
System Programming in Rust: Beyond Safety
Abhiram Balasubramanian∗

University of Utah
Marek S. Baranowski

University of Utah
Anton Burtsev

UC Irvine

Aurojit Panda
UC Berkeley

Zvonimir Rakamarić
University of Utah

Leonid Ryzhyk
VMware Research

ABSTRACT
Rust is a new system programming language that offers a practical
and safe alternative to C. Rust is unique in that it enforces safety
without runtime overhead, most importantly, without the overhead
of garbage collection. While zero-cost safety is remarkable on its
own, we argue that the superpowers of Rust go beyond safety. In
particular, Rust’s linear type system enables capabilities that cannot
be implemented efficiently in traditional languages, both safe and
unsafe, and that dramatically improve security and reliability of
system software. We show three examples of such capabilities:
zero-copy software fault isolation, efficient static information flow
analysis, and automatic checkpointing. While these capabilities
have been in the spotlight of systems research for a long time,
their practical use is hindered by high cost and complexity. We
argue that with the adoption of Rust these mechanisms will become
commoditized.
ACM Reference format:
Abhiram Balasubramanian, Marek S. Baranowski, Anton Burtsev, Aurojit
Panda, Zvonimir Rakamarić, and Leonid Ryzhyk. 2017. SystemProgramming
in Rust: Beyond Safety. In Proceedings of HotOS ’17, Whistler, BC, Canada,
May 08-10, 2017, 6 pages.
https://doi.org/10.1145/3102980.3103006

1 INTRODUCTION
For several decades system developers choose C as the one and
only instrument for programming low-level systems. Despite many
advances in programming languages, clean-slate operating sys-
tems [3], hypervisors [2], key-value stores [26], web servers [30],
network [6] and storage [38] frameworks are still developed in C,
a programming language that is in many ways closer to assembly
than to a modern high-level language.

Today, the price of running unsafe code is high. For example, in
2017, the Common Vulnerabilities and Exposures database lists 217
vulnerabilities that enable privilege escalation, denial-of-service,
and other exploits in the Linux kernel [8], two-thirds of which can
be attributed to the use of an unsafe language [5]. These include
∗Work performed at Samsung Reserch America.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HotOS ’17, May 08-10, 2017, Whistler, BC, Canada
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5068-6/17/05. . . $15.00
https://doi.org/10.1145/3102980.3103006

human mistakes related to low-level reasoning about intricate de-
tails of object lifetimes, synchronization, bounds checking, etc., in
a complex, concurrent environment of the OS kernel. Even worse,
pervasive use of pointer aliasing, pointer arithmetic, and unsafe
type casts keeps modern systems beyond the reach of software
verification tools.

Why are we still using C? The historical reason is performance.
Traditionally, safe languages rely on managed runtime, and specifi-
cally garbage collection (GC), to implement safety. Despite many
advances in GC, its overhead remains prohibitive for systems that
are designed to saturate modern network links and storage devices.
For example, to saturate a 10Gbps network link, kernel device dri-
vers and network stack have a budget of 835 ns per 1K packet (or
1670 cycles on a 2GHz machine).With the memory access latency
of 96-146 ns [28], the I/O path allows a handful of cache misses in
the critical path—the overhead of GC is prohibitive.

Is it reasonable to sacrifice safety for performance, or should we
prioritize safety and accept its overhead? Recent developments in
programming languages suggest that this might be a false dilemma,
as it is possible to achieve both performance and safety without com-
promising on either. The breakthrough has been achieved through
synthesis of an old idea of linear types [41] and pragmatic language
design, leading to the development of the Rust language [18]. Rust
enforces type and memory safety through a restricted ownership
model, where there exists a unique reference to each live object in
memory. This allows statically tracking the lifetime of the object
and deallocating it without a garbage collector. The runtime over-
head of the language is limited to array bounds checking, which is
avoided in most cases by using iterators.

In this paper, we strengthen the case for Rust as a systems pro-
gramming language by demonstrating that its advantages go beyond
safety. We argue that Rust’s linear type system enables capabili-
ties missing in traditional programming languages (both safe and
unsafe). We identify three categories of such capabilities: isolation,
analysis, and automation.

