling decisions per second. Today’s
centralized schedulers have well-known scalability lim-
its [27] that hinder their ability to support tiny tasks in a
large cluster. Engineering improvements such as com-
pressing task descriptions, avoiding sending the same
task description to the same machine multiple times,
and using more efficient networking have helped some
centralized schedulers provide higher throughput [33].
However, handling large clusters and very short tasks



will require a decentralized scheduler design. Recently
proposed distributed schedulers (e.g., Sparrow [24]) can
scale well beyond millions of decisions per second while
providing near-optimal response times. Our proposed
system relies on the use of such distributed schedulers.

In addition to providing high throughput scheduling
decisions, a framework for tiny tasks must also reduce
the overhead for launching individual tasks. Popular
frameworks like Hadoop MapReduce have task launch
overheads of many seconds, due to a variety of factors
including the need to launch a new JVM for each task;
newer frameworks like Spark [35] reduce the overhead to
5ms. To support tasks that complete in hundreds of mil-
liseconds, we argue for reducing task launch overhead
even further to 1ms so that launch overhead constitutes
at most 1% of task runtime. By maintaining an active
thread pool for task execution on each worker node and
caching binaries, task launch overhead can be reduced
to the time to make a remote procedure call to the slave
machine to launch the task. Today’s datacenter networks
easily allow a RPC to complete within 1ms. In fact, re-
cent work showed that 10µs RPCs are possible in the
short term [26]; thus, with careful engineering, we be-
lieve task launch overheads of 50µs are attainable. 50µs
task launch overheads would enable even smaller tasks
that could read data from in-memory or from flash stor-
age in order to complete in milliseconds.

3.4 Framework-Controlled I/O

Using tiny tasks fundamentally changes the resource
footprint of tasks, giving the framework more control
to optimize I/O. Today’s large tasks accumulate a large
amount of output data in memory. Often this output data
will exceed available memory and spill onto disk, leading
to poor MapReduce performance [21]. Tiny tasks funda-
mentally change the task resource footprint: since tasks
run for a shorter period of time, they generate less output
data and thus use less memory. The framework can ex-
plicitly control the remaining memory, caching the most
important data and storing remaining data on disk or on a
different machine. For MapReduce-style jobs, the frame-
work could store the map outputs that will be used for
the first set of reduce tasks in memory, and store remain-
ing outputs on disk. While the first set of tiny reduce
tasks are running, the framework can pipeline reading
data for the next set of tasks. This approach considers file
system scheduling, network scheduling, task scheduling,
and caching holistically. The benefits of a more holistic
approach to scheduling have been illustrated in more re-
stricted settings (e.g., in the context of network schedul-
ing [9, 10]), but validating our broader approach remains
for future work.

3.5 Programming Model

Most tasks in a data parallel framework can be split into
tiny tasks by reducing the input size; however, some
types of tasks cannot easily be parallelized. Parallelizing
all jobs is the most significant challenge in realizing tiny
tasks. Consider, for example, reduce tasks in a MapRe-
duce job. In the limit, one reduce task can be launched to
handle each key. However, if all values map to the same
key, that key cannot easily be split into multiple tasks.
When the reduce function is associative and commuta-
tive, such tasks can be parallelized using techniques like
map-side combiners or aggregation trees. These tech-
niques are already used by existing frameworks [32], and
will allow most jobs to be split into tiny tasks.

Despite the use of aggregation trees, some tasks may
remain difficult to divide into tiny tasks. To split these
tasks, we propose providing a framework-managed tem-
porary state store that can be used to communicate and
share data between a job’s tiny tasks. For instance, to
implement a job that computes distinct values, we could
store hashes of all values seen so far in the state store. We
envision that this store would have a key-value interface
and provide strong consistency guarantees.

Inevitably, some tasks will be impractical to split, de-
spite these tools. To accommodate such tasks, we plan
on allowing some large tasks to run on the cluster. We
expect that if a small percentage of tasks remain large,
they can be run on the same infrastructure as tiny tasks
without impacting the performance of remaining tasks.
Exploring the impact of such sharing is the subject of
ongoing research.

4 Alternate Designs and Related Work

Tiny tasks solve two major problems: stragglers, and
sharing a cluster between batch and interactive jobs. A
variety of approaches solve one of the two problems in
isolation; e.g., skew handling techniques mitigate strag-
glers, and process migration allows improved sharing be-
tween long and short jobs.