Isolation. Software fault isolation (SFI) enforces process-like
boundaries around program modules in software, without rely-
ing on hardware protection [42]. While SFI improves the security
and reliability of the system, it is hard to implement efficiently.
Existing SFI implementations do not support sending data across
protection boundaries by reference, as this enables the sender to
maintain access to the data. Hence a copy is required to ensure
isolation, making such solutions unacceptable in line-rate systems.
Rust’s single ownership model allows us to implement zero-copy
SFI. The Rust compiler ensures that, once a pointer has been passed
across isolation boundaries, it can no longer be accessed by the

156

https://doi.org/10.1145/3102980.3103006
https://doi.org/10.1145/3102980.3103006

sender. Our SFI implementation (section 3) introduces the over-
head of 90 cycles per protected method call and has zero runtime
overhead during normal execution.

Analysis. Programming languages literature describes a num-
ber of language extensions and associates static analyses that en-
force security and correctness properties beyond traditional type
safety [9, 29, 39]. For example, static information flow control (IFC)
enforces confidentiality by tracking the propagation of sensitive
data through the program [29]. Many of these analyses are com-
plicated by the presence of aliasing, e.g., in the IFC case, writing
sensitive data to an object makes this data accessible via all aliases
to the object and can therefore change the security state of multiple
variables. Modern alias analysis achieves efficiency by sacrificing
precision, posing a major barrier to accurate IFC. By restricting
aliasing, Rust sidesteps the problem. We illustrate this in section 4
by prototyping an IFC extension for Rust based on precise, yet
scalable program analysis.

Automation. Many security and reliability techniques, including
transactions, replication, and checkpointing, internally manipulate
program state by traversing pointer-linked data structures in mem-
ory. Doing so automatically and for arbitrary user-defined data
types can be complicated in the presence of aliasing. For example,
during checkpointing, the existence of multiple references to an
object may lead to the creation of multiple object copies (Figure 3).
Existing solutions require for a developer to write checkpointing
code manually or modify the application to use special libraries
of checkpointable data structures. In section 5, we propose a Rust
library that adds the checkpointing capability to arbitrary data
structures in an efficient and thread-safe way.

The features discussed above have been in the spotlight of sys-
tems research for decades; however their practical adoption is hin-
dered by their high cost and complexity. We argue that with the
adoption of Rust as a systems programming language, these mech-
anisms will become commoditized. We support our thesis by dis-
cussing a prototype implementations of SFI, IFC, and checkpointing
in Rust.

The advantages of Rust come at the cost of learning a new lan-
guage and porting software to it, dealing with a limited and evolving
Rust ecosystem, and increased design complexity due to having to
comply with Rust’s restricted ownership model. We believe that
these overheads are justified in applications that require uncompro-
mised safety and performance. In fact, we argue that forcing the
developer to be explicit about resource ownership is a good practice
in system programming. At the same time, Rust is clearly not an
optimal language for rapid prototyping, scripting, and other non-
performance-critical tasks. We hope that observations we make
in this paper will help Rust find its proper place in the system
programmer’s toolkit.

2 BACKGROUND
The design of Rust builds on a body of research on linear types [41],
affine types, alias types [43], and region-based memory manage-
ment [40], and is influenced by languages like Sing# [16], Vault [17]
and Cyclone [23]. Prior to Rust, the Singularity OS [16] introduced

linear types to systems research. Singularity’s Sing# language sup-
ports a hybrid type system, where traditional types are used to
enforce software fault isolation between processes by allocating
each process its own garbage-collected heap. Linear types are used
exclusively for zero-copy inter-process communication via a shared
exchange heap. In section 3, we present a solution that achieves
both isolation and communication using linear types.

Rust supports automatic memory management without a
garbage collector through its ownership model. When a variable is
bound to an object, it acquires ownership of the object. The object
is deallocated when the variable goes out of scope. Alternatively,
ownership can be transferred to another variable, destroying the
original binding. It is also possible to temporarily borrow the object
without breaking the binding. Visibility of the borrow is restricted
to the syntactic scope where it is declared and cannot exceed the
scope of the primary binding. The following code snippet illustrates
Rust’s ownership model:
fn take(v: Vec <i32 >) // captures ownership of v.
fn borrow(v: &Vec <i32 >)// `&' denotes borrowed object
let v1 = vec![1, 2, 3];
let v2 = vec![1, 2, 3];
take(v1);
//Error: binding v1 was consumed by take()
println !("{:?}" , v1);
borrow (&v2);
// OK: binding v2 is preserved by borrow ()
println !("{:?}" , v2);

Single ownership eliminates pointer aliasing, making it impos-
sible to implement data structures like doubly-linked lists in pure
Rust. The language offers two mechanisms to remedy this limita-
tion. First, Rust embeds an unsafe subset that is not subject to the
single ownership restriction and is used to, e.g., implement parts of
Rust’s standard library, including linked lists. Techniques described
in this paper rely on properties of the Rust type system that only
hold for the safe subset of the language. In the rest of the paper
we assume that unsafe code is confined to trusted libraries. Second,
Rust supports safe read-only aliasing by wrapping the object with a
reference counted type, Rc or Arc. When write aliasing is essential,
e.g., to access a shared resource, single ownership can be enforced
dynamically by additionally wrapping the object with the Mutex
type. In contrast to conventional languages, this form of aliasing is
explicit in the object’s type signature, which enables us to handle
such objects in a special way as described in section 5.

With the maturing of Rust, we now can apply linear types to a
broad range of systems tasks. Multiple projects have demonstrated
that Rust is suitable for building low-level high-performance sys-
tems, including an embedded [25] and a conventional OS [10], a
network function framework [31], and a browser engine [35]. While
these systems primarily take advantage of Rust’s type and memory
safety, effectively using it as a safe version of C, we focus on the
capabilities of Rust that go beyond type and memory safety.

Similar in spirit to ours is the work by Jespersen et al. [22] on
session-typed channels for Rust, which exploits linear types to
enable compile-time guarantees of adherence to a specific com-
munication protocol. There is a large body of research on safe
system programming languages, including safe dialects of C [9, 23]
as well as alternatives such as Go and Swift. While a comparison
of Rust against these languages is outside the scope of this paper,
we point out that, unlike Rust, all of them rely on runtime support

157

for automatic memory management, either in the form of garbage
collection or pervasive reference counting.

3 ISOLATION
We argue that Rust enables software fault isolation (SFI) with
lower overhead than any mainstream language. SFI encapsulates
untrusted extensions in software, without relying on hardware ad-
dress spaces. While modern SFI implementations enable low-cost
isolation of, e.g., browser plugins [44] and device drivers [15], their
overhead becomes unacceptable in applications that require high-
throughput communication across protection boundaries. Consider,
for instance, network processing frameworks such as Click [24] or
NetBricks [31], which forward packets through a pipeline of filters.
Security and fault tolerance considerations call for isolating each
pipeline stage in its own protection domain. The traditional SFI
architecture achieves this by confining memory accesses issued by
the isolated component to its private heap [15, 19, 44]. Sending data
across protection boundaries requires copying it, which is unac-
ceptable in a line-rate system. An alternative architecture [27] uses
a shared heap and tags every object on the heap with the ID of the
domain that currently owns the object. This avoids copying, but
introduces a runtime overhead of over 100% due to tag validation
performed on each pointer dereference.

Rust enables SFI without copying or tagging. Type safety pro-
vides a foundation for SFI by ensuring that a software component
can only access objects obtained from the memory allocator or ex-
plicitly granted to it by other components. In addition, Rust’s single
ownership model enforces that, after passing an object reference to
a function or channel, the caller loses access to the object and hence
can neither observe nor modify data owned by other components
(with the exception of safe read-only sharing allowed by Rust).

What is missing for a complete SFI solution is a management
plane to control domain lifecycle and communication by cleaning
up and recovering failed domains, enforcing access control policies
on cross-domain calls, etc. We demonstrate how such mechanisms
can be implemented in Rust as a library. Our implementation is
straightforward, as it relies on inherent capabilities of Rust. The
significance of our result is that it provides a constructive proof that
Rust enables fault isolation, including secure communication across
isolation boundaries, with negligible overhead. To the best of our
knowledge, this is the first SFI implementation in any programming
language to demonstrate these properties.

Our SFI library exports two data types: protection domains (PDs)
and remote references (rrefs). All PDs use a common heap for mem-
ory allocation; however they do not share any data. PDs interact
exclusively via method invocations on rrefs. Arguments and return
values of remote invocations follow the usual Rust semantics: bor-
rowed references are accessible to the target PD for the duration of
the call; all other arguments change their ownership permanently.
The sole exception is remote references: the object pointed to by
an rref stays in its original domain and can only be accessed from
the domain holding the reference via remote invocation.