4.1 Preemption and Process Migration

Our choice of a cooperative multi-tasking scheme with
tiny tasks contrasts with preemption based schemes com-
monly used in operating systems. Compared to tiny
tasks, one advantage of using preemption to guarantee
sharing properties is that the system can tightly control
scheduling quanta [28, 30]; however, preemption has
other disadvantages:

Cost of task-switching: Prior work has proposed
mechanisms to migrate processes [14, 22], virtual ma-
chines [11], and services [25] across machines. Migrat-
ing tasks involves transferring inputs, context, and inter-



mediate data; for data parallel applications, input data
and intermediate data can be several gigabytes, incurring
high migration overhead.

Fault tolerance: If a long task fails, it must be re-
executed from the beginning. Periodic task checkpoint-
ing can speed recovery, but at great expense [15]. On
the other hand, the short duration of tiny tasks limits the
amount of lost work after a failure, and tiny tasks can be
executed in parallel to speed recovery.

In spite of these drawbacks, some schedulers for data
parallel applications use preemption. Quincy [19] kills
tasks on preemption, trading wasted work for responsive-
ness. Amoeba [2] uses preemption to provide improved
elasticity in the context of MapReduce-like cluster com-
puting frameworks. Amoeba identifies safe-points when
a task can be paused and restarted elsewhere without
wasted work. The main drawback of Amoeba is that
it does not provide a mechanism for determining safe-
points, which is difficult for general tasks (even tasks that
use the MapReduce programming model). The Amoeba
authors choose preemptability rather than small tasks for
two reasons. First, they cite high task launch overheads
in systems like Hadoop; as described in §3.5, these over-
heads are not fundamental and can be solved with im-
proved engineering. Second, they note that creating uni-
formly sized small tasks is difficult. Tasks need not be
uniformly sized for the benefits of tiny tasks to hold;
rather, tasks must be orders of magnitude smaller than
today’s tasks.

4.2 Coarse-Grained Resource Allocation

Many clusters use static resource allocation to ensure that
long-running jobs do not affect high priority jobs due
to head of line blocking [31]. Static partitioning limits
utilization because each partition must be provisioned to
handle peak load, and extra capacity cannot easily be re-
allocated.

Omega [27], Google’s cluster scheduler, uses flexible
coarse grained resource allocation. Omega shares a clus-
ter across many frameworks that each perform their own
task-level scheduling. Tiny tasks can improve perfor-
mance for a single framework in this context, but per-
forming task-level scheduling separately for each frame-
work limits cluster utilization. Tiny tasks reap the great-
est efficiency benefits when used to share resources be-
tween multiple users and frameworks.

4.3 Fine-Grained Sharing

The idea of using smaller units of work to improve load
balancing is well studied. In multi-threaded applica-
tions, work-stealing based schedulers [6] divide work at
very fine granularities to provide better load balancing.
Smaller units of work have also been used in operat-
ing systems [28], storage systems [7, 16] and distributed

hash tables [29]. We apply this principle to tasks sched-
uled in large-scale clusters. The idea of sharing cluster
resources at task-level granularity has been used in exist-
ing cluster schedulers [18, 34] and prior proposals have
also looked at splitting MapReduce tasks [5]. Tiny tasks
drive the idea of small tasks to the extreme to enable
improved sharing of cluster resources and better respon-
siveness.

4.4 Skew-Handling

A separate line of research has focused on skew and
straggler mitigation. Examples of such work include
Mantri [4], SkewTune [20], Scarlett [1], work on task
speculation [36], and work on task cloning [3, 12].
Mantri and Scarlett attempt to mitigate task runtime skew
by modeling the causes for skew and accounting for these
causes when scheduling tasks. In particular, Mantri per-
forms resource aware scheduling to decrease the proba-
bility of observing task skews, while Scarlett replicates
storage blocks based on their probability to decrease the
wait time for a popular block. Both of these systems
moderately reduce task skew, but they rely on a fragile
set of signals and do not work in all cases. Furthermore,
existing straggler mitigation techniques use additional
cluster resources to gain more predictable task runtimes.
This limits the applicability of these techniques under sit-
uations of high load, when achieving predictability may
be most important. SkewTune reactively mitigates data
skew by splitting large tasks at runtime, while tiny tasks
preemptively avoid data skew.

5 Conclusion

Tiny tasks represent a simple design paradigm that miti-
gates stragglers and allows increased utilization without
sacrificing fairness or responsiveness. We have presented
an architecture that represents a first step towards realiz-
ing tiny tasks. Given the benefits of using smaller tasks,
we believe that the systems community should focus on
efforts to reduce overheads and provide improved scala-
bility in cluster frameworks.
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