Rrefs are implemented as smart pointers (Figure 1). When an
rref is created, the original object reference is stored in the reference
table associated with the domain. This reference acts as a proxy
for remote invocations. The rref returned to the user contains a

Domain 1
ref table

Domain 2
ref table

Shared heap

rref

Figure 1: All PDs share the common heap. Cross-domain ref-
erences (rrefs) are mediated by the reference table.

weak pointer [12] to the reference table. A weak pointer does not
prevent the object it points to from being destroyed and must be
upgraded to a strong pointer before use. Proxying remote invoca-
tions through the reference table gives the owner of the domain
complete control over its interfaces and lifecycle. For example, they
can intercept remote invocations for fine-grained access control or
revoke a remote reference completely by removing its proxy from
the reference table. In the latter case, future attempts to invoke the
rref will fail to upgrade the weak pointer and will return an error.
The following listing illustrates the use of domains and rrefs:
/* Inside domain manager: */
let d = Domain ::new(); // create a PD
// create an object inside PD and wrap it in RRef
let rref = Domain :: execute (&d,

||RRef::new(createSomeObj ()));
...
/* Invoke rref from another PD: */
match rref.method1 () {

Ok(ret) => println !(" Result: {}", ret),
Err(_) => println !(" method1 () failed ") }

By clearing the reference table one can automatically deallocate
all memory and resources owned by the domain. We use this mech-
anism to implement fault recovery. When a panic occurs inside
the domain (e.g., due to a bounds check or assertion violation), we
first unwind the stack of the calling thread to the domain entry
point [11] and return an error code to the caller. Next, we clear the
domain reference table and finally run the user-provided recovery
function to re-initialize the domain from clean state. The recovery
process can re-populate the reference table, thus making the failure
transparent to clients of the domain.

Our SFI implementation introduces the overhead of indirect
invocation via the proxy. In addition we use thread-local store [7] to
store ID of the current protection domain.We evaluate this overhead
in the context of the NetBricks network function framework [31]
running on an 8-core Intel Xeon E5530 2.40GHz server. NetBricks
is implemented in Rust and performs on par with optimized C
frameworks. It retrieves packets from DPDK [6] in batches of user-
defined size and feeds them to the pipeline, which processes the
batch to completion before starting the next batch. Batches are
passed between pipeline stages via function calls. NetBricks takes
advantage of linear types to ensure that only one pipeline stage
can access the batch at any time. While Panda et al. [31] refer to
this mechanism as fault isolation, NetBricks does not support fault
containment or recovery.

We use our SFI library to isolate every pipeline component in a
separate protection domain, replacing function calls with remote
invocations. We measure the cost of isolation by constructing a
pipeline of null-filters, which forward batches of packets without
doing any work on them. We vary the length of the pipeline and
the number of packets per batch, and measure the average number

158

1 2 4 8 16 32 64 128 256

packets/batch

10

100

1000

10000

100000
C

P
U

 c
y
cl

e
s

isolation overhead
maglev

Figure 2: Overhead of remote invocation for different batch
sizes plotted against the cost of processing by Maglev.

of cycles to process a batch with and without protection. The dif-
ference between the two divided by the pipeline length gives us
the overhead of a remote invocation over regular function call. We
found this overhead to be independent of the pipeline length, and
hence Figure 2 shows the results for the length of 5. The overhead
grows from 90 CPU cycles for 1-packet batches to 122 cycles for
256-packet batches, which is roughly the cost of 2 or 3 L3 cache
accesses. We attribute the increase to higher cache pressure due
to retrieving more packets from DPDK. To put these numbers in
perspective, we compare them against the cost of batch processing
in a realistic, but light-weight, network function—the NetBricks
implementation of the Maglev load balancer [13], which was shown
to perform competitively with an optimized C version [31]. The
overhead of isolation is negligible (under 1%) for batches larger
than 32 packets (Figure 2). Finally, we measure the cost of recovery
by simulating a panic in the null-filter and measuring the time it
takes to catch it, clean up the old domain, and create a new one.
The recovery took 4389 cycles on average.

4 ANALYSIS
We argue that Rust enables precise and efficient static information
flow control (IFC). IFC enables strong security guarantees for un-
trusted modules by ensuring that they do not leak sensitive data
through unauthorized channels [29, 45]. To this end, program inputs
are assigned security labels. Program output channels are also as-
signed labels, which bound the confidentiality of data sent through
the channel. The compiler or the verifier tracks the flow of sensitive
data through the program by tainting the result of each expression
with the upper bound of labels of its arguments , ultimately proving
that the program respects channel bounds. This check must be
performed statically to avoid the overhead of runtime validation
and to prevent leaks arising from the program paths not taken at
run time.

We illustrate the ideas behind IFC with an example implementa-
tion of a buffer that provides methods to append to and print its
content:

1 struct Buffer{data: Option <Vec <u8 >>}
2 impl Buffer {
3 fn new() -> Buffer {Buffer{data: None}}
4 fn append (&mut self , mut v: Vec <u8 >) {
5 match self.data {
6 None => self.data = Some(v),
7 Some(ref mut d) => d.append (&mut v) }
8 } }

The following program creates an empty buffer and appends
a secret and non-secret value to it (we introduce a new kind of

annotation to Rust to attach security labels to variables). It then
attempts to print the content of the buffer:

9 let mut buf = Buffer ::new();
10 #[label(non -secret)] // security annotation for IFC
11 let nonsec = vec![1,2,3];
12 #[label(secret)] // security annotation for IFC
13 let sec = vec![4,5,6];
14 buf.append(nonsec);
15 buf.append(sec); // buf now contains secret data
16 println !("{:?}" , buf.data);//ERROR:leaks secret data
17 // println !("{:?}" , nonsec);

The println!() macro outputs data to an untrusted terminal;
therefore it only allows non-secret arguments (the corresponding
annotation is not shown). The program violates this constraint by
writing sensitive data to the store and then attempting to print
it out. This violation can be detected via efficient static analysis,
which tracks the flow of data to and from the buffer. Specifically, in
line 15, the content of the buffer is tainted as secret, which triggers
an error in line 16.

In conventional programing languages, information flow anal-
ysis is complicated by pointer aliasing. We demonstrate this by
attempting to introduce a more subtle vulnerability to the above
program in line 17. Note that our buffer implementation uses the
first vector of values received from the client to store the data inter-
nally (line 6), and later appends new data to it (line 7). We exploit
this behavior by writing a non-secret vector to the empty buffer first
(line 14), appending secret data to the buffer (line 15), and finally
printing out the modified content of the non-secret vector, which
now aliases the secret data in the buffer (line 17). Thus, instead of
writing sensitive data to an unauthorized output channel directly,
the program creates an alias to an object, waits until the object
obtains sensitive data through a different alias, and then leaks the
data via the original alias.

Rust prevents such exploits by design, as they violate single
ownership. In this example, line 17 is rejected by the compiler, as
it attempts to access the nonsec variable, whose ownership was
transferred to the append method in line 14. In contrast, detecting
such leaks in a conventional language requires tracking all pointer
aliases and reflecting any change in the security label made via one
alias to all others. Alias analysis is undecidable in theory and is
hard to perform efficiently in practice without losing precision.

An alternative to alias analysis is a security type system, where
an object’s type includes its security label that cannot change,
making aliasing safe [29]. In our example, we would assign a low-
security type to the non-secret vector, and a high-security type to
the buf variable, prompting the compiler to reject an attempt to
write to the latter an alias to the former in line 6. Instead, we must
allocate a new vector and copy over the content of the v argument.
While the type-based approach enables fast compile-time analysis,
it introduces the overhead of extra memory allocation and copying,
which may not be acceptable in a line-rate system.

By eliminating aliasing, Rust enables efficient static information
flow analysis while allowing for security labels to change at run-
time. We formulate IFC as the problem of verification of an abstract
interpretation of the program [34]. We represent the value of each
variable in the abstract domain by its security label. Input variables
are initialized with user-provided labels. Arithmetic expressions
over secure values are abstracted by computing the upper bound

159

of their arguments. An auxiliary program counter variable is in-
troduced to track the flow of information via branching on labeled
variables. We verify the resulting abstract program to ensure that
labels written to output channels do not exceed user-provided chan-
nel bounds. Our methodology is similar to that by Zanioli et al. [45],
sans the expensive alias analysis step.

We have implemented a minimal proof-of-concept IFC for Rust.
Our prototype relies on Rust macros to transform the program into
its abstract interpretation. There currently does not exist a dedicated
verifier for Rust. Hence, we extended the SMACK verifier [32]
with an early version of the Rust frontend. SMACK verification
toolchain is built on top of the LLVM compiler infrastructure that
is used by Rust as well. Hence, it was relatively straightforward to
extend SMACK with a preliminary support for verification of Rust
programs.

We implemented and verified a simple secure data store in Rust,
which stores data on behalf of multiple clients, while preventing
non-privileged clients from reading data belonging to privileged
ones. The security-label bounds were specified in the example pro-
gram through the use of assertions. As a sanity check, we seeded a
bug into checking of security access in the implementation. SMACK
discovered the injected bug, thereby increasing our confidence in
the verification process. Even without alias analysis, verification
can be expensive for large programs. Further improvements can
be achieved through compositional reasoning: in the absence of
aliasing, the effect of every function on security labels is confined
to its input arguments and can be summarized by analyzing the
code of the function in isolation from the rest of the program.

5 AUTOMATION
Many techniques for improving the performance and reliability of
systems hinge on the ability to automatically manipulate program
state in memory. In particular, checkpointing [14], transactions [20,
21, 33], replication [36, 37], multiversion concurrency [1, 4], etc.,
involve snapshotting parts of program state. This, in turn, requires
traversing pointer-linked data structures in memory. Ideally one
would like to generate this functionality automatically and for
arbitrary user-defined data types. However, doing so in a robust
way can be complicated in the presence of aliasing.

Consider, for instance, the task of checkpointing the state of a
network firewall that consists of rules indexed via a trie for fast
rule lookup based on packet headers (Figure 3a). Multiple leaves of
the trie can point to the same rule, causing this rule to be encoun-
tered multiple times during pointer traversal, potentially leading to
redundant copies of the rule, as shown in Figure 3b. To avoid this
in a conventional language, one must record the address of each
object reached during the traversal and check newly encountered
objects against the recorded set. This has the obvious downside
of increasing the CPU and memory overhead of checkpointing.
Another complication is related to external pointers aliasing parts
of the object. Such pointers, which do not own the data they point
to, must be handled in a special way during pointer traversal, for
example, a transaction system may add the target of such a pointer
to the transaction set. However conventional languages do not
provide means to identify such pointers.

rule 1

rule 2

(a) Database before check-
pointing.

rule 1'

rule 2

rule 1

(b)Multiple copies due to naïve
traversal of the graph.

Figure 3: Checkpointing a firewall rule database.

Rust simplifies the problem dramatically: by default, all refer-
ences in Rust are unique owners of the object they point to and can
be safely traversed without extra checks. Aliasing, when present, is
explicit in object’s type signature: only objects wrapped in reference
counted types (Rc, Arc) can be aliased. The Rc and Arc wrappers
therefore provide a convenient place to deal with aliasing with
minimal modifications to user code and without expensive lookups.

To support this observation, we implemented an automatic
checkpointing library for Rust. We develop a trait (traits are analo-
gous to Java interfaces), called Checkpointable, with twomethods:
checkpoint() and restore().We introduce a compiler plugin that
inductively generates an implementation of this trait for types com-
prised of scalar values and references to other checkpointable types.
Next, we provide a custom implementation of Checkpointable for
Rc (Arc can be extended similarly), which sets an internal flag the
first time checkpoint() is called on the object and checks this flag
to avoid creating additional copies when graph traversal hits the
object again via a different alias. Our library adds the checkpoint-
ing capability to arbitrary user-defined data types; in particular it
checkpoints objects with internal aliases correctly and efficiently.

6 CONCLUSION AND FUTUREWORK
Rust represents a unique point in the language design space, bring-
ing the benefits of type and memory safety to systems that cannot
afford the cost of garbage collection. We explore the benefits of Rust
that go beyond safety. We show that Rust enables system program-
mers to implement powerful security and reliability mechanisms
like SFI, IFC, and automatic checkpointing more efficiently than
any conventional language. This is just the tip of the iceberg: we
believe that further exploration of linear types in the context of
real systems will yield more game-changing discoveries.

One promising direction is formal verification, both automatic
and user-guided. Alias analysis is a major source of complexity and
imprecision in software analysis. By lifting the burden of resolving
memory aliasing from the verifier, Rust enables faster and more
accurate verification. This has numerous applications in systems,
ranging from verified kernel extensions to, potentially, fully verified
hypervisors, embedded OSs, etc.

ACKNOWLEDGMENTS
We thank the anonymous HotOS reviewers. This material is par-
tially based upon work supported by the National Science Founda-
tion under Grants No. 1319076 and No. 1527526.

REFERENCES
[1] Daniel Atkins, Alex Potanin, and Lindsay Groves. 2013. The Design and Im-

plementation of Clocked Variables in X10. In Proceedings of the Thirty-Sixth
Australasian Computer Science Conference - Volume 135 (ACSC ’13). Adelaide,
Australia, 87–95.

160

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I.
Pratt, and A. Warfield. 2003. Xen and the art of virtualization. In ACM SIGOPS
Operating Systems Review, Vol. 37. ACM, 164–177.

[3] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca
Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and Akhilesh Singhania.
2009. The Multikernel: A New OS Architecture for Scalable Multicore Systems. In
Proceedings of the ACM SIGOPS 22Nd Symposium on Operating Systems Principles
(SOSP ’09). Big Sky, Montana, USA, 29–44.

[4] Sebastian Burckhardt, Alexandro Baldassin, and Daan Leijen. 2010. Concurrent
programming with revisions and isolation types. In ACM Sigplan Notices, Vol. 45.
ACM, 691–707.

[5] Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou, Nickolai Zeldovich, and
M. Frans Kaashoek. 2011. Linux kernel vulnerabilities: state-of-the-art defenses
and open problems. In Proceedings of the Second Asia-Pacific Workshop on Systems
(APSys ’11). Shanghai, China, Article 5, 5 pages.

[6] Intel Corporation. DPDK: Data Plane Development Kit. http://dpdk.org/. (????).
[7] Alex Crichton. 2017. scoped-tls. https://github.com/alexcrichton/scoped-tls.

(2017).
[8] CVE. Vulnerabilities on Linux Kernel Machines. https://www.cvedetails.com/

product/47/Linux-Linux-Kernel.html?vendor_id=33. (????).
[9] Robert DeLine and Manuel Fähndrich. 2001. Enforcing High-level Protocols in

Low-level Software. In ACM Conference on Programming Language Design and
Implementation (PLDI ’01). Snowbird, Utah, USA, 59–69.

[10] Redox Project Developers. Redox - Your Next(Gen) OS. (????). http://www.
redox-os.org/.

[11] The Rust Project Developers. 2017. Implementation of Rust stack unwinding.
https://doc.rust-lang.org/1.3.0/std/rt/unwind/. (2017).

[12] The Rust Project Developers. 2017. Struct std::rc::Weak. https://doc.rust-lang.
org/std/rc/struct.Weak.html. (2017).

[13] Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman Kononov,
Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wentao Shang, and Jin-
nah Dylan Hosein. 2016. Maglev: A Fast and Reliable Software Network Load
Balancer. In Proceedings of the 13th Usenix Conference on Networked Systems
Design and Implementation (NSDI’16). Santa Clara, CA, 523–535.

[14] Elmootazbellah Nabil Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B
Johnson. 2002. A survey of rollback-recovery protocols in message-passing
systems. ACM Computing Surveys (CSUR) 34, 3 (2002), 375–408.

[15] Úlfar Erlingsson, Martín Abadi, Michael Vrable, Mihai Budiu, and George C.
Necula. 2006. XFI: Software Guards for System Address Spaces. In Proceedings of
the 7th Symposium on Operating Systems Design and Implementation (OSDI ’06).
Seattle, Washington, 75–88.

[16] Manuel Fähndrich et al. 2006. Language Support for Fast and Reliable Message-
based Communication in Singularity OS. In Eurosys.

[17] Manuel Fahndrich and Robert DeLine. 2002. Adoption and Focus: Practical Linear
Types for Imperative Programming. In Proceedings of the ACM SIGPLAN 2002
Conference on Programming Language Design and Implementation (PLDI ’02).
Berlin, Germany, 13–24.

[18] Mozilla Foundation. The Rust programming language. https://doc.rust-lang.org/
book/. (????).

[19] Michael Golm, Meik Felser, Christian Wawersich, and Jürgen Kleinöder. 2002.
The JX Operating System. In USENIX Annual Technical Conference. Monterey,
CA, USA, 45–58.

[20] Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy. 2005.
Composable Memory Transactions. In Proceedings of the Tenth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP ’05). Chicago,
IL, USA, 48–60.

[21] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer, III.
2003. Software Transactional Memory for Dynamic-sized Data Structures. In
Proceedings of the Twenty-second Annual Symposium on Principles of Distributed
Computing (PODC ’03). Boston, Massachusetts, 92–101.

[22] Thomas Bracht Laumann Jespersen, Philip Munksgaard, and Ken Friis Larsen.
2015. Session Types for Rust. In Workshop on Generic Programming.

[23] Trevor Jim, J. Greg Morrisett, Dan Grossman, Michael W. Hicks, James Cheney,
and YanlingWang. 2002. Cyclone: A Safe Dialect of C. InUSENIXAnnual Technical
Conference (ATEC ’02). Monterey, CA, USA, 275–288.

[24] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek.
2000. The Click Modular Router. ACM Trans. Comput. Syst. 18, 3 (Aug. 2000),
263–297.

[25] Amit Levy, Michael P Andersen, Bradford Campbell, David Culler, Prabal Dutta,
Branden Ghena, Philip Levis, and Pat Pannuto. 2015. Ownership is theft: experi-
ences building an embedded OS in rust. In Proceedings of the 8th Workshop on
Programming Languages and Operating Systems. ACM, 21–26.

[26] Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kaminsky. 2014.
MICA: A Holistic Approach to Fast In-memory Key-value Storage. In Proceedings
of the 11th USENIX Conference on Networked Systems Design and Implementation
(NSDI’14). Seattle, WA, 429–444.

[27] Yandong Mao, Haogang Chen, Dong Zhou, Xi Wang, Nickolai Zeldovich, and
M Frans Kaashoek. 2011. Software fault isolation with API integrity and multi-
principal modules. In Proceedings of the Twenty-Third ACM Symposium on Oper-
ating Systems Principles. ACM, 115–128.

[28] Daniel Molka, Daniel Hackenberg, Robert Schöne, and Wolfgang E Nagel. 2015.
Cache Coherence Protocol and Memory Performance of the Intel Haswell-EP
Architecture. In Parallel Processing (ICPP), 2015 44th International Conference on.
IEEE, 739–748.

[29] Andrew C. Myers and Barbara Liskov. 1997. A Decentralized Model for Infor-
mation Flow Control. In ACM Symposium on Operating Systems Principles. Saint
Malo, France, 129–142.

[30] Nginx. Nginx: High Performance Load Balancer, Web Server, and Reverse Proxy.
https://www.nginx.com/. (????).

[31] Aurojit Panda, Sangjin Han, Keon Jang, MelvinWalls, Sylvia Ratnasamy, and Scott
Shenker. 2016. NetBricks: Taking the V out of NFV. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16), USENIX OSDI, Vol. 16.

[32] Zvonimir Rakamarić and Michael Emmi. 2014. SMACK: Decoupling source
language details from verifier implementations. In International Conference on
Computer Aided Verification. Springer, 106–113.

[33] Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L. Hudson, Chi Cao Minh, and Ben-
jamin Hertzberg. 2006. McRT-STM: A High Performance Software Transactional
Memory System for a Multi-core Runtime. In Proceedings of the Eleventh ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP
’06). New York, New York, USA, 187–197.

[34] David A. Schmidt. 1998. Data Flow Analysis is Model Checking of Abstract Inter-
pretations. In ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. San Diego, CA, USA, 38–48.

[35] "servo". Servo web browser engine. http://www.servo.org. (????).
[36] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. 2011.

Conflict-free replicated data types. In Symposium on Self-Stabilizing Systems.
386–400.

[37] Justine Sherry, Peter Xiang Gao, Soumya Basu, Aurojit Panda, Arvind Krishna-
murthy, Christian Maciocco, Maziar Manesh, João Martins, Sylvia Ratnasamy,
Luigi Rizzo, et al. 2015. Rollback-recovery for middleboxes. In ACM SIGCOMM
Computer Communication Review, Vol. 45. ACM, 227–240.

[38] Intel Open Source.org. 2016. Storage Performance Development Kit (SPDK).
https://01.org/spdk. (2016).

[39] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. 1994. An Interaction-based
Language and Its Typing System. In International PARLE Conference on Parallel
Architectures and Languages Europe. 398–413.

[40] Mads Tofte and Jean-Pierre Talpin. 1997. Region-Based Memory Management.
Information and Compuation 132, 2 (Feb. 1997), 109–176.

[41] Philip Wadler. 1990. Linear types can change the world!. In IFIP TC 2 Working
Conference on Programming Concepts and Methods. Sea of Galilee, Israel, 347–359.

[42] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. 1993.
Efficient Software-based Fault Isolation. In Proceedings of the Fourteenth ACM
Symposium on Operating Systems Principles (SOSP ’93). Asheville, North Carolina,
USA, 203–216.

[43] David Walker and Greg Morrisett. 2000. Alias Types for Recursive Data Structures
(Extended Version). Technical Report. Ithaca, NY, USA.

[44] Bennet Yee, David Sehr, Gregory Dardyk, J Bradley Chen, Robert Muth, Tavis
Ormandy, Shiki Okasaka, Neha Narula, and Nicholas Fullagar. 2009. Native client:
A sandbox for portable, untrusted x86 native code. In Security and Privacy, 2009
30th IEEE Symposium on. IEEE, 79–93.

[45] Matteo Zanioli, Pietro Ferrara, and Agostino Cortesi. 2012. SAILS: Static Analysis
of Information Leakage with Sample. In ACM Symposium on Applied Computing.
Trento, Italy, 1308–1313.

161

http://dpdk.org/
https://github.com/alexcrichton/scoped-tls
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
http://www.redox-os.org/
http://www.redox-os.org/
https://doc.rust-lang.org/1.3.0/std/rt/unwind/
https://doc.rust-lang.org/std/rc/struct.Weak.html
https://doc.rust-lang.org/std/rc/struct.Weak.html
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/book/
https://www.nginx.com/
http://www.servo.org
https://01.org/spdk

	Abstract
	1 Introduction
	2 Background
	3 Isolation
	4 Analysis
	5 Automation
	6 Conclusion and future work
	Acknowledgments
	References

